Apple
Machine
Language

for
Beginners

Richard Mansfield

COMPUTE Pubhcc’nons INnC. @

OOOOOOOOOOOOOOOOOOOOOO

Copyright 1985, COMPUTE! Publications, Inc. All rights reserved
Reproduction or translation of any part of this work beyond that permitted by

Sections 107 and 108 of the United States Copyright Act without the permission of
the copyright owner is unlawful.

Printed in the United States of America

109'87654321

ISBN 0-87455-002-5

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is one of the ABC Publishing Companies and is not associated with any

manufacturer of personal computers. Apple II, I+, Ile, IIc, ProDOS, and DOS 3.3 are
trademarks of Apple Computer, Inc.

Contents

PREIACE icm o6 5 % 55 16w s 5 5 B i 01 vsiesdh 30 60 50055 o e 1 3 0 4008 0 B %
Introduction: Why Machine Language? vii
T How: to; Lise ThIS BOBK: o g zetz srsmntse s o od 466§ w@s 1
2. The Fundamentals 7
3. Thie MOnItOr stttk dos bt BT E e D Tum e em s en e 31
By BAICHIRBBINGE onmsunss wam 33330 % ARSI ATEERE HE WD ET AR 0 45
B ATEIINBEIC & 5005055 50 6 wrsmmm & G i 005 56 550 £ a8 ms 9.8 6 6 67
6., The THSTHCHOIISEE .« s mm st o imm w5 56 5mm o 55 6 83
7. Borrowing fiom BASIC . .cvuvssvssnmsnssirsgansss 121
8. Building a Program 131
9. ML Equivalents of BASIC Commands 147
Appendices i 183
A. 6502 Instruction Set 185
B. How to Use LADS 219
Ce Modiiviing LADIS . .. cionneniitiprsensiredsssnned 267
D. LADS Source Codec.coiviiiiiiiiiiinn. 299
MDEES] 1o e s s T i F 5 TRIRTSS B B s s L e 302
Defs, ProDOS Changescccovunnn. 303
BVl Lo ramirm £ n s e s 558 R e o5 e Tpe L g e ot e 303
Eval; ProDOB Changes iavsrpssrssssnssons 322
BOUAES ouoovsvsssnsnnmmeas s nmssmssssnssmssn 323
8 326
Openl, 33 VEBION . convosnsmpsnonsnssamnsvny 330
Openl, ProDOS Versioncov0vvimennes 340
BIRATIAIY 5.5, 5 5 6 1o s 51 s 55 B) 0 8, 3 5 il 5 349
oy (R e T S RSP 350
Getea, ProDCIS ChANeEs s orvesenswansswwssy s 351
WALHET 52 2 1 e s 5 0 1 0T S T 535 o s 05 PR 351
IOAISKS 5 e 20 o 0 5 2 B STV R0 0 T B 0 AT s il 354
I - 368
PHDIOPE wuinstasswntss s asnweusnsersmnsnsgyny 370
PSBUA@) .. o n 5 R b e i 5 0 G P S 5 2 1 BT s N 877
Pseéude, ProDU5 Changes ...ocvxisoanpmsinssns 386
Tables, 3.3 VEISion .omwmor e s e ss s o s s sass i 386

Tables, ProDOS Versionccuvu.... 390

E. Library of Subroutines ..::ssssswcsissnapssensssa 395

F. Niumnbex Tableg ...ccsscssisnssnssss snanessscans 403

G. Machine Language Entry Program, MLX 413
Tim Victor

TNAER o sa bt e w5 B oS i el 5w 5 e s S TG 421

Preface

Something amazing lies beneath BASIC.

Several years ago I decided to learn to program in ma-
chine language, the computer’s own language. I understood
BASIC fairly well and I realized that it was simply not pos-
sible to accomplish all that I wanted to do with my computer
using BASIC alone. BASIC is sometimes just too slow.

I faced the daunting (and exhilarating) prospect of learn-
ing to go below the surface of my computer, of finding out
how to talk directly to a computer in its language, not the
imitation-English of BASIC. I bought four books on 6502 ma-
chine language programming and spent several months prac-
ticing with them and puzzling out opcodes and hexadecimal
arithmetic, and putting together small machine language
programs.

Few events in learning to use a personal computer have
had more impact on me than the moment that I could instantly
fill the TV screen with any picture I wanted because of a ma-
chine language program I had written. I was amazed at its
speed, but more than that, I realized that anytime large amounts
of information were needed onscreen in the future—it could
be done via machine language. I had, in effect, created a new
BASIC “command” which could be added to any of my pro-
grams. This command—using a CALL instruction to send the
computer to my custom-designed machine language routine—
allowed me to have previously impossible control over the
computer.

BASIC might be compared to a reliable, comfortable car.
It will get you where you want to go. Machine language is like
a sleek racing car—you get there with lots of time to spare.
When programming involves large amounts of data, music,
graphics, or games, speed can become the single most im-
portant factor.

After becoming accustomed to machine language, I de-
cided to write an arcade game entirely without benefit of
BASIC. It was to be in machine language from start to finish. I
predicted that it would take about 20 to 30 hours. It was a
space invaders game with mother ships, rows of aliens, sound
. . . the works. It took closer to 80 hours, but I am probably
more proud of that program than of any other I've written.

After I'd finished it, I realized that the next games would
be easier and could be programmed more quickly. The mod-
ules handling scoring, sound, screen framing, delay, and
player/enemy shapes were all written. I only had to write
new sound effects, change details about the scoring, create
new shapes. The essential routines were, for the most part, al-
ready written for a variety of new arcade-type games. When
creating machine language programs, you build up a collection
of reusable subroutines. For example, once you find out how
to make sounds on your machine, you change the details, but
not the underlying procedures, for any new songs.

The great majority of books about machine language as-
sume a considerable familiarity with both the details of
microprocessor chips and with programming technique. This
book assumes only a working knowledge of BASIC. It was de-
signed to speak directly to the amateur programmer, the part-
time computerist. It should help you make the transition from
BASIC to machine language with relative ease.

This book is dedicated to Florence, Jim, and Larry. I
would also like to express my gratitude to Kevin Martin and

Tim Victor for their work in translating the various versions of
LADS.

vi

Why Machine
Language?

Sooner or later, many programmers find that they want to
learn machine language. BASIC is a fine general-purpose tool,
but it has its limitations. Machine language (often called
assembly language) performs much faster. BASIC is fairly easy
to learn, but most beginners do not realize that machine lan-
guage can also be easy. And, just as learning Italian goes
faster if you already know Spanish, if a programmer already
knows BASIC, much of this knowledge will make learning
machine language easier. There are many similarities.

This book is designed to teach machine language to those
who have a working knowledge of BASIC. For example, Chapter
9 is a dictionary of BASIC commands. Following each BASIC
command is a machine language routine which accomplishes
the same task. In this way, if you know what you want to do
in BASIC, you can find out how to do it in machine language.

To make it easier to write programs in machine language
(called ML from here on), most programmers use a special
program called an assembler. This is where the term assembly
language comes from. ML and assembly language programs
are both essentially the same thing. Using an assembler to cre-
ate ML programs is far easier than being forced to look up and
then POKE each byte into RAM memory. That’s the way it
used to be done, when there was too little memory in
computers to hold languages (like BASIC or assemblers) at the
same time as programs created by those languages. The old-
style hand-programming was very laborious.

There is an assembler at the end of this book which will
work on any Apple. It’s called LADS, for Label Assembly
Development System. It will let you type in ML instructions
(like INC 2) and will translate them into the right numbers
and POKE them for you wherever in memory you decide you
want your ML program to be located. LADS will help you in a
variety of other ways as well. It was designed to offer you a
fast, convenient, and effective ML programming environment,
a way of writing programs which is both natural and familiar.

ML instructions are like BASIC commands; you build an
ML program by using the ML instruction set. A complete,
descriptive table of all the 6502 ML instructions can be found

vii

Introduction

in Appendix A. Whenever you see a three-letter abbreviation
(like INC) in this book that you don’t recognize, it's an ML
instruction and you can look it up in Appendix A, where
you'll find its purposes, modes, and syntax fully described.

It’s a little premature, but if you're curious, INC 2 will in-
crease the number in your computer’s second memory cell
(the second byte of RAM memory) by one. If 15 is the number
currently in cell 2, it will become a 16 after INC 2. Think of it
as “increment address two.”” Like BASIC, ML has a series of
commands which you use to communicate with the computer
when you write a program. ML commands are always three-
letter abbreviations, like INC, and LADS will help you write
your ML programs using these commands and numbers that
you generally add to the commands as additional information,
like INC 2.

Throughout the book you’ll be learning how to handle a
variety of ML instructions, and LADS will be of great help.
You might want to familiarize yourself with it. Knowing what
it does (and using it to enter the examples in this book), you
will gradually build your understanding of ML, hexadecimal
numbers, and the extraordinary range of new possibilities
open to the computerist who knows ML. Knowing ML, being
able to talk directly to your machine, changes things so much
that it’s like getting a whole new computer, a much more
powerful computer.

Seeing It Work

Chapters 2-8 each examine a major aspect of ML where it dif-
fers from the way BASIC works. In each chapter, examples
and exercises lead the programmer to a greater understanding
of the methods of ML programming. By the end of the book,
you should be able to write, in ML, most of the programs and
subroutines you will want or need.

Let’s examine some advantages of ML, starting with the
main one—ML runs extremely fast.

Here are two programs which accomplish the same thing.
The first is in ML, and the second is in BASIC. They get re-
sults at very different speeds indeed as you'll see:

Machine Language

169 193 160 0 153 0 4 200 208 250 153 0 5 200 208
250 153 0 6 200 208 250 153 0 7 200 208 250 96

viii

Introduction

BASIC
5 FOR I = 1 TO 1000: PRINT “A”;: NEXT I

These two programs both print the letter A 1000 times on
the screen. The ML version takes up 29 bytes of RAM (Ran-
dom Access Memory). The BASIC version takes up 45 bytes
and takes about 30 times as long to finish the job. If you want
to see how quickly the ML works, you can POKE those num-
bers somewhere into RAM and run the ML program with a
CALL command to the little program.

In both BASIC and ML, many instructions are followed
by an argument. We mentioned the instruction INC 2. In that
example, the number 2 is the argument. In BASIC, the CALL
instruction must be given an argument which tells it where to
CALL, where the ML program it’s going to run is located in
RAM. The CALL instruction will turn control of the computer
over to the address given as its argument. There would be an
ML program waiting there.

Just remember that an argument is the second item in a
pair and that an argument modifies (makes more specific) a
given instruction. In the pairs INC 2, CALL 151, and Send a
Letter, the 2, 151, and Letter are the arguments. The INC,
CALL, and Send are the instructions.

To make it easy to see the speed of our 1000 A’s ML ex-
ample program, we’'ll just load it into memory without yet
knowing much about it. We’ll use a BASIC loader program (on
page x) that simply POKEs all the numbers of the ML program
into memory; then you CALL from BASIC to activate the ML
program.

A disassembly is like a BASIC program’s LISTing. You can
give the starting address of an ML program to a disassembler,
and it will translate the numbers it finds in the computer’s
memory into a readable series of ML instructions. The built-in
Apple monitor contains a disassembler that you can use to
examine and study ML programs. Note that you have to give
a start address whenever you write (with an assembler), list
(with a disassembler), or run (with CALL) an ML program.
That’s because, unlike BASIC programs, ML programs can be
located anywhere in RAM memory.

Here’s what our little example ML program looks like
when it has been translated by a disassembler:

ix

Introduction

0302- A9 Cl LDA #SC1
0304- A0 00 LDY #3500
0306~ 99 00 04 STA $0400,Y
0309~ c8 INY

030A- DO FA BNE $0306
030C- 99 00 05 STA $0500,Y
030F- (64:] INY

0310- DO FA BNE $030C
0312- 99 00 06 STA $0600,Y
0315- Cc8 INY

0316- DO FA BNE $0312
0318- 99 00 07 STA $0700,Y
031B- (o4} INY

031C- DO FA BNE $0318
031E- 60 RTS

The following BASIC program (called a loader) will POKE
the ML instructions (and their arguments) into memory for
you:

10 FOR I = 770 TO 798: READ A: POKE I,A: NEXT I

20 PRINT "CALL 770 TO ACTIVATE "

30 DATA 169,193,160,0,153,0,4,200,208,250,153,0,5,2
00,208,250,153,0,6,200,208,250,153,0,7,200,208,2
50,96

After running this program, type CALL 770 as instructed
and the screen will instantly fill.

BASIC stands for Beginner’s All-purpose Symbolic
Instruction Code. Because it is all-purpose, it cannot be the
perfect code for any specific job. The fact that ML speaks di-
rectly to the machine, in the machine’s language, makes it far
the more efficient language. This is because however cleverly
a BASIC program is written, it will nevertheless always require
extra running time to finish a job. This same problem slows
down every other computer language as well: Logo, Forth,
Pascal, C, whatever. None of them is the machine’s language
and, thus, none can run at maximum speed.

To see why this is, think of the common PRINT instruc-
tion in BASIC. A PRINT statement drags BASIC into a series
of operations which ML avoids. BASIC must ask and answer a
series of questions. Where is the text located that is to be
PRINTed? Is it a variable? Where is the variable located?
What'’s its length? Where on the screen is the text to be
placed?

Introduction

ML is far more efficient. As we will discover, ML does not
need to hunt for a string variable. And screen addresses do
not require a complicated series of searches in an ML program.
Each of these tasks, and others, slows BASIC down because it
must serve so many general purposes. The screen fills slowly
because BASIC has to make so many more decisions about every
action it attempts than does ML.

Inserting ML for Speed

A second benefit which you derive from learning ML is that
your understanding of computing will be much greater. On
the abstract level, you will be far more aware of just how
computers work. On the practical level, you will be able to
choose between BASIC or ML, whichever is best for the pur-
pose at hand. This choice between two languages permits far
more flexibility and allows a number of tasks to be pro-
grammed which are clumsy or even impossible in BASIC.
Quite a few of your favorite BASIC programs would benefit
from a small ML routine, “inserted”” into BASIC with a CALL,
to replace a heavily used, but slow, loop or subroutine. Large
sorting tasks, smooth animation, and many arcade games and
other kinds of programs must involve ML. And most programs
can benefit from ML patches. It’s no accident that nearly all
commercial computer programs are written in machine
language.

BASIC vs. Machine Language

Because of the great efficiency and speed of ML, it’s not
surprising that BASIC itself is written in ML. It's made up of
many ML subprograms stored in your Apple’s Read Only
Memory (ROM). BASIC is a collection of special words such as
STOP and RUN, each of which stands for a cluster of ML
instructions. One such cluster might sit in ROM (unchanging
memory) just waiting for you to type LIST. If you do type in
that word, the computer turns control over to the ML routine
which accomplishes a program listing. The BASIC programmer
understands and uses these BASIC words to build a program.
You hand instructions over to the computer and then rely on
the convenience of referring to all those prepackaged ML
routines by their BASIC names. The computer always works
with ML instructions. That’s why you cannot honestly say that

xi

Introduction

you truly understand computing until you understand the
computer’s language: machine language.

Another reason to learn ML is that custom programming
is then possible. Computers come with a disk operating sys-
tem (DOS) and BASIC (or other higher-level languages). After
awhile, you will likely find that you are limited by the rules or
the commands available in these languages. You will want to
add to them, to customize them. An understanding of ML is
necessary if you want to add new words to BASIC, to modify
a word processor (which was written in ML), to personalize
your computer—to make it behave precisely as you want it to.
This book will give you the knowledge and the tools to fully
understand and to speak directly to your Apple.

BASIC’s Strong Points

Of course, BASIC has its advantages and in some cases is to
be preferred over ML. BASIC is usually simpler to debug (to
get all the problems ironed out so that it works as it should).
In Chapter 3 we'll examine some ML debugging techniques
which work quite well, but BASIC is the easier of the two lan-
guages to correct. For one thing, BASIC often just comes out
and tells you your programming mistakes by printing error
messages on the screen. Nevertheless, if you use the LADS
assembler from this book, it too will print error messages and
identify the offending line number.

Contrary to popular opinion, ML is not necessarily a
memory-saving process. ML can use up about as much mem-
ory as BASIC does when accomplishing the same task. Short
programs can be somewhat more compact in ML, but longer
programs generally use up bytes fast in both languages. How-
ever, worrying about using up computer memory is quickly
becoming less and less important.

Soon programmers will probably have more memory
space available than they will ever need. In any event, a talent
for conserving bytes, like skill at trapping wild game, will
likely become a victim of technology. It will always be a skill,
but it seems as if it will not be an everyday necessity.

xii

Introduction

So, which language is best? They are both best—but for
different purposes. Many programmers, after learning ML, find
that they continue to construct some of their programs in
BASIC or some other language, but add ML modules where
speed is important. An all-ML program will, however, gen-
erally be more efficient, more flexible, and far faster than any
alternative. Remember, it's no accident that the great majority
of professional and commercial programs are written in pure ML.

But perhaps the best reason of all for learning ML is that
it is fascinating and fun.

xiii

Chapter 1

How to Use This

Book

How to Use This Book

Throughout this book there are short example programs in
machine language for you to type in and experiment with.
They vary in length, but most are quite brief and are intended
to illustrate an ML concept or technique. The best way to
learn something new is often to just jump in and do it. Ma-
chine language programming is no different. Machine language
programs are written using a program called an assembler, just
as BASIC programs are written using a program inside the
computer called Applesoft BASIC.

In an earlier, not Apple-specific, version of this book,
there was an assembler program written in BASIC. This book,
however, offers a far more powerful assembler, LADS, in
Appendix B. In addition to being versatile, LADS offers the
beginner a number of conveniences such as error detection
and a familiar environment. And the more sophisticated fea-
tures of the assembler are there for you when you're ready to
use them.

The First Step: Assembling

It is probably a good idea to first type LADS into your com-
puter (ProDos and 3.3 versions and typing instructions are in
Appendix B). Once you've got a working version, you're ready
to use the assembler with the practice examples throughout
the book. (If you prefer, you can order a 3.3 /ProDos disk
which contains LADS and other programs from this book. See
the coupon in the back of this book for details.)

Frequently, the examples in the book are designed to do
something to the screen. The reason for this is that you can
then tell at once if things are working as planned. If you are
trying to send the message TEST STRING and it comes out
TEST STRI or TEST STRING@, you can go back and re-
assemble with LADS until you get it right. More important,
you'll discover what you did wrong.

Normally, programs manipulate data within a database or
make calculations with some numbers somewhere in RAM,
but the action takes place offscreen. When learning ML, how-
ever, it’s often helpful to put your data manipulations right up
in front of your eyes on the screen so that you can see pre-
cisely how things are going. When everything is working cor-
rectly, you can redirect the data to some less visible place
elsewhere in RAM.

How to Use This Book

A Sample Program

The following little ML program will show you how to go
about entering and testing the practice examples in this book.
At this point, of course, you won't yet recognize the ML
instructions involved. This sample program is intended only to
serve as a guide to working with the examples you will come
upon later in the text.

After you've typed in and made a few backup copies of
LADS, you can use it to create runnable ML programs. De-
tailed instructions on using all of LADS features are found in
Appendix B, but for now, we just want to know how to enter
a short, easy program.

Once you've booted up either DOS 3.3 or ProDOS, insert
a disk with LADS on it in your disk drive. If you're using the
ProDOS version of LADS, you must load and run the ProDOS
LADS Loader (Program B-1); if you are using DOS 3.3, simply
BRUN LADS.

You will now be in the LADS environment which is very
like BASIC. You start out by writing a program using line
numbers and colons separating statements. The first line, how-
ever, must tell LADS where you want your ML program lo-
cated in memory (since ML can be placed anywhere in RAM).
A safe place to have your programs put is address 768, so:

10 *= 768

20 .5

30 .0

40 LDA #193
50 STA 1024
60 RTS

70 .END TEST

After you've typed this in, save it to disk by typing
SAVE TEST

Now you're ready to call LADS into action, to have LADS
assemble the program for you. It will print out the results on
the screen while it works (the .S in line 20 tells LADS to show
you what’s happening), and it will store the resulting finished
machine language program starting at address 768 in your
RAM memory (the .O in line 30 tells LADS to store the bytes
it assembles).

How to Use This Book

To make LADS assemble this program (we're calling it
“TEST"), type

ASM TEST

and you'll see the assembler work through your program,
creating an actual machine language program. This program is
supposed to print the letter A in the upper left of your screen.
You activate it by typing

CALL 768

It will do its job and return the control back to your normal
environment. If you want to try making an adjustment,
change the number 193 in line 40 to some other number to
print a different character, then SAVE TEST, ASM TEST, and
CALL 768 again to try it out. Raising the number in line 50
will print the character further down the screen (unless you
fall into some of the reserved screen RAM bytes, but we'll get
into that later).

By the way, the word .END (with the period before it) in
line 70 isn’t an ML instruction; it's a special command to
LADS which tells the assembler that it has reached the end of
your program. Such special commands are called pseudo-ops
and we’ll get to them later, too. They make ML programming
much easier.

The main thing to learn here is how to type in, save, and
assemble using LADS. Primarily, you should remember four
things:

1. LADS always has to know where you want to store your
ML program, so the first line of any program you give
LADS must have *= 768 and nothing else on that line.
We're generally going to start all our example programs at
768, so if an example doesn’t have *= 768 as the first line,
put it in.

2. LADS always has to know when your ML program is fin-
ished. Thus, the last line in each program must have .END
NAME (and nothing else on the line), where you substitute
whatever name you want to use.

3. Also always use a .O to send the finished ML program into
RAM so that you can test it. Using the .S is optional, but it
would probably be a good idea to see the actual assembly
process onscreen while you're learning.

How to Use This Book

4. You must be in the LADS environment when typing in and
saving programs that you plan to assemble with LADS. Al-
though the LADS environment behaves just like BASIC for
you, the user, it is different as far as your Apple is
concerned.

And don't forget to SAVE NAME before trying to ASM.
LADS looks to the disk for your program and so you must
have saved it before assembling it. (There is another version of
LADS, called RAMLADS, described in Appendix C, which
doesn’t use the disk, but for learning purposes, let’s stick with
the basic LADS model. Later on, you can graduate to
RAMLADS after you're more comfortable with ML in general.
RAMLADS assembles more quickly than regular LADS, but
for beginners regular LADS is the best tool.)

Chapter 2
The Fundamentals

The Fundamentals

The difficulty of learning ML has sometimes been exaggerated.
There are some new rules to learn and some new habits to ac-
quire. But most ML programmers would probably agree that
ML is not inherently more difficult to understand than BASIC.
More of a challenge to debug in some cases, but it’s not
worlds beyond BASIC in complexity. In fact, in the 1970s,
many of the first home computerists learned ML before they
learned BASIC. This is because an average version of the
BASIC language used in microcomputers takes up around
12,000 bytes of memory, and the early personal computers
(KIM, AIM, etc.) were severely restricted—they had only a
small amount of available memory. These early machines
were unable to offer BASIC; it took up more space than they
had, so everyone programmed in ML.

Interestingly, some of these pioneers reportedly found
BASIC to be just as difficult to grasp as ML. In both cases, the
problem seems to be that the rules of a new language simply
are “obscure” until you know them. In general, though, learn-
ing either language probably requires roughly the same
amount of effort.

The first thing to learn about ML is that it reflects the
construction of computers. ML programmers often use a num-
ber system (hexadecimal) which is not based on ten. You will
find a table in Appendix F which makes it easy to look up
hex, decimal, or binary numbers.

We count by tens because it is a familiar (though ar-
bitrary) grouping for us. Humans have ten fingers. If we had
eleven fingers, the odds are that we would be counting by
elevens.

What'’s a Natural Number?

Computers count in groups of twos. It is a fact of electronics
that the easiest way to store and manipulate information is by
on/off states. A light bulb is either on or off. This is a two-
group; it’s binary, and so the powers of two become the natu-
ral groupings for electronic counters: 2, 4, 8, 16, 32, 64, 128,
256. Finger counters (us) have been using tens so long that we
have come to think of ten as natural, like thunder in April.
Tens isn’t natural at all. What’s more, twos is a more efficient
way to count.

The Fundamentals

To see how the powers of two relate to computers, we
can run a short BASIC program which will give us some of
these powers. Powers of a number is the number multiplied by
itself.

Two to the power of two (2°2) means 2 times 2 (in other
words, 4). Two to the power of three (2°3) means 2 times 2
times 2 (8).

10 FORI = 0 TO 16

20 PRINT 2" 1
30 NEXT I

ML programming can be done entirely in the familiar
decimal number system. For beginners, that’s probably a wise
thing to do. The LADS assembler in this book allows you to
use either decimal or hex, as you wish. However, you'll prob-
ably see hex used in magazine articles and books, and hex
does format on the screen or paper more neatly than decimal
numbers. Another advantage of hex is that it relates visually
to the binary numbers that the computer is using. The argu-
ments for some advanced ML commands like ROL and EOR
are more easily visualized with hex than with decimal.

Why not just always program in the familiar decimal
numbers (as we do in BASIC)? Because hex is based on groups
of 16 digits, not decimal’s groups of 10. And 16 is one of the
powers of two. Thus, 16 is a convenient grouping (or base) for
ML because it organizes numbers the way the computer looks
at numbers. For example, at the most elementary level all
computers work with bits. A bit is the smallest piece of infor-
mation possible: Something is either on or off, yes or no, plus
or minus, true or false. This two-state condition (binary) can
be remembered by a computer’s smallest single memory cell.
This single cell is called a bit. The computer can turn each bit
on or off as if it were a light bulb, or a flag raised or lowered.

It’s interesting that the word bit is frequently explained as
a shortening of the phrase Blnary digiT. In fact, the word bit
goes back several centuries. There was a coin which was soft
enough to be cut with a knife into eight pieces. Hence, pieces
of eight. A single piece of this coin was called a bit and, as
with computer memories, it meant that you couldn't slice it
any further. We still use the word bit today as in the phrase
two bits, meaning 25 cents.

10

The Fundamentals

Whatever it’s called, the bit is a small, essential aspect of
computing. Imagine that we wanted to remember the result of
a subtraction. When two numbers are subtracted, they are ac-
tually being compared with each other. The result of the
subtraction tells us which number is the larger or if they are
equal. ML has an instruction, like a command in BASIC,
which compares two numbers by subtraction. It is called CMP
(for compare). This instruction sets flags in the CPU (Central
Processing Unit) of the computer, and one of the flags always
shows whether or not the result of the most recent action
taken by the computer was a zero. We'll go into this again
later. What we need to realize now is simply that each flag—
like the flag on a mailbox—has two possible conditions: up or
down. In other words, this information (that there’s a zero re-
sult or a nonzero result) is binary and can be stored within a
single bit. Each of the six flags within the 6502 chip is a bit.
Together, the flags are all held within a single byte. That byte
is called the status register.

Byte Assignments

Our computers group bits into units of eight, called bytes. This
relationship between bits and bytes is easy to remember if you
think of a bit as one of the “pieces of eight.”” Eight is a power
of two also (two to the third power). Eight is a convenient
number of bits to work with as a group since we can count
from 0 to 255 using only eight bits. We'll see how this is done
in a minute.

A byte—able to “hold” 256 different numbers—gives us
enough room to assign all 26 letters of the alphabet (and the
uppercase letters, punctuation marks, and so on) so that each
character we might want to print will have its own particular
number. The letter A (uppercase) has been assigned the num-
ber 65 (in the standard ASCII code that computers use to
communicate). The letter B is 66, and so on. Most micro-
computers, however, do not adhere strictly to the ASCII code,
except when they are communicating with other computers,
for example, through telephone links. The Apple code uses
193 for the ordinary letter A, whereas 65 is used for the flash-
ing A. The Apple uses the following code for its internal
operations:

11

The Fundamentals

Table 2-1. The Apple Version of the ASCIl Code

Normal Inverse Flash

Character Decimal Hex Decimal Hex Decimal Hex

Space 160 A0 32 20 96 60
! 161 Al 33 21 97 61
- 162 A2 34 22 98 62
= 163 A3 35 23 99 63
$ 164 A4 36 24 100 64

% 165 A5 37 25 101 65
& 166 A6 38 26 102 66
: 167 A7 39 27 103 67
(168 A8 40 28 104 68
) 169 A9 41 29 105 69
* 170 AA 42 2A 106 6A
=+ 171 AB 43 2B 107 6B
, 172 AC 44 2C 108 6C
- 173 AD 45 2D 109 6D
. 174 AE 46 2E 110 6E
7 175 AF 47 2F 111 6F
0 176 BO 48 30 112 70
1 177 Bl 49 31 113 71
2 178 B2 50 32 114 72
3 179 B3 Gl 33 115 73
4 180 B4 52 34 116 74
5 181 B5 53 35 117 75
6 182 B6 54 36 118 76
7 183 B7 55 37 119 77
8 184 B8 56 38 120 78
9 185 B9 57 39 121 79
: 186 BA 58 3A 122 7A
3 187 BB 59 3B 123 < 7B
< 188 BC 60 3C 124 7C
= 189 BD 61 3D 125 7D
> 190 BE 62 3E 126 7E
? 191 BF 63 3F 127 7F
@ 192 Co 0 00 64 40
A 193 Cl 1 01 65 41
B 194 (@) 2 02 66 42
€ 195 €8 8 03 67 43
D 196 C4 4 04 68 44
E 197 c5 5 05 69 45
F 198 Cé6 6 06 70 46
G 199 c7 7 07 71 47
H 200 C8 8 08 72 48

12

The Fundamentals

Character

| » —/—NRKXS<CHOAIOTOZZ 'R — —

Normal

D s T T e
Decimal Hex Decimal Hex Decimal Hex

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

a9
CA
CB
cC
CD
CE
CF
DO
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

Inverse

B
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

09
0A
0B
0C
0D
0E
3
10
11
12
13
14
15
16
17
18
19
1A
1B
e
1D
1E
1F

Flash

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

13

The Fundamentals

Table 2-2. True ASCII

ASCII ASCII ASCII
Code Character Code Character Code Character
0 NUL 44 86 V
1 SOH 45 — 87 W
2 STX 46 . 88 X
3 ETX 47 / 89 Y
4 EOT 48 0 90 Z
5 ENQ 49 1 91 |
6 ACK 50 2 92 %
7 BEL 51 3 93 1
8 BS 52 4 94 -
9 HT 53 5 95 —
10 LF 54 6 96
11 VT 55 7 97 a
12 FF 56 8 98 b
13 CR 57 9 99 ¢
14 SO b8 100 d
15 Sl 59 101 e
16 DLE 60 < 102 f
17 DGl 61 = 103 g
18 DC2 62 > 104 h
19 DC3 63 ? 105 i
20 DC4 64 @ 106 j
21 NAK 65 A 107 k
22 SYN 66 B 108 1
23 ETB 67 C 109 m
24 CAN 68 D 110 =
25 EM 69 E 111 o
26 SUB 70 F 112 p
27 ESC 71 G 118 g
28 FS 72 H 114 r
29 GS 73 1 115 s
30 RS 74] 116 &
31 USs 75 K 117 w
32 (space) 76 L 118 v
33 ! 77 M 119 w
34 7 78 N 120 «x
35 # 79 O 121 y
36 $ 80 P 122 =
37 % 81 Q 123 {
38 & 82 R 124 |
39 - 83 & 125 }
40 (84 T 126 ~
41) 8 U 127 DEL (appears
12 * onscreen as a
43

blank)

14

The Fundamentals

The ASCII code, an assignment of numbers to letters and
symbols, forms a convention by which computers worldwide
can communicate with each other. Text can be sent via
modems and telephone lines, and it will arrive meaning the
same thing to an alien computer. It’s important to visualize
each byte, then, as being eight bits ganged together and that a
byte is able to represent 256 different things. As you might
have suspected, 256 is another power of two (two to the
power of eight).

So these groupings of eight, these bytes, are a major as-
pect of computing; but we also want to simplify our counting
from 0 to 255. We want the numbers to line up in a column
on screen or on paper. Obviously, decimal numbers are erratic:
The number 5 takes up one space, the number 230 takes up
three spaces. Hex numbers between 0 and 255 will always,
predictably, take up two spaces (here’s 0-255 expressed in the
hexadecimal format: $00-$FF).

In addition to being easier to format in printouts, hex is
also somewhat easier to visualize in terms of the binary num-
ber system—the on/off, single-bit way that the computer
manipulates numbers:

Decimal Hex Binary
1 01 00000001
02 00000010
3 03 00000011 (1+2)
4 04 00000100
B 05 00000101 (4+1)
6 06 00000110 (4+2)
7 07 00000111 (4+2+1)
8 08 00001000
9 09 00001001 (8+1)
10 (note new digits)—=0A 00001010 (8+2)

11 OB 00001011 (8+2+1)

12 0C 00001100 (8+4)

13 0D 00001101 (8+4+1)

14 OE 00001110 (8+4+2)

15 OF 00001111 (8+4+2+1)
16 (note new column—10 00010000

17 in the hex) 11 00010001 (16+1)

15

The Fundamentals

See how hex $10 (hex numbers are usually preceded by a
dollar sign to show that they are not decimal) looks like bi-
nary? If you split a hex number into two parts, 1 and 0, and
the equivalent binary number into two parts, 0001 and 0000,
you can see the relationship.

The Rationale for Hex Numbers
Many ML programmers like to use hexadecimal numbers be-
cause they are a superior visual analogue of the internal
manipulations inside the computer; hex is simply more like bi-
nary because hex is a power of two and decimal (base ten) is
not a power of two. It’s really up to you whether or when you
add hex to your bag of tricks. (In the early days of program-
ming, another base, base eight, called octal was very popular.
It’s still used today when programming some large comput-
ers.) You will see that you can choose to use hex or decimal
when writing ML with the LADS assembler in this book. And
you can use them interchangeably, even on the same line of
program code. You can write LDA $0A or LDA 10, whichever
you prefer.

Here’s what it looks like when you count up from zero in
both systems:

Decimal
0123456789

And now you start over by moving to a new column with the
number 10.

Hex
00 01 0203 04 05 06 07 08 09 0OA 0B 0C 0D OE OF

And then you start over with $10, $11, and so on.

See how we ran out of digits when trying to count up to
16 in hex? Hex substitutes the first few letters of the alphabet
to count past 09.

Program 2-1. Hex-Decimal Converter

10 HES = "©@123456789ABCDEF": HOME

15 PRINT "PLEASE CHOOSE:"

20 PRINT "INPUT HEX & GET DECIMAL BACK (1)"

25 PRINT "INPUT DECIMAL TO GET HEX BACK (2)"

30 GET K

35 ON K GOTO 20d,400

109 H$ = "": FOR M = 3 TO @ STEP - 1:N% = DE / (16
“ M):DE = DE - N% * 16 ~ M:H$ = HS + MIDS (HES,
Ng + 1,1): NEXT M

16

The Fundamentals

101 RETURN

102 D = 9:Q = 3: FORM =1 TO 4: FOR W = @ TO 15: 1
F MID$ (H$,M,1) = MID$ (HE$,W + 1,1) THEN 104

103 NEXT W

104 D1 = W * (16 " (Q)):D =D + D1:Q = Q - 1: NEXT

M
1805 DE = INT (D): RETURN
208 INPUT "HEX ";H$: IF LEN (H$) < > 4 THEN PRINT

"NEED FOUR DIGITS": GOTO 200
205 GOSUB 1@02: PRINT DE
210 GOTO 200
498 INPUT "DECIMAL ";DE: GOSUB 1¥@: PRINT HS$
410 GOTO 409

The first thing to notice is that instead of the familiar
decimal symbol 10, hex uses the letter A because this is where
we run out of symbols and must start over again with a 1 and
a 0. Zero always reappears at the start of each new grouping
in any number system: 0, 10, 20, and so on. The same thing
happens with the groupings in hex: 0, 10, 20, 30, and so on.
The difference is that, in hex, the 1 in the “10’s”” column is ac-
tually what we would call a 16 (in our normal decimal way of
counting).

The second column is now a 16’s column; 11 (hex) means 17
(decimal), and 21 means 33 (2 times 16 plus 1). Learning hex
is probably the single biggest hurdle to overcome when get-
ting to know ML.

Don’t be discouraged if it’s not immediately clear what’s
going on. (It probably never will be totally clear—hex is, after
all, unnatural.) And remember that hex is an option, not a
requirement, when programming in ML.

It’s just that much ML printed in magazines and books
uses hex. That’s why you at least need to be able to make the
conversion (you can use Appendix F to convert between deci-
mal and hex if you don’t want to get deeply into hex). No-
body really knows it that well. Most ML programmers use one
of the calculators sold by Sharp, TI, or Hewlett-Packard that
perform hex/decimal conversions. Hex is one of those things,
like telephone books and dictionaries, that you have to know
how to use, but you don’t have to memorize.

It’s possible that someday hex will go the way of octal,
and we’ll stick to the easy, obvious decimal mode entirely (ex-
cept for excursions into binary numbers from time to time). If
you want more understanding, you might want to practice the

L7

The Fundamentals

exercises at the end of this chapter. As you work with hex, it
will gradually seem less and less alien.

To figure out a hex number, multiply the second column
by 16 and add the other number to it. So, $2A would be 2
times 16 plus 10 (recall that A stands for 10).

Hex does seem impossibly confusing when you come
upon it for the first time. It will never become second nature,
but it should be at least generally understood. You need not
memorize hex beyond learning to count from 1 to 16; this
teaches you the symbols. Be able to count from 00 up to OF.
(By convention, even the smallest hex number is listed as two
digits as in 03 or OB. The other distinguishing characteristic is
the dollar sign that is usually placed in front of the digits: $05
or $0E.)

It's enough to know what they look like and be able to
find them when you need them.

The First 255

Another thing that makes all this easier is that if you do need
to work with hex, most ML programming involves working
with hex numbers only between 0 and 255. This is because a
single byte (eight bits) can hold no number larger than 255.
Manipulating numbers larger than 255 is of no real importance
in ML programming until you are ready to work with more
advanced ML programs. This comes later in the book. For ex-
ample, all 6502 ML instructions are coded into one byte, all
the flags are held in one byte, and many addressing modes
use one byte.

To learn all we need to know about hex for now, we can
try some problems and look at some ML code to see how hex
is used in the majority of ML work. But first, let’s take an
imaginary flight over computer memory. Let’s get a visual
sense of what bits and bytes and the inner workings of the
computer’s RAM look like.

The City of Bytes

Imagine a city with a single long row of houses. It’s night.
Each house has a peculiar Christmas display: On the roof is a
row of eight lights. The houses represent bytes; each light is a
single bit. (See Figure 2-1.)

18

7,
T4y /)
4""

4 :, '1//
Vs g -2 7

. Z S
S e— A]
- ’34,;’./

o v £
5F ST, S
4”_

\

\
o

\

s
N\

\

Figure 2-1. Night in the City of Bytes —

The Fundamentals

If we fly over the City of Bytes, at first we see only dark-
ness. Each byte contains nothing (zero), so all eight of its
bulbs are off. (On the horizon we can see a glow, however,
because the computer has memory up there, called ROM
memory, which is very active and contains built-in programs.)
But we are down in RAM, our free user-memory, and there
are no programs in RAM yet, so every house is dark. Let’s ob-
serve what happens to an individual byte when different num-
bers are stored there; we can randomly choose byte 1504. We
hover over that house to see what information is “contained”
in the light display. (See Figure 2-2.)

Figure 2-2

Like everywhere else in the City of Bytes, this byte is
dark. Each bulb is off. Observing this, we know that the byte
here is “holding,” or representing, a zero. If someone at the
computer types in POKE 1504,1, suddenly the rightmost light
bulb goes on and the byte holds a one instead of a zero:

Figure 2-3

N

This rightmost bulb is the one’s column (so far, this is ex-
actly the way things would work in our usual way of counting
by tens, our familiar decimal system). But the next bulb is in
the two’s column, so POKE 1504, 2 would be:

Figure 2-4

20

The Fundamentals

And three would be one and two:

Figure 2-5

gz (~) (~)]

e e el

In this way—by checking which bits are turned on and
then adding them together—the computer can look at a byte
and know what number is there. Each light bulb, each bit, is
in its own special position in the row of eight and has a value
twice the value of the one just before it:

Figure 2-6

\\\ /,/\\ ! ///\\”/,‘\‘ ”/\\‘“/ X t 1, V17, (I,

Eight bits together make a byte. A byte can hold a number
from 0 through 255 decimal. We can think of bytes, though, in
any number system we wish—in hex, decimal, or binary. Be-
cause the computer uses binary, it’s useful to be able to visual-
ize it. Hex has its uses in ML programming. And decimal is
familiar. But a number is still a number, no matter what we
call it. After all, five pennies are always five pennies, whether
we symbolize them by 5 (decimal) or $05 (hex) or 00000101
(binary) or just call them a nickel.

A Binary Quiz
BASIC doesn’t understand numbers expressed in hex or bi-
nary. Binary, for humans, is very visual. It forms patterns out
of zeros and ones and lets you see an x-ray of the interior of a
byte. The following program will let you quiz yourself on
these patterns.

Here is a game which will show you a byte as it looks in
binary. You then try to give the number in decimal:

21

The Fundamentals

Program 2-2. Binary Quiz

199 REM B1NARY QUIZ

119 Cl1 = 177:C0 = 79

140 X = INT (256 * RND (1)):D = X:P = 128

170 HOME

180 FOR I = 1 TO 8

19¢ IF INT (D / P) = 1 THEN PRINT CHR$ (Cl);:D = D
- P: GOTO 219

200 PRINT CHRS (C@);

210 P = P / 2: NEXT I: PRINT

220 PRINT "WHAT IS THIS IN DECIMAL": PRINT

23@ INPUT Q: IF Q = X THEN PRINT "CORRECT": GOTO 25
2

240 PRINT "SORRY, IT WAS ";X

250 FOR T = 1 TO 1@0@@: NEXT T

260 GOTO 140

This next program will print out an entire table of binary
numbers from 0 to 255:

Program 2-3. Binary Table
100 REM COMPLETE BINARY TABLE

120 FOR X = & TO 255: PRINT X;

130 2 = X:L = 7

140 FOR Q = @ TO 7:T = INT (X / 2)
150 K$(L) = CHR$ (48 + (X - T * 2))
160 L = L - 1:X = T: NEXT Q

180 X = 2

190 PRINT TAB(19);

200 FOR I = @ TO 7: PRINT K$(I);: NEXT I
205 PRINT

210 NEXT X

Examples and Practice

Here are several ordinary decimal numbers. Try to work out
the hex equivalent:

10
15
5

16
17
32

oy @ B o B

22

The Fundamentals

7.128
8. 129
9. 255

10. 254

We are not making an issue of learning hex or binary. If
you needed to look up the answers in the table in Appendix F,
fine. As you work with ML, you will familiarize yourself with
some of the common hex numbers. And remember, you can
program in ML without needing to worry about hex numbers.
For now, we only want to be able to recognize what hex is.
The LADS assembler will do the translations for you anytime
you need them.

One other reason that we're not stressing hex too much is
that ML is generally not programmed without the help of an
assembler. The LADS assembler provided in this book will
handle your input automatically. It allows you to choose
whether you prefer to program in hex or decimal. With LADS,
just use the $ symbol when you intend a number to be inter-
preted as hex.

This short BASIC program is good for practicing hex and
also shows you how a two-byte hex number relates to a one-
byte hex number. It will take decimal in and give back the
correct hex.

Program 2-4. Hex Practice

19 H$ = "P123456789ABCDEF"
2@ HOME
30 PRINT "ENTER DECIMAL NUMBER";: INPUT X

49 IF X > 255 THEN GOTO 3@: REM NO NUMBERS BIGGER T
HAN 255 ALLOWED

50 FOR I =1 TO @ STEP - 1

60 N = INT (X / (16 "~ I)):X

7@ HES$ = HE$ + MIDS (HS$,N +

80 NEXT I

9@ PRINT HES$

108 HES = "": GOTO 30

X - N * i & I
1

1)

For larger hex numbers (up to two bytes, $FFFF equals
65535), we can just make a simple change to the above pro-
gram. Change line 40 to IF x>65535 THEN 30, and change
line 50 to FOR I = 3 TO 0 STEP — 1. This will give us four-
place hex numbers. These larger hex numbers are used in ML

23

The Fundamentals

mainly for addresses, since the 6502 can directly address
65536 bytes (bytes with addresses from 0 to 65535). This is
the reason that many microcomputers max out at 64K. There
are special ways to get around this, but an eight-bit micro-
processor like the 6502 is generally limited in the total amount
of RAM memory it can access directly.

The number 65535 is interesting because it represents the
limit of our computers” memories. In special cases, with addi-
tional hardware, memory can be expanded beyond this. But
this is the normal upper limit because the 6502 chip is de-
signed to be able to address (put bytes in or take them out of
memory cells) up to $FFFF.

Ganging Two Bytes Together to Form an Address

The 6502 often addresses by attaching two bytes together and
looking at them as if they formed a unit. It’s like the way that
putting eight bits together forms the unit we call a byte. The
largest number that two bytes can represent is $FFFF (65535),
and the most that one byte can represent is $FF (255). Three-
byte addressing is not possible for the 6502 chip. Machine lan-
guage means programming instructions which are understood
directly by the 6502 chip itself. There are other CPU (Central
Processing Unit) chips, but the 6502 is the Apple’s CPU. It's
the one covered in this book.

Reading a Machine Language Program

Before getting into an in-depth look at the monitor, that bridge
between you and your machine’s language—we should first
learn how to read ML program listings. You've probably seen
them often enough in magazines.

These commented, labeled, but very strange-looking pro-
grams are called source code (see Program 2-8 for an example).
Source code is what you write when you want to create an
ML program. It can be translated by an assembler program (like
LADS) into an ML program. When you have an assembler
program attack your source code, it looks at the keywords (the
instructions and their arguments, and their addresses) and
then POKE:s a series of numbers into the computer. This series
of numbers is called the object code and is the runnable ML
program. You can CALL object code and it will do whatever
you've designed it to do.

Source code usually contains a great deal of information

24

The Fundamentals

in the form of comments which are of interest to the pro-
grammer, but which the computer ignores. It’s rather like the
way a BASIC program has REMarks to which the computer
pays no attention.

The computer needs only a list of numbers which it can
execute in order. That’s what an ML program is. But for most
people, lists of numbers are only slightly more understandable
than Morse code. The solution is to let us use words which are
then translated into numbers for the computer. The primary
job of an assembler is to recognize an ML instruction. These
instructions are called mnemonics, which means “memory
aids.” They are like BASIC words, except that they are always
three letters long and are somewhat less like standard English.

If you type the mnemonic instruction JMP, the assembler
POKEs a 76 into RAM memory. Its easier for us to remember
something like JMP than the number 76. Seeing a 76, how-
ever, the computer immediately knows that it’s supposed to
perform a JMP. The number 76 is an operation code, or opcode,
to the computer.

We write the mnemonic instruction JMP, an assembler
translates this into the number 76, and the computer rec-
ognizes 76 as the command JUMP. These three-letter words
we use in ML programming were designed to sound like what
they do. JMP does a JUMP (like a GOTO in BASIC). Deluxe
assemblers like LADS also let you use labels instead of num-
bers. These labels can refer to individual memory locations,
special values like the score in a game, or entire subroutines.
(See the instructions for using LADS for more information
about using labels.)

Four Ways to List a Program

Labeled, commented source code listings are the most elabo-
rate kind of ML program representation. There are also three
other kinds of ML listings. Let’s see how these four styles of
representing an ML program would look by using a simple ex-
ample program that just adds 2 + 5 and stores the result in
RAM memory location 848. The first two styles are simply
ways for you to type a program into the computer. The last
two styles show you what to type in, but also illustrate what
is going on in the ML program. First, let’s look at the most
elementary kind of ML found in books and magazines: the
BASIC loader.

25

The Fundamentals

Program 2-5. BASIC Loader

18 FOR ADDRESS = 768 TO 776

20 READ BYTE

30 POKE ADDRESS, BYTE

40 NEXT ADDRESS

50 DATA 24,169,2,105,5,141,80,3,96

This is a series of decimal numbers in DATA statements
which are POKEd into memory beginning at decimal address
768. This is a BASIC program. When these numbers are
stashed into RAM, they form a little routine which clears the
carry (so there won’t be any holdover from previous addi-
tion—you always clear the carry before any addition in ML),
then puts the number 2 into the accumulator—a special loca-
tion in the computer that we’ll get to later—and then adds 5.
The result of the addition is then moved from the accumulator
to decimal address 848. If you try this program out, you can
CALL 768 to execute the ML program and then PRINT PEEK
(848) and you'll see the answer: 7. BASIC loaders are conven-
ient for magazines to publish because the user doesn’t need to
know anything at all about ML to enter and use these pro-
grams. The BASIC loader POKEs the ML program into mem-
ory, and then the only thing the user has to do is CALL the
right address and the ML transfers control back to BASIC
when its job is done. Many ML programs end with an RTS
(ReTurn from Subroutine) instruction which reverts to BASIC
mode.

Getting even closer to the machine level is the second
way you might see ML printed in books or magazines: the hex
dump. The Apple has a special monitor program in ROM
which lets you list memory addresses and their contents as
hex numbers.

More than that, you can type in new numbers and change
the program. That’s what a hex dump listing is for. You copy
its numbers into your computer’s RAM by using your computer’s
monitor.

A hex dump, like a BASIC loader, tells you nothing about
the functions or strategies employed within an ML program.

Here’s the hex dump version of the same 2 + 5 addition
program:

Program 2-6. Hex Dump

@300~ 18 A9 02 69 ©5 8D 50 @3
0308- 60 00 00 00 00 00 00 @0

26

The Fundamentals

The third type of listing is called a disassembly. It’s the op-
posite of an assembly: A program called a disassembler takes
machine language (the series of numbers, the opcodes in the
computer’s memory) and translates it into the words, the
mnemonics, which humans can read and understand. The
instruction (the mnemonic) you use when you want to put
something into the accumulator is called LDA, and you store
what’s in the accumulator by using an STA. We'll get to them
later. In this version of our example addition routine, it’s a bit
clearer what’s going on and how the program works. Notice
that on the far left we have the memory addresses (in hex),
then hex numbers representing the actual bytes of the pro-
gram and, on the right, the translation into ML instructions.
ADC means ADd with Carry and RTS means ReTurn from
Subroutine. A disassembly is to ML what LIST is to BASIC.
Your monitor has a disassembler built-in which will produce
these listings:

Program 2-7. Disassembly

., 9300 18 cLC

, 9301 A9 02 LDA #$502
, 83063 69 05 ADC #$@5
., 9305 8D 50 @3 STA $0350
, 9308 60 RTS

The Deluxe Version
Finally, we come to that full, luxurious, commented, labeled,
deluxe source code we spoke of earlier. It includes the hex
dump and the disassembly, but it also has labels and com-
ments and line numbers added to further clarify the purposes
of things and to make it easier for programmers to enter and
edit their programs. This kind of listing can be produced with
the LADS assembler by invoking the .S or .P features to create
a full listing on screen or printer during the assembly process.

Note that in Program 2-8 all the numbers (except the line
numbers on the far left) are in hex. LADS makes this optional.
To make them decimal, use the .NH option and your listing
will be entirely in decimal.

On the far left are the line numbers for the convenience
of the programmer when writing the source code (the program
you write to feed into the assembler). The line numbers can be

27

The Fundamentals

used the way BASIC line numbers are used: deleted, inserted,
and so on. Next are the memory addresses where each in-
dividual instruction in this routine is located in RAM. Then
come the hex numbers of the instructions. (So far, it resembles
the traditional hex dump.) Next are the disassembled transla-
tions of the hex, but note that you can replace numbers with
labels as we’ll see in Program 2-9. Last are the comments.
They are the same as REM statements in BASIC.

Program 2-9 is functionally the same as 2-8, but we've
defined some labels and used them instead of numbers. That
can be a good way to remember the purpose of various things,
just the way variable names in BASIC assist the programmer.

Where Programs 2-9 and 2-8 show you what LADS prints
out during an assembly if you request a listing, Program 2-10
illustrates just the source code part, what you would type into
your Apple and save to disk. Source code is the program you
write; it’s what’s fed to the assembler to produce object code
(the runnable ML program.) The object code has not yet been
generated from this source code. The code has not been assem-
bled yet. Once LADS is activated, you can save or load source
code in the same way that you can save or load programs via
BASIC. Once 2-10 is saved on disk, you could use the LADS
ASM command, and the assembler would translate the in-
structions and print them on the screen and/or POKE them
into memory if so instructed.

Those few differences between Programs 2-9 and 2-10 are
conveniences for the programmer. The *= symbol tells the
assembler where you want the ML program located in mem-
ory. The .P turns on the printer, and .S turns on listing to
screen during assembly. The semicolons announce that a re-
mark follows and the assembler should ignore the rest of the
line, just like REM in BASIC. Finally, the .END symbol tells
the assembler that there are no other files on the disk which
contain additional parts of this program. This is the total
program.

A simple assembler, like the one found in Apple’s mon-
itor, operates differently. It translates, prints, and POKEs as
soon as you hit RETURN on each line of code. You can save
and load the object, but not source code, with a simple
assembler.

Before we get into the heart of ML programming, a study
of the opcodes and ways of moving information around

28

The Fundamentals

N3INLId S&d 29 80€Q OV

898 NOILVYDOT TVWIDAA LV JIOLS IOVIO0LS VYIS €0 PS d8 SPEP PET
§ aav ¥aaavg oav SP 69 €0Q€O BT

Z HLIM ¥ avO1 OML# VAT 79 6Y 10€0 OT1

OVTd AJ¥YD dHL ¥VYdTO 010 8T PPEO 801

ov

SSIYAQV IAOVIOLS ANIAIAA 8%¥8 = JIOVIOLS P90€Q 0OF€

¢ V¥V SV ,¥30a¥, INIJId S = ¥daav 29€0 PT

¢ SY ,OML, TILIYT INIJAQ Z = OML 20¢c0 921

A|quiassy pajaqe] - wesdoid

N3INLIAT At 29 80€@ OVI

8¥8 NOILYDOT TVWIDIAA LV FJOLS PSEBS YIS €0 @G d8 SPEP QBET
S aav G@$# oav S0P 69 €QEQ BZT

Z HLIM ¥ aQvo1 Zo$# ¥a1 Z9 6Y 19€@ @11

OVTd AY¥VYD FHL ¥VATO 9 [0 8T 00€Q 001

$831 Jaquin

mEoEp||Eou apoD 850w|_bnﬁammum5 «wwm_uo bchw—n uu_,_z

Sunsi] Ajlquiassy |[n4 Vv ‘8-z weldoid

29

The Fundamentals

(called addressing), we should look at a major ML program-
ming aid: the monitor. It deserves its own chapter.

Program 2-10. The Source Code by Itself

5 *= 768

6 .P

7 .8

16 TwWO = 2; DEFINE LABEL "TWO" AS 2
20 ADDER = 5; DEFINE "ADDER" AS A 5
39 STORAGE = 848; DEFINE STORAGE ADDRESS
49 ;

100 CLC; CLEAR THE CARRY FLAG
110 LDA #TWO; LOAD A WITH 2

120 ADC #ADDER; ADD 5

130 STA STORAGE; STORE AT DECIMAL LOCATION 848
140 RTS; RETURN

150 .END ADDITION

Answers to quiz:

1. 0A 6. 20
2. OF 7. 80
3. 05 8. 81
4. 10 9. EF
5. el 10, FE

30

Chapter 3
The Monitor

The Monitor

A monitor is a program which allows you to work directly
with your computer’s memory cells. When you “fall below”
BASIC into the monitor mode, BASIC is no longer active. If
you type RUN, it will not execute anything. BASIC commands
are not recognized. The computer waits, as usual, for you to
type in some instructions. There are only a few instructions to
give to a monitor. When you’re working with it, you're pretty
close to talking directly to the machine in machine language.

The Apple has a monitor in ROM. This means that you
do not need to load the monitor program into the computer;
it’s always available to you.

Debugging is the main purpose of a monitor. You use it to
check your ML code, to find errors.

You enter the Apple monitor by typing CALL —151. You
will see the * monitor prompt and the cursor immediately
after it. Here are the monitor instructions:

1. Typing an address (in hex) will show you the number
contained in that memory cell; *2000 (hit RETURN) will
show 2000-FF, if, in fact, 255 decimal ($FF hex) is in that
location.

2. You can examine a larger amount of memory in hex (this
is called a memory dump or a hex dump). The Apple mon-
itor remembers the address of the last number displayed.
This can be used as a starting address for the dump. If you
type the instruction in number 1, above, and then type
*.2010, you will see a dump of memory between 2001 and
2010. The only difference between this and instruction 1 is
the period (.) before the requested address.

3. You can directly cause a dump by putting the period be-
tween two addresses: *2000.2010 combines the actions of
instructions 1 and 2 above.

. Hitting RETURN will continue a dump, one line at a time.

. The last displayed memory location can be changed by
using the colon (:). This is the equivalent of BASIC’s
POKE.

If *2000 results in FF on the screen (or whatever),
you can change this FF to 0 by typing *:00. To see the
change, type *2000 again. Or you could type *2000:00 and
make the change directly.

G >

33

The Monitor

N O

10.

34

The Apple II reference manual contains excellent de-
scriptions of the monitor instructions. We will list the rest
of them only briefly here:

. Change a series of locations at once: *2000: 00 69 15 65 12.
. Move (transfer) a section of memory: *4000<2000.2010M

will copy what’s between 2000 and 2010 up to address
4000. (All these addresses are hex.)

. Compare two sections of memory: *4000<2000.2010V. This

looks like Move, but its job is to see if there are any dif-
ferences between the numbers in the memory cells from
2000 to 2010 and those from 4000 to 4010. If differences
are found, the address where the difference occurs appears
onscreen. If the two memory ranges are identical, nothing
is printed onscreen.

. Saving (writing) a section of ML to tape: *2000.2010W.

This is how you would save an ML program. You specify
the addresses of the start and end of your program. Note
that all your normal DOS functions are available as well,
while in the monitor mode.

Loading (reading) a section of memory (or an ML pro-
gram) back into the computer from tape: *2000.2010R will
put the bytes saved, in instruction 9, above, back where
they were when you saved them. Disk users save and load
ML programs using the BSAVE and BLOAD commands,
just as in BASIC mode.

An interesting additional feature is that you could
send the bytes to any address in the computer. To put
them at 4000, you would just type *4000.4010R. This gives
you another way to relocate subroutines or entire ML pro-
grams (in addition to the Move instruction, number 7,
above). If you move an ML program to reside at a different
address from the one it was originally intended during
assembly, any JMP or JSR (Jump to SubRoutine, like BA-
SIC’s GOSUB) instruction which points to within your pro-
gram must be adjusted to point to the new addresses. If
your subroutine contained an instruction such as 2000 JSR
2005, and you loaded at 4000, it would still say 4000 JSR
2005. You would have to change it to read 4000 JSR 4005.
All the BNE, BPL, BEQ branching instructions, though, will
make the move without damage. They are relative ad-
dresses (as opposed to the absolute addressing of JSR

The Monitor

11.

12

2005). They will not need any adjusting. We'll go into this
in detail later.

Run (go): *2000G will start executing the ML program
which begins at address 2000. There had better be a pro-
gram there or the machine is likely to lock up, performing
some nonsense, an endless loop, until you turn off the
power or press a RESET key. The program or subroutine
will finish and return control of the computer to the mon-
itor when it encounters an RTS.

This is like BASIC’s SYS command, except the com-
puter returns to the monitor mode.

Disassemble (list): *2000L will list 20 lines of ML on the
screen. It will contain three fields (a field is a ““zone” of
information). The first field will contain the address of an
instruction (in hex). The address field is somewhat com-
parable to BASIC’s line numbers. It defines the order in
which instructions will normally be carried out.

Here’s a brief review of disassembly listings. The sec-
ond field shows the hex numbers for the instruction, and
the third field is where a disassembly differs from a
“memory”” or “hex”” dump (see numbers 1 and 2, above).
This third field translates the hex numbers of the second
field back into a mnemonic and its argument. Here’s an
example of a disassembly:

2000 A941 LDA #8$41
2002 8D 23 32 STA $3223
2005 A499 LDY $99

Recall that a dollar sign ($) shows that a number is in
hexadecimal. The pound sign (#) means immediate
addressing (put the number itself into the A register at 2000
above).

Confusing these two symbols is a major source of er-
rors for beginning ML programmers. You should pay care-
ful attention to the distinction between LDA #$41 and
LDA $41. The second instruction (without the pound sign)
means to load A with whatever number is found in address
$41 hex. LDA #%$41 means put the actual number 41 itself
into the accumulator. If you are debugging a routine, check
to see that you've got these two types of numbers straight,
that you've loaded from addresses where you meant to
(and, vice versa, that you've loaded immediately where you
intended).

35

The Monitor

13,

14.

36

Mini-assembler. This assembler program is part of the
Integer BASIC ROM, and must be placed in memory by
booting the DOS 3.3 System Master disk and loading Inte-
ger BASIC into the Language card. Type INT from BASIC
and press RETURN. Your prompt symbol should change to
the > symbol for Integer BASIC. Then enter the monitor
program by typing CALL —151, and press RETURN.

From the monitor, type F666G to enter the assem-
bler. The prompt symbol should change to the exclamation
point (!) to insure that you are in fact in the assembler.

Enter your starting address, followed by a colon (:),
the mnemonic, and the argument for your first instruction.
Press RETURN, and the assembler will erase your line and
display the assembled code, placing the ! prompt on the
next line. Type

12000:LDA #15
The assembler program replaces your line with
2000- A9 15 LDA #8$15

To enter the next instruction, type a space following the !
prompt, and then the mnemonic and the argument. The
assembler will place the code in memory correctly.

! LDY #01

If you mistyped LDA as LDDA, your Apple mini-
assembler would sound a beep and put a caret (") near the
error. In any case, you are not going to get elaborate SYN-
TAX ERROR messages. Unless you are using a very
sophisticated assembler like LADS, the only error that a
simple assembler can usually detect is an impossible
opcode.

To reenter the monitor program from the assembler,
type $FF69G and press RETURN. The dollar sign ($) must
be typed before this hexadecimal address. Your prompt
will change to an asterisk indicating that you are in the
monitor program.

Changing registers. *(CONTROL) E, in the monitor, will
display the contents of the accumulator, the X and Y reg-
isters, the status register (P), and the stack pointer (S). You
can then change the contents of these registers by typing
them in onscreen, following a colon. Note that to change

The Monitor

the Y register, you must type in the A and X registers as
well:

*(CONTROL) E (and hit RETURN)

You’ll see A=01 X=05 Y=FF P=30 S=FE
(whatever’s in the registers at the time).

To change the Y register to 00, type in the A, X, and
then the new version of Y:

*:01 05 00 (and hit RETURN)

15. Going back to BASIC. You can use *(CONTROL) B to go
to BASIC (but it will wipe out any BASIC program that
might have been there). Or you can use *(CONTROL) C
to go back to BASIC, nondestructively.

Using the Monitor

You will make mistakes. Monitors are for checking and fixing
ML programs. ML is an exacting programming process, and
causing bugs is as unavoidable as mistyping when writing a
letter. It will happen, be sure, and the only thing for it is to go
back and try to locate and fix the slip-up. It is said that every
Persian rug is made with a deliberate mistake somewhere in
its pattern. The purpose of this is to show that only Allah is
perfect. This isn’t our motivation when causing bugs in an ML
program, but we’ll cause them nonetheless. The best you can
do is try to get rid of them when they appear.

Probably the most effective tactic, especially when you are
just starting out with ML, is to write very short subroutines.
Because they are short, you can more easily check and exam-
ine them to make sure that they are functioning the way they
should. Let’s assume that you want to write an ML subroutine
to ask a question on the screen. (This is often called a prompt
since it prompts the user to do something.)

The message can be PRESS ANY KEY. First, we’ll have to
store the message in RAM somewhere. Let’s put it at hex
$1500. That’s as good a place as anywhere else.

ASCII
1500 208 P
1501 210 R
1502 197 E
1503 211S
1504 211 S
1505 160

37

The Monitor

1506 193 A

1507 206 N

1508 217 Y

1509 160

150A 203 K

150B 197 E

150C 217 Y

150D 0 (This is a special signal to the computer called the delimiter

which shows that the message is concluded.)

We’ll put our “print-it-out”” subroutine at address $1000.
So, we've got the data at address $1500 and the subroutine
that uses the data located at $1000. All this is entirely ar-
bitrary. The ML programmer can put things wherever in RAM
he or she wishes.

We haven’t got into actual programming yet, but this ex-
ample is a good place to see if you can spot an error in ML
programming. This subroutine will not work as printed. There
are two errors in this program. See if you can spot them:

1000 LDY #$00; (Set up the Y register to count events.)

1002 LDA $1500,Y; (Get the first character from the data.)

1005 CMP $00; (Is it the delimiter?)

1007 BNE $1004A; (If not, continue on.)

1009 RTS; (It was zero, so quit and return to whatever
JSRed, or called, this subroutine.)

100A STA $0400,Y; (Apple text display area)

100D INY; (Raise the counter by one.)

100E JMP $1000; (Always JMP back to address $1000.)

Since we haven’t yet gone into addressing or opcodes
much, this is like learning to swim by the throw-them-in-the-
water method. Nevertheless, see if you can make out how
these instructions interact. Here’s some help, a BASIC version
(containing the same errors) of the same routine:

10 DATA 208,210,197,211,211,160,193,206,217,160,203,197,217,0
20Y=0

30 READ X: IF X < PEEK(0) THEN 50

40 RETURN

50 POKE 1024 + Y,X

60Y =Y =1

70 GOTO 20

This subroutine won’t work. In the ML version, you'll find
two of the most common bugs in ML programming. Unfortu-
nately, they are not obvious bugs. An obvious bug would be

38

The Monitor

typing LDS when you meant LDA. Any assembler would alert
you to this error by printing an error message to let you know
that no such instruction as LDS exists in 6502 ML.

No, the bugs in this program are errors in logic, in the
flow or sense of the thing. If you disassemble it, it will also
look just fine to the disassembler program, and no error mes-
sages will be printed out in this situation either.

But, the routine will not work the way you want it to.
Before reading on, see if you can spot the two errors. Also, see
if you can follow the events as the ML routine runs through
its loop, picking up the characters in the message and sup-
posedly depositing them onscreen. Where does the computer
go after the first pass through the code? When and how does
it know that it’s finished with its job?

Two Common Errors

A very common bug, perhaps the most common ML bug, is
caused by accidentally using zero page addressing when you
mean to use immediate addressing. We mentioned this distinc-
tion before, but it is the cause of so much puzzlement to the
beginning ML programmer that we’re going to pound away at
it several times in this book. Zero page addressing looks very
similar to immediate addressing. Zero page means that you are
dealing with one of the cells, or bytes, in the first 256 ad-
dresses in RAM memory in the computer, the lowest locations
possible.

A page of memory is 256 bytes. Page 1 is from addresses
256 to 511 ($0100 to $01FF) and is special. It's called the stack,
and the computer has a special use for it. We'll get to it later,
but don't try storing anything in page 1 unless you're fond of
havoc. Addresses 512-767 ($0200-$02FF) comprise page 2.
The Apple text screen memory starts at address $0400 (1024
in decimal), and this is the start of page 4. And so on, in 256-
byte blocks, up memory to the very top, page 255.

By contrast to zero page addressing is immediate address-
ing. Immediate addressing means that the number you're deal-
ing with is right within the ML code (not somewhere else in
memory). It means that you knew what number you were
dealing with and put it right into your program when you
wrote the program. Immediate addressing means that the
number directly follows an instruction; it’s the argument, the
operand, of an instruction. LDY #$00 is immediate addressing.

39

The Monitor

It puts the number 0 into the Y register (see line 1000 in the
example routine).

LDY $0 is not immediate addressing, and you very well
might not get a 0 into the Y register. LDY $0 is zero page
addressing. LDY $34 is also zero page addressing. Using any
address lower than 256 would mean zero page addressing.
LDY $34 might put anything, any number, into the Y register
because whatever number is in address $34 will be placed into
the Y register. The key is that # symbol, the number symbol.
If you mean to load the number $34 into the Y register, use
LDY #$34. If you mean to fetch whatever is currently in ad-
dress $34, use LDY $34. It's easy and very common to mix up
these two modes. So, look for this error first when debugging
a faulty program. Check to see that all your zero page
addressing is supposed to fetch from the zero page of RAM
and that all your immediate mode numbers are supposed to
come from within the ML code itself, immediately following
the instruction.

In our example ML program, LDY #8$0 is correct—we do
want to set the Y register to 0 so that it can help us put the
characters in the proper places on the screen (STA $0400,Y
stores each character at address $0400, the screen, plus the
current value of Y). For this purpose, we want the immediate,
the actual, number 0.

Take a close look, however, at the instruction at location
$1005. Here, we are trying to see if we've picked out that zero
in the message that tells us the message is finished. We want
to CoMPare to the number 0. But, we left off the # symbol that
tells the computer to use the number 0. Instead, we're going to
cause a comparison against whatever might be in location 0,
address 0. To fix this bug, the instruction should be changed
to read CMP #$0 so that it will be immediate mode, not zero
page mode. (If this confuses you, take a look at line 30 in the
BASIC version to see the flaw. If it still confuses you, don't
worry, we’ll be going over all this in much greater detail in
Chapters 4 and 6.)

The second bug in this example routine is also a very com-
mon one. The subroutine, as written, can never leave itself, will
endlessly loop. Loop structures are usually preceded by a short
setup of some kind. You have to initialize counters before the
loop can begin because you have to tell it where to start and
how many times to loop. In BASIC, FOR I = 1 TO 10 tells the

40

The Monitor

computer to cycle ten times. In ML, we set the Y register to
zero and let it act as our counter. In this particular routine, we
don’t use Y to tell us when to stop (that’s the job of the
embedded zero at the end of the message itself). Instead, Y
serves two other purposes. It kills two birds with one stone. It
is the offset (the pointer to the current position in a list or se-
ries) to load the message in the data and is also the offset to
position the letters of the message on the screen. Without Y
going up one (INY) each time through this loop, we would al-
ways print the first letter of the message and always print it in
the first position on the screen.

What's the problem? It's that JMP instruction at $100E.
We should be jumping back to address $1002, but the J]MP
tells us to jump back to $1000. As things stand, the Y register
will always be reset to zero, there will never be a chance to
read through the message and pick up that zero that ends
things, and we cannot therefore ever exit this loop. We will
endlessly cycle, printing P over and over again. Y will never
go up past zero because each loop puts a zero back into Y.
Look at the relationship between lines 70 and 20 in the BASIC
example.

Tracking Them Down

The monitor will let you locate these and other errors. You can
replace an instruction with a zero (the BReaK command)
which will stop a program run and let you see the condition of
your variables and what’s going on in the registers at the
breakpoint. If this doesn’t help, you can get more specific by
single-stepping through your program in order to discover, for
example, that you are using CMP $0 when you meant CMP
#50.

It would also be easy, by stepping, to notice that your Y
register is being reset to zero every time through the loop. For
single-stepping, it’s good to first make a printout of the sus-
pect area of your program so that you can follow along during
the single-stepping. If the Y register keeps turning back into
zero, that clues you that this register isn’t cooperating, it’s not
counting up each time through the loop the way you intended
it to. These and other errors, if not always immediately ob-
vious, are at least discoverable from within the monitor.

Also, the disassembler function of the monitor will per-
mit you to study the program and look, deliberately, for the

41

The Monitor

correct use of #3500 and $00. Since that mixup between im-
mediate and zero page addressing is so common an error, al-
ways check for it first.

Programming Tools

The single most significant quality of monitors which contrib-
utes to easing the ML programmer’s job is that monitors, like
BASIC, are interactive. This means that you can make changes
and test them right away, right then. In BASIC, you can find
an error in line 120, make the correction, and run a test
immediately.

It's not always that easy to locate and fix bugs in ML:
There are few error messages, so finding the location of a bug
can be difficult. But a monitor does allow interactivity: You
make changes and test them on the spot. This is one of the
drawbacks of complex assemblers, especially those which have
several steps between the writing of the source code and the
final assembly of executable object code (ML which can be
executed). LADS, however, was designed to maximize
interactivity, and you should find that its speed of assembly,
its open architecture (you can easily modify it, add your own
error messages and bug traps), and its BASIC-like environment
will all contribute to quick program adjustments and quick
testing.

Unfortunately, other sophisticated assemblers often re-
quire several steps between writing an ML program and being
able to test it. These assemblers can require linkers, relocatable
loaders, mapping, global/local variable definition, macros,
separate and clumsy source code editors, and other ““features”
which contribute little to the actual assembly of a program or
to the comfort of the programmer. If you don’t already know
the function of these “enhancements,” count it as a blessing.
They greatly retard program development except in pro-
fessional, programming-by-committee situations. These func-
tions make it easier to rearrange ML subroutines, put them
anywhere in memory without modification, and so forth. They
make ML more modular (composed of small, self-sufficient
modules or subroutines), but they also make it far less inter-
active. You cannot easily make a change and see the effects at
once.

However, using the monitor’s mini-assembler, or the
LADS assembler from this book, you are right near the mon-

42

The Monitor

itor level, and fixes can easily and quickly be tested. In other
words, the assemblers which are best for individual pro-
grammers trade efficiency for group-programming communica-
tion flexibility. Personal assemblers, like personal computers,
should reflect the needs of the programmer, not the needs of
industrial, programming teams. Personal assemblers should in-
volve little, if any, preplanning, less forethought, less abstract
analysis, and no rules for communicating between one pro-
grammer and another. If something goes awry, you can just
try something else until it all works. Not only does this help
you learn, it’s also significantly the fastest way to program.

Plan Ahead or Plunge In?

Some people find such trial and error programming un-
comfortable, disgraceful even. Industrial assemblers (and many
assemblers currently sold for personal use) discourage
interactivity, requiring flowcharts, even expecting the pro-
grammer to write out a program ahead of time on paper and
debug it before even sitting down at the computer.

In one sense, these large assemblers are a holdover from
the early years of computing, when computer time was ex-
tremely expensive. There was a clear advantage to coming to
the terminal as prepared as possible. Interactivity was costly.
But, like the increasingly outdated advice urging programmers
to worry about saving computer memory space, it seems that
strategies designed to conserve computer time are also
anachronistic. You can spend all the time you want on your
personal computer.

Complex assemblers tend to downgrade the importance of
a monitor, to reduce its function in the assembly process.
Some programmers who've worked on large IBM mainframe
computers for 20 years do not know what the word monitor
means in the sense we are using it. To them, monitors are
CRT screens. The machine language tools used for years by
mainframe programmers often have what we call a monitor,
but it will be seriously restrictive. It will often, for example,
have no single-step function and no provision for saving an
ML program to disk or tape from within the monitor.

Whether or not you prefer the interactive style of personal
programming, its greater reliance on the monitor, and on trial
and error programming is your decision. If you're used to
group programming, you might find it difficult to abandon the

43

The Monitor

preplanning, the flowcharts, and all the rest. The choice is ul-
timately a matter of personal style.

Some programmers are uncomfortable unless they have a
fairly complete plan before they even get to the computer key-
board. Others are quickly bored by elaborate flowcharting,
“dry computing” on paper, and can’t wait to get on the com-
puter and see-what-happens-if.

Perhaps a good analogy can be found in the various ways
that people make telephone calls. When long-distance calls
were extremely expensive, most people made lists of what
they wanted to say and carefully planned the call before dial-
ing. They would also watch the clock during the call. (Some
still do this today.) As the costs of phoning came down, many
people found that spontaneous conversation was more satisfy-
ing. It’s up to you.

Computer time, though, is now extremely cheap. If your
computer uses 100 watts and your electric company charges 5
cents per kilowatt-hour, never turning your machine off would
cost only about 12 cents a day.

44

Chapter 4
Addressing

Addressing

The 6502 processor is an electronic brain. It performs a variety
of manipulations with numbers to allow us to write words,
draw pictures, control outside machines such as tape recorders,
calculate, and do many other things. It was designed to be
logical and fast, to work accurately and efficiently.

If you could peer down into the CPU (Central Processing
Unit), the heart of the processor, you would see numbers be-
ing delivered and received from memory locations all over the
computer. Sometimes the numbers arrive and are sent out, un-
changed, to some other address. Other times they are com-
pared, added, or otherwise modified, before being sent back to
RAM or to a peripheral. Writing an ML program can be com-
pared with planning the activities of this message center. This
can be illustrated by thinking of computer memory as a City
of Bytes with the CPU acting as the main post office (see Fig-
ure 4-1). The CPU uses four tools to do its job: three registers,
a program counter, a stack pointer, and seven little one-bit
flags.

The monitor, if you type CONTROL-E, will display the
present status of these tools. It looks something like this:

A=01 X=05 Y=FF P=30 S=FE

A, X, and Y are the registers, P is the processor status flags
(each bit in this byte is a flag), and S is the stack pointer. You
can more or less let the computer handle the stack pointer. It
keeps track of numbers, usually return-from-subroutine ad-
dresses, which are kept together in a list called the stack.

The computer will automatically handle the stack pointer
for us. It will also handle the program counter (PC) which
keeps track of where you are located at any given time within
the computer. For example, each ML instruction can be either
one, two, or three bytes long. TYA has no argument and is the
instruction to transfer a number from the Y register to the
accumulator. Since it has no argument, the PC can locate the
next instruction to be carried out by adding one to itself. If the
PC held $4000, it would hold $4001 after execution of a TYA.

LDA #$01 is a two-byte instruction. It takes up two bytes
in memory, so the next instruction to be executed after LDA
#$01 will be two bytes beyond it. In this case, the PC will
raise itself from $4000 to $4002. But we can just let it work
merrily away without worrying about it.

47

A00EE$ VIS $STLT UOHDNIISU] U UO YIOAA Je SIAIINIAXT [e)sod °|-p 3in3Y

, \
;W 4
)\

e —

. Y. >
72

NN

401434

Addressing

The Accumulator: The Busiest Register

S, A, X, and Y, however, are our business. They are all eight-
bits, or one byte, in size. They are not located in memory
proper. You can’t PEEK them since they have no address like
the rest of memory. They are zones of the CPU. The A reg-
ister, most often called the accumulator, is the busiest place in
the computer. The great bulk of the mail comes to rest here, if
only briefly, before being sent to another destination.

Any logical transformations (EOR, AND, ORA) or
arithmetic operations leave their results in the accumulator.
Most of the bytes streaming through the computer come
through the accumulator. You can compare one byte against
another using the accumulator. And nearly everything that
happens which involves the accumulator will have an effect
on the status register (S, the flags). We won’t need to actually
work directly with the status register, but the information it
holds will be important because several important instructions,
like Branch if EQual (BEQ) test to see if a flag is up or down
when deciding where to send the program for the next task.

The X and Y registers are similar to each other in that one
of their main purposes is to assist the accumulator. They are
used as addressing indexes. There are some methods of
addressing that we’ll get to in a minute which add an index
value to another number. For example, if the X register is cur-
rently holding a five, LDA $4000,X will load the byte in ad-
dress $4005 into A. In other words, the real address when
you're using indexed addressing is the number plus the index
value. If X has a six, then we load from $4006. Why not just
LDA $4006? The reason is that it’s far easier to raise or lower
an index inside a loop structure than it would be to write in
each specific address literally.

A second major use of X and Y is in counting and looping.
We'll go into this more in the chapter on the instruction set.

We’ll also have some things to learn later about S, the
status register, which holds some flags showing current con-
ditions. Among other things, the S can tell a program or the
CPU if there has been a zero, a carry, or a negative number as
the result of some operation. Although it’s not important to be
able to work directly with the status register, knowing about
carry and zero flags is especially significant in ML. The
branching instructions will check these flags for you, but you
should be aware of what some of the flags signify.

49

Addressing

But we can leave learning about the instructions until we
get to Chapter 6. For now, the task at hand is to explore the
various “classes” of mail delivery, the 6502 addressing modes.

The computer must have a logical way to pick up and
send information. Rather like a postal service in a dream—
everything should be picked up and delivered rapidly, and
nothing should be lost, damaged, or delivered to the wrong
address.

The 6502 accomplishes its important function of getting
and sending bytes (GET and PRINT would be examples of the
same activity in BASIC) by using several addressing modes.
There are 13 different ways that a byte might be “mailed”
either to or from the central processor.

When programming, in addition to picking an instruction
(of the 56 available to you) to accomplish the job you are
working on, you must also make one other decision. You must
decide how you want to address the instruction—how, in other
words, you want the mail sent or delivered. There is some
room for maneuvering, however. It will rarely matter if you
should choose a slower delivery method than you could have.
Nevertheless, it is worth knowing about the various address-
ing modes; most of them are designed to be helpful during
some particular programming activity.

Absolute and Zero

Let’s picture a postman’s dream city, a city so well planned
from a postal-delivery point of view that no byte is ever lost,
damaged, or sent to the wrong address. It's the City of Bytes
we first toured in Chapter 2. It has 65536 houses all lined up
on one side of a street (a long street). Each house is clearly la-
beled with its number, starting with house 0 and ending with
house 65535. When you want to get a byte from, or send a
byte to, a house (each house holds one byte), you must “ad-
dress” the package. (See Figure 4-2.)

Let’s look at the most elementary mode of addressing. It’s
quite popular and could be thought of as “first class.” Called
absolute addressing it can send a number to, or receive one
from, any house in the city. It's what we normally think of
first when the idea of addressing something comes up. You just
put the number on the package and send it off. No indexing or
special instructions. If it says 2500, then it means house 2500.

50

A

7N

Figure 4-2. The First Few Addresses on a Street with 65536 Houses

Addressing

1000 STA $2500
or
1000 LDA $2500

These two, STore A and LoaD A, STA and LDA, are the
instructions which get a byte from, or send it to, the accu-
mulator. The address, though, is those numbers following the
instruction. The item following an instruction is sometimes
called the instruction’s argument. You could have written the
above addresses several ways. Writing $2500, however, tells
the computer to carry out the instruction with respect to ad-
dress $2500, to store or load the byte from that location. This
kind of addressing uses just a simple $ (to show that this is a
hex, not decimal, number) and a four-digit number. You can
send the byte in the accumulator to anywhere in memory by
this method (or retrieve it from anywhere). Remember, too,
that if you send a byte from the accumulator, it also remains
in the accumulator. It’s more a copying than a literal sending.

Heavy Traffic in Zero Page

A second addressing mode, called zero page, we've touched on
before. If you are sending a byte down to anywhere between
addresses 0 and 255 ($0000 and $00FF), the zero page, you can
just leave off the first two numbers: 1000 STA $07. (Remem-
ber that the 1000 is the address, the location, of the instruc-
tion, not the argument, or target, of the instruction.)

Zero page addressing, using only two hex digits or deci-
mal numbers lower than 256, is pretty fast mail service: The
mail carrier has to worry about choosing between only 256 in-
stead of 65536 possible houses. And, also, the computer is
specially wired to service these special addresses. Think of
them being close to the post office. Things get picked up and
delivered rapidly in zero page. That’s precisely why your
BASIC and operating systems tend to use it so often.

Although zero page addressing works only with the first
256 locations in your computer, it gets more than its share of
the mail. Apple’s BASIC language, its operating system, and
disk operating systems use up most of zero page to hold flags
and other temporary information they need. Why? Because
zero page addressing is the fastest of all the addressing modes.
It’s nearly instantaneous. Since the Apple has appropriated
these first 256 houses for its own use, there’s not much room

52

Addressing

left over down there for you to store your own ML pointers or
flags, not to mention entire subroutines. You will, however,
want to squeeze in some address pointers which we’ll get to in
a minute. After all, your programs, too, will sometimes want
the fastest possible service.

These two addressing modes, absolute and zero page, are
very common ones. In your programming, however, you prob-
ably won’t get to use zero page as much as you might want to.
You will notice on a map of the Apple that zero page is
heavily trafficked. You could cause a problem by storing things
in zero page where the Apple expects to use it for its own pur-
poses. You can find excellent maps of your machine in its Ref-
erence Manual from Apple. Earlier Apples included these
reference manuals with the computer; the Ilc manual costs ex-
tra, but it’s well worth it for ML programming. (Maps not only
tell you what space must be avoided, but also where to access
the many built-in BASIC routines in your computer. More
about this later.)

There are, however, safe areas for you to use down there
in those exclusive locations in lower RAM memory. Buffers for
the cassette player or for BASIC activities like floating-point
arithmetic are safe when you’re not using a tape drive or
BASIC. So, if you put your pointers and flags into these ad-
dresses, things will be fine. In any case, zero page is a popu-
lar, busy neighborhood. Don’t put any of your actual ML
programs there. Your main use of zero page will be to hold
pointers for an especially useful addressing mode called zero Y
that we’re going to look at in detail. But you've always got to
make sure that you aren’t interfering with the Apple’s own
requirements for space in zero page.

Here is a list of the places you can safely store things in
zero page without worrying that there will be a conflict with
your Apple’s needs:

6-9 (You can use addresses 6, 7, 8, or 9.)
25-31
206-207
214-215
235-239
249-255
While we’re on the subject of places to avoid, keep out of
page 1, too (decimal addresses 256-511). That’s for the stack,

55

Addressing

about which more later. We’ll get to the safe places in RAM
that you can use for your ML programs and their flags, vari-
ables, tables, and so on. It’s always okay to use ordinary
higher RAM as long as you keep BASIC programs from
putting their variables on top of the ML and keep the ML
from writing over BASIC (if you want them to coexist during a
program run).

The safest place of all for short ML routines is between
addresses 768 ($300) and 1023 ($3FF) since the Apple leaves
these RAM locations essentially undisturbed. So, when you
want to practice with the examples in this book, it’s always
okay to give the LADS assembler a start address instruction of
*= $300 or its decimal equivalent *= 768.

Immediate

Another very common addressing mode is called immediate
addressing—it deals directly with a number. Instead of send-
ing away for the number, we can just shove it directly into the
accumulator by putting the number right in the same place
where the other addressing modes have an address. Let’s illus-
trate this:

1000 LDA $2500 (Absolute mode, loading from address 2500)
1000 LDA #$9 (Immediate mode, put number 9 into the
accumulator)

The first example will load the accumulator with whatever
number is found in address $2500. In the second example, we
simply wanted to put a $9 into the accumulator. We know
that we want the number $9. So, instead of sending off for the
$9, we just type in a $9 where we normally would put a
memory address. And we tack on the # symbol to show that
the $9 is the number we’re after. Without that #, the computer
would load the accumulator with whatever it finds at address
$9 (as in LDA $9). Without the #, it would be zero page
addressing, not immediate addressing.

In any case, immediate addressing is very commonly
used, since you often know already what number you are after
and do not need to send away for it at all. One example
would be printing out a carriage return on the screen. You al-
ready know what the code is for a carriage return, so you just
load it into the accumulator with #. This is similar to BASIC

54

Addressing

where you define a variable (10 VARIABLE = 9). In this case,
we have a variable being given a known value. LDA #9 is the
same idea. To repeat, immediate addressing is used when you
know what number you're dealing with; you're not sending
off for it. It's put right into the ML program code as a number,
not as an address. To illustrate immediate and absolute
addressing working together, imagine that you wanted to copy
the number 15 ($0F) into address $4000. (See Program 4-1.)

Implied

Here’s an easy one. You don’t use any address or argument
with this one. You just type the instruction; it sits alone, needs
no argument.

This is among the more obvious modes. It’s called implied,
since the mnemonic, the instruction itself, implies what is be-
ing sent where: TXA means Transfer the X register’s contents
to the Accumulator. Implied addressing means that you do not
type anything following the instruction.

TYA and others are similar short-haul moves from one
register to another. Included in this implied group are the
SEC, CLC, SED, CLD instructions as well. They merely clear
or set the flags in the status register, thereby letting you and
the computer keep track of whether or not the most recent
arithmetic resulted in a zero, whether or not a carry occurred,
and so forth.

Also “implied” are such instructions as RTS (ReTurn from
Subroutine), BRK (BReaK which is the ML equivalent of BA-
SIC’s STOP command), PLP, PHP, PLA, PHA (which “push”
or “pull” the processor status register or accumulator onto or
off the stack).

Increasing by one (incrementing) the X or Y register’s
number (INX, INY) or decreasing it (DEX, DEY) are also “im-
plied.” What all of these implied addressing modes have in
common is the fact that you do not need to actually give any
address. By comparison, an LDA $2500 (the absolute mode)
must have that $2500 address to know where to pick up the
package. TXA already says, in the instruction itself, that the
address, the destination, is the accumulator. Likewise, you do
not put an address after RTS since the computer always
memorizes its jump-off address when it does a JSR. NOP (NO
oPeration) is, of course, implied mode, too.

55

Addressing

d@g$# NIALLIYM 39 dTNOM LI X3IH NI °TIVWIDAA SI @6
GT dHL °SIHL SMOTIV SAVT °TIIM LY TVWIDAA ANV XJIH @8
NIIMLId HOLIMS NVYO NOX SYTTIWISSY HAWOS NI LYHL ILON @L

29

PPeYS$ SSAIAAY NI LI JIOLS 200vS YIS oy 9@ d8 ZPBZT @S

(ssd¥aay¥ IHL LON) ¥YIIWNN THL HLIM ¥ dVOT ST# vYa1 g 6Y 9008Z @Y
(2}

(SSTYAAY LIVYLS SNYIW =x) @@0CS LV SLIVLS WYIDH0dd TW oz

0001$ SS3IPPY 3Njosqy Ojul G| qeipdww] ue Suyng ‘|- weisdold

56

Addressing

Relative

One particular addressing mode, the relative mode, used to be
a real headache for programmers. Not so long ago, in the days
when ML programming was done “by hand,” this was a fre-
quent source of errors. Hand computing—entering each byte
by flipping eight switches up or down and then pressing an
ENTER key—meant that the programmer had to write a pro-
gram out on paper, translate the mnemonics into their number
equivalents, and then “key” the whole thing into the machine
with that set of switches.

It was a big advance when hexadecimal numbers permit-
ted entering $0F instead of eight switches: 00001111. This re-
duced errors and fatigue.

An even greater advance was having enough free memory
so that an assembler program could be in the computer while
the ML program was being written. An assembler not only
takes care of translating LDA $2500 into its three (eight-
switch) numbers—10101101 (the code for the instruction
LDA) and 00000000 00100101 (the number $2500)—but an
assembler also does relative addressing. So, for the same rea-
son that you can program in ML without knowing how to deal
with binary numbers, you can also forget about relative
addressing. The assembler will do it for you. All you need to
remember about it is that you can’t go very far away from the
current instruction when using relative addressing.

Relative addressing is used with eight instructions only:
BCC, BCS, BEQ, BMI, BNE, BPL, BVC, BVS. They are all
branching instructions. They force the control of the program
to branch (jump) when the overflow flag is set (or cleared);
when the carry flag is set (or cleared); or if the most recent
arithmetic resulted in equal, less than, not equal, or more than.

Branch if EQual (BEQ) would look like this in BASIC: IF X
= 0 THEN GOTO. It forces the computer to branch some-
where else in a program if something is equal to zero.

All these B instructions can branch only as far as 128 ad-
dresses forward or 127 backward from where the instruction is
located. If you were delivering the mail in the City of Bytes,
you would probably dislike relative addresses; it would mean
extra work. You would be going peacefully from house to
house up the road and then, suddenly, one of the letters has a
giant B on it and a number like —5 or +47. You've then got

57

Addressing

to stop your orderly progress up the road and take this letter 5

houses back from the current house or 47 houses forward.
Remember that these branches, these jumps, can be a dis-

tance of only 128 bytes from their own address, but they can

go in either direction. Thus, if a BNE instruction above is lo-

cated in RAM at address $3500, you cannot specify $5600 as

its target. That would be much too big a branch. You specify

where the branch should go by giving an address within the

boundaries of 128 bytes in either direction. Here’s an example:

1000 LDX #$00

1002 INX

1003 BNE $1002

1005 BRK

(The X register in this example will count up by ones until
it hits 255 decimal. At that point, it resets itself to zero. When
it does become zero, that will fail to trigger the Branch if Not
Equal to zero instruction, and we will “fall through” the
branch to the BRK at $1005.)

This is how you create an ML FOR-NEXT loop. You are
branching relative to address 1003, which means that the
assembler will calculate what address to place into the com-
puter that will get you to address $1002. You might wonder
what’s wrong with the computer just accepting the number
$1002 as the address to which you want to branch. Absolute
addressing does give the computer the actual address, but the
branching instructions all need addresses which are offsets of
the starting address. After assembling the example above, the
assembler puts the following into the computer:

1000 A2 00
1002 E8
1003 DO FD
1005 00

The odd thing about this piece of code is that FD at ad-
dress $1004. How does $FD tell the computer to branch back
to $1002? The $FD is 253 decimal. Now it begins to be clear
why relative addressing is so messy. If you are curious, num-
bers larger than 127, when used as arguments for the B
instructions, tell the computer to go back down to lower ad-
dresses. What's worse, the larger the number, the less far
down it goes. In this case, the computer counts the address
$1005 as zero and counts backward thus:

58

Addressing

1005 = 0 = $00

1004 = 255 = $FF
1003 = 254 = $FE
1002 = 253 = $FD

Not a very pretty counting method! It’s easy for the com-
puter to deal with this, but to us it’s awkward and strange.
Fortunately, all that we assembler users need do is to assign a
label to the address we’re branching to and use the label as
the address (as if it were an absolute address). The assembler
will do the hard part.

This strange counting method is the way that the com-
puter handles negative numbers. It thinks of the leftmost bit in
a byte as the sign bit. Whether the bit is on or off signifies a
positive or negative number. For the beginning ML pro-
grammer, however, it’s just as well to forget all about negative
numbers. You won't find that you'll need to use them since
practically everything you’ll want to do can be done with pos-
itive integers.

Before leaving our discussion of branching, let’s look at
one special problem that you will need to deal with if you use
a simple assembler. When you are using one of the branch
instructions, you sometimes branch forward. Let’s say that you
want to have a different kind of FOR-NEXT loop:

1000 LDX #$0
1002 INX

1003 BEQ $100A
1005 JMP $1002
1008 BRK

1009 BRK

100A BRK

When jumping forward, you often do not yet know the
precise address you want to branch to. In the example above,
we really wanted to go to $1008 when the loop was finished
(when X was equal to zero), but we just entered an approxi-
mate address ($100A) and made a note of the place where this
guess appeared ($1004). Then, using the direct memory
changing function in the monitor, we can change location
$1004 to the correct offset when we know what it should be.

Forward counting is easy. When we learned that we
wanted to go to $1008, we would change the number $5 in
address $1004 to $3.

29

Addressing

Remember that you start counting from zero from the ad-
dress immediately following the branch instruction. For ex-
ample, a jump to $1008 would be three because you count
$1005=0, $1006=1, $1007=2, $1008=3. All this confusion
disappears after writing a few programs and practicing with
estimated branch addresses. Luckily, the assembler does all
the backward branches. That’s lucky because they are much
harder to calculate.

Unknown Forward Branches

If you are using LADS, all branches are given names rather
than addresses. These names are called labels, and they are
automatically calculated for you by the assembler. You would
write the above example with LADS in this way:

LDX #0

COUNTUP INX

BEQ MORETHINGS; (or any other label you want to give it)
JMP COUNTUP; (jumps also have labels as their targets)
MORETHINGS BRK

With LADS and other advanced assemblers, you'll often
use labels instead of actual addresses. This makes things pretty
easy on the programmer. LADS does much of the busywork
for you, particularly if you make good use of its pseudo-ops.

By the way, we’ll get to pseudo-ops later. Essentially, they
are instructions directly to the assembler such as ““please insert
the following as pure ASCII text,” but which are not normal
6502 instructions that get translated into ML object code. In-
stead, a pseudo-op is a request to the assembler program to
perform some extra service for the programmer.

Absolute, X and Absolute,Y

Another important mode provides you with an easy way to
manipulate lists or tables. This method looks like absolute
addressing, but it attaches an X or a Y to the address. The X
and Y stand for the X and Y registers, which are being used in
this technique as offsets. That is, if the X register contains the
number 3, then whatever address you type in will have 3
added to it. If X holds a 3 and you type LDA $1000,X, you
will LoaD Accumulator with the value (number) which is in
memory cell $1003. The register value is added to the absolute
address.

60

Addressing

Another addressing method called zero page, X works the
same way: LDA $05,X. (Load from cell 5 plus whatever’s in
the X register.) These indexed addressing modes let you easily
transfer or search through messages, lists, or tables. Error mes-
sages can be sent to the screen using such a method. Assume
that you set it up so that the words SYNTAX ERROR are held
in some part of memory because you sometimes need to send
them to the screen from your program. You might have a
whole table of such messages. But we'll say that the words
SYNTAX ERROR are stored at address $3000. Assuming that
your screen memory address is 1024 ($0400 hex), here’s how
you would send the message:

1000 LDX #$00 (Set the counter register to zero.)

1002 LDA $3000,X (Get a letter at 3000 + X.)

1005 BEQ $100E (If the letter is a zero, we've reached the end of
the message, so we branch to the end of this
routine.)

1007 STA $0400,X (Send the letter to 0400 + X.)

100A CMP #$00 (If the accumulator picked up a zero, the mes-
sage is finished. Each message ends with a
zero—called a delimiter—to alert the computer
to stop sending.)

100A INX (Increment the counter so that the next letter in
the message, as well as the next screen position,
are pointed to.)

100B JMP $1002 (Jump to the load instruction to fetch the next
character.)

1010 BRK (Task completed, message transferred.)

This sort of indexed looping is an extremely common ML
programming device. It can be used to create delays (FOR T =
1 TO 5000: NEXT T), to transfer any kind of memory to an-
other place, to check the status of memory (to see, for ex-
ample, if a particular word appeared somewhere on the
screen), and to perform many other tasks. It is a fundamental,
all-purpose machine language technique.

Here’s a fast way to fill your screen or any other area of
memory. This is a full source code for the demonstration
screen-fill example we tried in Chapter 1. See if you can fol-
low how this indexed addressing works. What bytes are filled
in, and when? At ML speeds, it isn't necessary to fill them in
order—nobody would see an irregular filling pattern because,
like magic, it all happens too fast for the eye to see. (See Pro-
gram 4-2.)

61

Addressing

ONIOD d4ddX ‘0¥3Z LIX ILON SI X dI doo1
T X9 ¥ILNNOD dASIVA

X'00L0S

X'90903

X'00503

X'pobos

#

o¥IZ OL ¥ALNNOD 13S o#

qAILOVIVHD ,VY, HFHL 108

SLy
aANd
ANI
YIS
YIS
Y.LS
YIS
¥Yat1
AdT

=Y

29 €506 Q€T

Td @A TSO6 @21

80 @506 BT

LO 09 66 A¥O6 @01

90 90 66 Y¥O6 @6

S@ P9 66 L¥O6 @8

dO01 v2 00 66 Y06 OL
IO 6Y ZTHO6 @9

20 oY @vO6 @S

ov

ov¥06 OF

14

V 1913] 3y} ym uda.1ds§ ay) Sul||y -y weidold

62

Addressing

Compare this with the program on page x to see the ef-
fects of using a different screen starting address and how
source code is a more elaborate version of what you get when
you run a disassembler to get an ML program listing.

Indirect Y

This addressing mode is a real workhorse; you'll use it often.
Several of the examples in this book refer to it and explain it
in context. The argument you use with this mode isn’t so
much an address in itself as a method of creating an address. It
looks like this:

4000 STA ($80),Y

Seems innocent enough. That Y works like the other
kinds of index modes we’ve discussed before. Whatever is in
the Y register is added to the final address.

But watch out for those parentheses. They mean that $80
is not the real address here. We're not going to put the byte in
the accumulator into address $80. Instead, addresses $80 and
$81 are themselves holding the address we are sending our
byte to. We are not sending to $0080; hence, the name for this
mode is indirect Y.

Where does the byte in the accumulator end up? If $80
and $81 have these numbers in them:
$0080 01
$0081 20

and Y is holding a five, then the byte in A will end up in ad-
dress $2006! How did we get $2006?

First, you've got to mentally swap the numbers in $80
and $81. The 6502 requires that address pointers be listed in
backward order: The pointer is holding $2001, not $0120.
Then, you've got to add the value in the Y register, 5, and you
get $2006.

This is a valuable tool, even if it's perplexing at first. You
should familiarize yourself with it. It lets you get easy access
to many memory locations very quickly by just changing the Y
register (using INY or DEY) or by directly changing the ad-
dress pointer itself (using INC or DEC, instructions that raise
or lower a byte in RAM memory by one). You can make rad-
ical shifts with this pointer changing technique. You can shift
up a whole page (256 bytes) by simply INC $81: That will
change your target address from $2001 to $2101. To go down

63

Addressing

four pages, subtract four from address $81. Combine this with
the indexing that the Y register is doing for you, and you've
got greater efficiency, greater reach to all the RAM you want
to manipulate.

Right now you're paying the only price you'll ever pay for
this valuable tool: It's not one of the more obvious things in
learning ML. You've got to try it a few times, scratch your
head, and get the concept.

Let’s clear away some of the fog. How were those bytes at
$80 and $81 selected to be the ones holding our indirect ad-
dress? The programmer decides where address pointers are
stashed (they must be in zero page). You figure out where the
safe places are in zero page and you use them for your point-
ers. That’s the main use that you'll have for zero page.

How did the numbers $20 and $01 get into the pointer?
The programmer put them there. As part of the initial activ-
ities of an ML program, you stick byte-pairs (these address
pointers) into zero page. If you're using a simple assembler,
you'll need to keep a record of the pointers on paper. If you're
using LADS, you give the pointers labels like this:

TOSCREEN = $80

And you can also have a label for the actual screen address:
SCREEN = $0400

Then, to set up a pointer, you use some pseudo-ops in LADS
which break a two-byte address like $0400 into halves for
storage in pointers:

LDA #<SCREEN; loads the low byte

STA TOSCREEN

LDA #>SCREEN; loads the high byte

STA TOSCREEN +1; stores into address TOSCREEN plus 1 ($81)

When an address is set up in a pointer, it’s split in half.
The address $0400 was split in the example above. When pro-
gramming in ML, it’s useful to distinguish between the two
halves by saying that one of the bytes is the LSB (least signifi-
cant byte) and the other is the MSB (most significant). In our
example, the $00 is the LSB and the $04 is the MSB. That's
not because one number is smaller than the other; rather, it’s
because they are in different positions in the two-byte address.
The position on the left is of far more significance than the
position on the right in $0400. It’s the same for decimal num-

64

Addressing

bers: 5015 when chopped in half means that the left half stands
for fifty 100’s and the right half only stands for fifteen 1’s.
Note that every time you add one to the MSB of a double-
byte hex number in ML, you are adding one page, 256. This is
how you can INC or DEC the MSB of your pointer and move
quickly through the “pages’” of memory. And remember, you

store pointers in reverse order when you are setting up a
pointer, LSB, MSB:

0080 00
0081 04; a pointer to the screen memory of the Apple

Indirect X

This addressing mode is rarely used. It makes it possible to set
up a group of pointers, a cluster of them, in zero page. It's like
indirect Y except the X register value is not added to the ad-
dress pointer to form the ultimate address target. Rather, X
points to the pointer you desire to use. Nothing is added to the
address held in the pointer. It looks like this:

5000 STA ($90,X),

To see it in action, let’s assume that you've already set up
a cluster of pointers in zero page. It’s a table of pointers, not
just one:
0090 $00; Pointer 1
0091 $04; points to $0400
0092 $05; Pointer 2
0093 $70; points to $7005
0094 $EA; Pointer 3
0095 $81; points to $81EA

If X holds a two when we STA ($90,X), then the byte in
the accumulator will be sent to address $7005. If X holds a
four, the byte will go to $81EA.

All things considered, this addressing mode has little to
recommend it. If you set up the same table, you could access
these pointers just as easily and have the flexibility of that Y
index into the bargain. Who knows why the designers of the
6502 chip included this mode?

Accumulator Mode

ASL, LSR, ROL, and ROR shift the bits in the byte held in the
accumulator. We'll touch on this shifting in Chapter 6 when
we discuss the instruction set. This mode doesn’t really have

65

Addressing

much to do with addressing as such, but it’s always listed as a
separate mode.

Zero Page,Y

This mode can be used with only two instructions: LDX and
STX. Otherwise, it operates just like zero page,X discussed
above.

What to Remember

There you have them, 13 addressing modes to choose from.
However, there are only 6 that you should focus on and prac-
tice with until you understand their uses: immediate, absolute
(plus absolute,X and ,Y), zero page, and indirect Y. The rest
are either unimportant when you're programming because
they are automatic (like the implied mode) or not really worth
bothering with. Now that we’ve surveyed the ways you can
move numbers around, it's time to see how to do arithmetic in
ML.

66

Chapter 5
Arithmetic

Arithmetic

There’ll be many things that you’ll want to do in ML, but
complicated math is not one of them. Mathematics beyond
simple addition, subtraction, multiplication, and division will
not be covered in this book. For games and most other ML for
personal computing, you won’t need to use complex math. In
this chapter we’ll cover what you are likely to use. BASIC is
well-suited to sophisticated mathematical programming and is
far easier to work with for such tasks. If you're planning a
program that’s going to involve trigonometry or quadratic
equations, use BASIC.

But before we look at ML arithmetic, let’s briefly review
an important concept: how the computer tells the difference
between addresses, numbers as such, and instructions. It is
valuable to be able to visualize what the computer is going to
do as it comes upon each byte in your ML routine.

Even when a computer appears to be working with
words, letters of the alphabet, graphics symbols, and the like,
it is still working with numbers. A computer works only with
numbers. The ASCII code is a convention by which a com-
puter understands that when the context is alphabetic, the
number 193 means the letter A. At first this is confusing. How
does it know when 193 is A and when it is just 193? And
there’s a third possibility: The 193 could represent the cell 193
in the computer’s memory, the one hundred ninety-third ad-
dress. (In the Apple character code, the letter A is 193, but
true ASCII would use the number 65 for A. We'll use the Apple
code in this discussion since it’s important to become familiar
with it.)

It is worth remembering that, like us, the computer means
different things at different times when it uses a symbol (like
193). We can mean a street address by it, a temperature, or a
code. We could agree that whenever we used the symbol 193,
we were ready to leave the party. We would look meaning-
fully at our companion and say, “We always cook our pork to
a temperature of one hundred ninety-three.” Then hope they
got the hint.

The point is that symbols aren’t anything in themselves.
They stand for other things, and what they stand for must be
agreed upon in advance. There must be rules. A code is an
agreement in advance that one thing symbolizes another.

69

Arithmetic

The Computer’s Rules

Inside your machine, at the most basic level, there is a stream
of input. The stream flows continually past a “gate” like a
river through a canal. For 99 percent of the time, this input is
0’s. (BASICs differ; some see continuous 255’s, but the idea is
the same.)

When you first turn it on, the computer just sits there.

What's it doing? It might be updating a clock, if you have
one, and it’s holding things coherent on the TV screen—but it
mainly waits in an endless loop for you to press a key on your
keyboard to let it know what it’s supposed to do.

There is a memory cell inside your Apple which the com-
puter constantly checks. This byte in the Armlp is located at
49152 ($C000 in hexadecimal), While no key is pressed, the
leftmost bit (the “high bit”) in this byte is off, is zero. When a
key is hit on the keyboard, however, the leftmost bit flips on,
and that’s the signal that someone is trying to type something
in. If you press the RETURN key, a 141 will appear in location
49152. Finally, after centuries (the computer’s sense of time
differs from ours) here is something to work with! Something
has come up to the gate at last.

By the way, it’s interesting that 49152 is not a RAM mem-
ory byte. You can’t POKE something in there; you can only
look at it, PEEK it. Thus, when you need to test this byte, you
must set its seventh bit off (a seventh bit on in 49152 signals
that someone has pressed a key on the keyboard). But you
can’t set the seventh bit off by LDA #0:STA $C000 because
you can’t store something in this location. Instead, you can
only turn the seventh bit off by any reference to location
$C010 (LDA, STA, whatever). Anytime you mention $C010,
that location appears on the computer’s address bus, and this
act has the effect of clearing out the seventh bit in $C000. This
is one of those things you memorize but don’t question. It
works; use it.

But assume that someone hits the RETURN key and, thus,
a 141 appears in location 49152. You notice the effect at
once—everything on the screen moves up one line, because
141 (in the Apple code) stands for a carriage return. How did
the Apple know that you were not intending to type the num-
ber 141 when it saw 141 in the keyboard sampling cell? Sim-
ple. The number 141, and any other keyboard input, is always
read as an ASCII number. Besides, there’s a difference be-

70

Arithmetic

tween the number 141 and the three characters required to in-
dicate the characters 1, 4, 1.

In ASCII, the digits from 0 through 9 are the only number
symbols. There is no single symbol for the three characters in
14 1. So, when you type in a 1 followed immediately by a 4
and then another 1, the computer’s input-from-keyboard rou-
tine notices that you have not pressed one of the “instant ac-
tion” keys (such as the ESC, TAB, cursor-control keys).
Rather, you typed 1 and 4 and another 1—the keyboard sam-
pling cell, the “which key pressed” location in zero page, re-
ceived the ASCII value for 1, and then for 4, and finally
another 1.

The point is that hitting the key labeled 1 followed by the
key labeled 4 followed by another 1 is not storing those num-
bers into that sampling cell at 49152. Instead, these things are
stored as characters. On the ML level, numbers are distinct
from characters. Characters like 3 have an ASCII code value
which differs from their numeric value. In other words, typing
1-4-1 will not result in the computer seeing a 1-3-1. If you
looked, you would find that the computer saw a $B1, $B4, and
$B1 (177, 180, 177 decimal).

Incidentally, Apple ASCII code representations of the dig-
its are easy to remember in hex: 0 is $B0, 1 is $B1, up to $B9
for 9. In decimal, the digits would be 176 to 185.

The computer decides the “meaning’” of the numbers
which flow into and through it by each number’s context. If it
is in “alphabetic” mode, the computer will see the number
193 as A; or if it has just received an A, it might see a sub-
sequent number 193 as an address to store the A. It all de-
pends on the events that surround a given number. We can
illustrate this with a simple example:

2000 LDA #$C1 $A9 (169) $C1 (193)
2002 STA $C1 $85 (133) $C1 (193)

This short ML program (the numbers in parentheses are
the decimal values) shows how the computer can “expect” dif-
ferent meanings from the number 193 ($C1 hex). When it re-
ceives an instruction to perform an action, it is then prepared
to act upon a number. The instruction comes first and, since it
is the first thing the computer sees when it starts a job, it
knows that the number $A9 (169) is not a number.

It has to be one of the ML instructions from its set of
instructions (see Appendix A).

71

Arithmetic

Instructions and Their Arguments

The computer would no more think of this first 169 as the
number 169 than you would seal an envelope before the letter
was inside. If you are sending out a pile of Christmas cards,
you perform instruction-argument just the way the computer
does: You (1) fill the envelope (instruction) (2) with a card
(argument or operand). You don’t get the envelopes confused
with the cards and try to stuff an envelope into a card.

All actions do something to something. A computer’s ac-
tion is called an instruction (or, in its numeric form as part of
an ML program inside the computer’s memory, it’s called an
opcode for operation code). The target of the action is called its
argument (operand). In our program above, the computer
must LoaD Accumulator with 193. The # symbol means im-
mediate; the target is right there in the next memory cell
following the LDA instruction, so it isn’t supposed to be
fetched from a distant memory cell. That 193, however, is not
another instruction; it’s the number 193.

Then, after this action has been completed, after the accu-
mulator contains the number 193, the next number (the 133
which means STore Accumulator in zero page, the first 256
cells) must be an instruction, the start of another complete ac-
tion. And, once again, the computer knows that the instruction
133 must be followed by an address of a cell in memory to
store to. So, in the example, we’ve got a total of four numbers:
169, 193, 133, and 193. If you PEEKed at this little ML rou-
tine, you'd find these numbers in this order. But when this ML
program is run, is executed by the 6502, it will see 169 as an
instruction, 193 as a number, 133 as another instruction, and
the 193 following that instruction as an address in memory.
Instructions, numbers, addresses—they are all mixed in to-
gether, but the chip can figure out which is which based upon
their context. It knows that LDA # will be followed by a sin-
gle byte number because that's what LDA in the immediate
addressing mode demands. The computer would no more ex-
pect an address to come after LDA # than you would expect
someone to say ‘1700 Taylor Street” when you asked what
time it was.

Think of the computer as completing each action and then
looking for another instruction. It moves through your list of
instructions logically. Recall from the last chapter that the tar-
get can be “implied” in the sense that INX simply increases

72

Arithmetic

the X register by one. The one is “implied” by the instruction
itself, so there is no target argument in these cases. The next
cell in this case must also contain an instruction for a new
instruction-argument cycle.

Some instructions call for a single-byte argument. LDA
#193 is of this type. You cannot LoaD Accumulator with any-
thing greater than 255. The accumulator is only one byte
large, so anything that can be loaded into it can also be only a
single byte large. (Recall that 255, $FF, is the largest number
that can be represented by a single byte.)

STA $C1 also has a one-byte argument because the target
address for the STore Accumulator is, in this case, in zero
page.

Storing to zero page, or loading from it, will need only a
one-byte argument—the address. Zero page addressing is a
special case, but an assembler program will take care of it for
you. It will pick the correct opcode for this addressing mode
when you type LDA $C1. Typing in LDA $00C1 would create
ML code that performs the same operation, though it would
use three bytes instead of two to do it.

But how does the chip know that a given instruction is
self-contained like the INY, implied addressing mode? Or an-
other instruction uses up two bytes like zero page addressing
(STA $15 uses one byte for the STA command and one byte
for the $15)? Or the biggest addressing modes, like STA
$1500, absolute addressing, take three bytes before they can
look for the next instruction in a program?

Inside the chip is a program counter. It has a list of all the
ML instructions. And it knows how many bytes—one, two, or
three—that each instruction takes up. During an ML pro-
gram’s execution, the program counter acts like a finger that
keeps track of where the computer is located at any given time
in its trip up the series of ML instructions that comprise your
program. Each instruction takes up one, two, or three bytes,
depending on what type of addressing is going on. The pro-
gram counter looks at its list and moves up the appropriate
number of bytes to show where the next instruction will be.

Context Defines Meaning

TXA uses only one byte, so the program counter (PC) moves
ahead one byte and stops and waits until the value in the X
register is moved over into the accumulator. TXA is supposed

73

Arithmetic

to transfer into the accumulator whatever number is in the X
register. Then the computer asks the PC, “Where are we?”
and the PC is pointing to the address of the next instruction.
The PC never points to an argument. It skips over them be-
cause it knows how many bytes each addressing mode uses
up in a program.

Say that the next instruction after TXA is LDA $15. This
is a two-byte-long, zero page addressing mode. The PC looks
on its list and moves up two bytes. The longest possible
instruction would use three bytes, such as LDA $5000 (ab-
solute addressing). The PC counts up three and points. Your
assembler would translate LDA $15 into $A5 and POKE it. It
would translate LDA $1500 into $AD and POKE that. Since
the opcodes that get POKEd are different, even though the
LDA mnemonics are identical, the computer can know how
many bytes a given instruction will use up. That’s how it
knows where the next instruction must be in your program.

Having reviewed the way that your computer makes
contextual sense out of the mass of seemingly similar numbers
of which an ML program is composed, we can now move on
to see how elementary arithmetic is performed in ML.

Addition

Arithmetic is performed in the accumulator. The accumulator
holds the first number, the target address holds the second
number (but is not affected by the activities), and the result is
left in the accumulator. So

LDA #$40 (Remember, the # means immediate, the $ means hex.)
ADC #$01

will result in the number $41 being left in the accumulator.
We could then STA that number wherever we wanted. Simple
enough.

The ADC means ADd with Carry. If an addition results in
a number higher than 256 (if we added, say, 250 + 7), then
there would have to be a way to show that the number left
behind in the accumulator isn’t the correct result—that what'’s
in the accumulator isn’t the total, it’s the carry.

After adding 250 + 7, you would find a 1 in the accu-
mulator and the carry flag would be up. That means that you
must add 256 to whatever is in the accumulator to find the
real answer: 257.

To make sure that things never get confused, always CLC

74

Arithmetic

(CLear the Carry flag) before you do any addition. CLC will
push the carry flag down (in case it was up from some pre-
vious event in your program). Then, if you find that it is up
after the addition (ADC), you'll know that you need to add
256 to whatever is in the accumulator. You'll know that the
accumulator is holding the carry, not the total result.

One other point about the status register: There is another
flag, the decimal flag. If you ever set this flag up (with the
SED, SEt Decimal instruction), all addition and subtraction is
performed in a decimal mode in which the carry flag is set
whenever an addition exceeds 99. In this book, we are not go-
ing into the decimal mode at all, so it’s a good precaution to
put a CLear Decimal mode (CLD) instruction as the first
instruction of any ML program you write. After you type CLD,
the flag will be put down and the assembler will move on to
ask for your next instruction, but the arithmetic from then on
will all be handled as we are describing it. Decimal mode has
little value in ML programming. It's another one of those
things that sounds good, but doesn’t do much in practice.

Adding Numbers Larger Than 255
We have already discussed the idea of setting aside some
memory cells as a table for data. To do this, we simply make a
note to ourselves that, say, addresses $D6 and $D7 are de-
clared a zone for our personal use as a storage area. Using a
typical example, let’s think of this two-byte zone as the place
that holds the address of a “moving finger” going through a
list of names we’ve stored in RAM. As long as the zone is not
in ROM or used by our program elsewhere or used by the
computer (see your computer’s memory map in the Reference
Manual from Apple or use the safe areas we discussed earlier),
it’s fine to declare an area a data zone. It is a good idea (es-
pecially with longer programs) to make notes on a piece of pa-
per to show where you intend to have your subroutines, your
main loop, your initialization, and your miscellaneous data—
names, messages for the screen, input from the keyboard, and
so on. This is one of those things that BASIC does for you
automatically, but which you must do for yourself in ML.
However, you can set up data zones with the LADS assembler
by using the .BYTE, =, or *= pseudo-ops.

When BASIC creates a string variable, it sets aside an area
to store variables. This is what DIM does. In ML, you set aside

75

Arithmetic

your own areas by simply finding a clear memory space and
not writing a part of your program into it (or by staking out
some memory with .BYTE or *= in LADS). Part of your data
zone can be special registers you declare to hold the results of
addition or subtraction.

But back to our example: You might make a note to your-
self that $D6 and $D7 will hold the current position within a
list of names in your database. This is a pointer, and we can
look at all the bytes within our database by adjusting this
pointer in $D6 and $D7. In this way we can efficiently search
through the database.

Since the “moving finger”” searching through the database
is constantly in motion, this pointer will be changing all the
time as it looks for your target information. Notice that you
need two bytes for this pointer. That is because one byte could
hold only a number from 0 to 255. Two bytes together,
though, can hold a number up to 65535 (all the possible ad-
dresses in the Apple).

To define the pointer location, you could do this in LADS:

FINGER = $D7

If you needed another two-byte pointer to hold another
address, you could write this:
OTHER = $EB

and so on, using safe areas, for as many pointers as you
needed.

Since your Apple can address only a total of 65536 mem-
ory cells at any moment, two-byte registers like these can ad-
dress any addressable cell in your computer. So if your
“moving finger” is supposed to look up the name ““Mitchell,
Nancy” in the database, you'll want to start off by looking for
the letter M. In setting up your list of names, you decided that
each entry, each “record,” would be given 40 bytes of space.
Thus, you are going to be adding 40 to the FINGER if the first
character in the first record isn’t an M. Let’s say that the list of
records starts in memory at address $8000.

Before accessing the list, we punch in the target address:

LDA #0:STA $D6:LDA #80:STA $D7

Or you could accomplish the same thing with the LADS
assembler by using labels and the #> and #< pseudo-ops
which extract the MSB and LSB of a Iabel’s address:

LDA #<DATA:STA FINGER:LDA #>DATA:STA FINGER +1
76

Arithmetic

The FINGER address register now looks like this in the
monitor: $00D6 00 80 (remember that the higher, most signifi-
cant byte, comes after the LSB, the least significant byte). To
move to the next name in the list, we want FINGER to be
$00D6 28 80. (The 28 is hex for 40.) In other words, we're
going to move the finger up one record in the database list. To
do this, we need to add $28 (40 decimal) to the pointer, the
FINGER.

Remember the indirect Y addressing mode which lets us
use an address in zero page as a pointer to another address in
memory? The number in the Y register is added to whatever
address sits in D6, D7, so we don’t STA to $D6 or $D7, but
rather to the address that they contain: STA ($D6),Y.

How to add $28 to the FINGER pointer? First of all, CLC,
CLear the Carry, to be sure that flag is down. This example
uses the mini-assembler in the monitor:

1000 CLC (1000 is the location of our “add 40 to FINGER”
subroutine)

1001 LDA $D6 (We fetch the LSB of FINGER)

1003 ADC #$28 (Add 40)

1006 STA $D6 (Put the new result into FINGER)

1008 LDA $D7 (Get the MSB of FINGER)

100A ADC #$0 (Add with carry to the MSB of FINGER)

1010 STA $D7 (Update FINGER’S MSB)

That’s it. Any carry will automatically set the carry flag up
during the ADC action on the LSB and will be added into the
result when we ADC to the MSB. It’s all quite similar to the
way that we add numbers, putting a carry onto the next col-
umn when we get more than a ten in the first column. And
this carrying is why we always CLC (clear the carry flag; put it
down) just before additions. If the carry is set, we could get
the wrong answer if our problem did not result in a carry. Did
the addition above cause a carry? (Remember, we started with
a value of $8000 in FINGER.)

Note that we need not check for any carries during the
MSB+MSB addition. Any carries resulting in a database ad-
dress greater than $FFFF (65535) would be impossible on our
machines.

The 6502 is permitted to address $FFFF tops, under nor-
mal conditions. However, it is possible to add numbers larger
than 65535 by simply using more than two bytes and continu-
ing to add with carry across a multibyte chain.

77

Arithmetic

The example above would be somewhat easier with
LADS because you would substitute label names (FINGER and
DATA in this case) for the numbers. Also, you could define
another label to hold the size of a record (RECORD = 40),
and then line 1003 would read ADC #RECORD.

Subtraction

As you might expect, subtracting single-byte numbers is a
snap:

LDA #8$41

SBC #$01

results in a $40 being left in the accumulator. As before,
though, it is good to make it a habit to deal with the carry flag
before each calculation. When subtracting, however, you set
the carry flag: SEC. Why is unimportant. Just always SEC
before any subtractions, and your answers will be correct.
Here’s double subtracting that will move the FINGER back
down one record in the data list:

$1020 SEC (%1020 is where we arbitrarily decided to locate
our “take 40 from FINGER" subroutine)
1021 LDA $D6 (Get the LSB of FINGER)
1023 SBC #$28 (LSB of the size of a single record)
1026 STA $D6 (Put the new result into FINGER)
1028 LDA $D7 (Get FINGER’s MSB)
102A SBC #$00 (Subtract the MSB of the size of a single record)
102D STA $D7 (Update FINGER’s MSB)

Multiplication and Division

Multiplying could be done by repeated adding. To multiply 5
X 4, you could just add 4 + 4 + 4 + 4 + 4. One way would
be to set up two registers like the ones we’ve used before.
Both registers (or storage zones) could contain a 4, and then
you could loop through an add-these-two-registers subroutine
five times. For practical purposes, however, multiplying and
dividing are more easily accomplished in BASIC. They are
simply not worth the trouble of setting up in ML, especially if
you need to involve decimal-point fractions (floating-point
arithmetic). Perhaps surprisingly, for games and most personal
computing tasks where ML routines and programs are created,
there is little use either for negative numbers or arithmetic be-
yond simple addition and subtraction. When we get into di-
vision and multiplication, we’ve gone beyond the simple

78

Arithmetic

arithmetic that you’ll need—unless you're writing an account-
ing program or a spreadsheet program.

If you find that you do need complicated mathematical
structures, create the program in BASIC, adding ML where su-
per speeds are desirable. Such hybrid programs are efficient
and, in their way, elegant.

One final note: An easy way to divide the number in the
accumulator by two is to LSR. Try it. Similarly, you can mul-
tiply by two with ASL. We’ll define LSR and ASL in the next
chapter. If you're interested in using these techniques, take a
look at the “Library of Subroutines” (Appendix E).

Double Comparison

One rather tricky technique is used fairly often in ML and
should be learned. It is tricky because there are two branch
instructions which seem to be worth using in this context, but
which are best avoided for this kind of comparing. If you're
trying to keep track of the location of a record within a data-
base, this will be a two-byte address. If you need to compare
those two bytes against another two-byte address, you'll need
a ““double-compare”” subroutine. You might, for example, want
to check whether or not one record is located higher in the
database than another.

Double-compare is also useful in any other ML where you
need to manipulate numbers larger than can be held in one
byte (where the single CMP instruction would be able to com-
pare them for you).

The problem is the BPL instruction (Branch on PLus) and
its companion, BMI (Branch on MInus). Don't use them for
comparisons. In any comparisons, whether single- or double-
byte, use BEQ to test if two numbers are equal; BNE for not
equal; BCS for equal or higher; and BCC for lower. You can
remember BCS because its S is higher and BCC because its C is
lower in the alphabet. To see how to perform a double-compare,
Program 5-1 shows one easy way to do it.

This is LADS at work. Recall that with assemblers like
LADS, you can use line numbers and labels, add numbers to
labels (see the TESTED + 1 in line 110), add comments, and
all the rest.

To try out this double comparison from the monitor, type
in the hex bytes on the left (starting at $0310 with the AD)
and put zeros (BRK instructions to stop the program) in

73

Arithmetic

aNOD3IS > JILSIL
aNODdS <« QdLSAL
ANODES = JdLSHEL

SALXY HOIH dHL FIVYJWOD
SALXE MOT FHL TIYJWOOD

YAdWNN @NODIS dNO A0 NOILVYOOT
YIGWAN LSYId ¥dN0 40 NOILVDOT

SHOVTd ONIANVT

¥IMOT D04
YIHOIH SOd
™vNod o3d
T+aNODdS DdS
T+QdLSIL VAT
aNoDds dwWd
aaLsdl va1
Z8E@S$ = ANODIS
P8€@S = QIALSIL

@ dLXd°® YIAHOIH
@ JLXL*® TYNOA
9 JLXE*® ¥YIMOT

€0 €8
€9 18
€0 28

26
o4
od
ad
av
ao

LIYLS €0 98 AY QT1€D 06

vced 99¢
€CEP OST
(44N} 44

991
PTED OST
a1€0 O%1
OT€l OET
6TED BTT
9TELB BT
€ET1€Q @01

ov
P1ED OF
P1Ed BT

asedwo)-3jqno(g ‘|- wesdold

80

Arithmetic

$0322-$0324. Then try putting different numbers into $0380
and $0381 (this is the “tested” number) and $0382, $0383 (the
number it is being tested against, the second number in our la-
bel scheme here). As you can see, you've got to keep it
straight in your mind which number is being tested, or the re-
sults won’t make much sense.

Then, when you’ve set up two double-byte numbers in
the registers (0380 to $0383), you can run this routine by
1010G, where it starts. All that will happen is that you will
land on a BRK instruction and halt further activity. Where you
land tells you the results of the comparison. If the numbers
are equal, you land at $323. If the tested number is less than
the second number, you’ll end up in location $322, and so
forth. You could test using only a BNE if all you needed to
know is whether or not the two numbers are equal. You could
leave out some of these branch tests if you're not interested in
them. Play around with this until you've understood the ideas
involved.

In a real program, you would be branching to addresses
in your ML program which do something if the numbers under
comparison are equal or one is greater or whatever. This ex-
ample sends the computer to $322, $323, or $324, where it
comes to an abrupt halt just to let you see the effects of a
double-compare subroutine. Above all, remember that you
should use BCC and BCS (not BPL or BMI) when comparing
in ML.

Some might wonder why we use CMP to test the low
bytes and then switch to SBC to test the high bytes. It’s just a
convenience. CoMPare is a subtraction of one number from
another. The only difference between CMP and SBC, really, is
that subtraction replaces the number in the accumulator with
the result. LDA #5:SBC #2 will leave 3 in the accumulator.
Using LDA #5:CMP #2 leaves the 5 in the accumulator, and
all that happens is that flags are affected. Both SBC and CMP
have an effect on the zero, negative, and carry flags. In our
double-compare we don’t care if there is a result left in the
accumulator or not. So, we can use either SBC or CMP. The
reason for starting off with CMP, however, is that we don't
have to SEC (set the carry flag) as we always need to do
before an SBC.

81

Chapter 6
The Instruction Set

The Instruction Set

There are 56 instructions (commands) available in 6502 ma-
chine language. Most versions of BASIC have about 50 com-
mands. Some BASIC instructions are rarely used by the majority
of programmers, for example, END, SGN, TAN, USR. Some,
such as LET, contribute nothing to a program and seem to
have remained in the language for nostalgic reasons. Others,
like TAN, have uses that are highly specialized. There are sur-
plus commands in computer languages just as there are sur-
plus words in English. People don’t often say culpability. They
usually just say guilt. The message gets across without using
the entire dictionary. The simple, common words can do the job.

Machine language is the same as any other language in
this respect. There are around 20 heavily used instructions.
The 36 remaining ones are used far less often. You can switch
into the Apple monitor with CALL —151 and look at part of
your computer’s ROM. To look at BASIC ROM, once in the
monitor, enter at the * prompt D36AL, and press RETURN. To
see more, just enter L, and press RETURN a few times. You
can now read the machine language routines which comprise
BASIC. You will quickly discover that the accumulator is
heavily trafficked (LDA and STA appear frequently in the dis-
assembly), but you will have to hunt to find BVC, CLV, ROR,
RTI, or SED,

ML, like BASIC, offers you many ways to accomplish the
same job. Some programming solutions, of course, are better
than others, but the main thing is to get the job done. An in-
fluence still lingers from the early days of computing when
memory space was rare and expensive. This influence—that
you should try to write programs using up as little memory as
possible—can be safely ignored. Efficient memory use will
often be at the bottom of your list of objectives when
programming ML. It could hardly matter whether you use 25
instead of 15 bytes to print a message to the screen when your
computer has space for programming which exceeds 30,000
bytes.

Rather than memorize each ML instruction individually,
we will concentrate on the workhorses. Bizarre or arcane
instructions will get only passing mention. Unless you are
planning to use ML programs to interface to strange periph-
erals or need to do complex mathematical calculations and

85

The Instruction Set

such, you will be able to write excellent machine language
programs for nearly any application with the instructions we’ll
focus on in this book.

For each instruction group, we will describe three things
before getting down to the details about programming with
them: (1) what the instructions accomplish, (2) the addressing
modes you can use with them, and (3) what they do, if any-
thing, to the flags in the status register. All of this information
is also found in Appendix A.

The Six Instruction Groups

The best way to approach the instruction set might be to break
it down into the following six categories which group the
instructions according to their functions:

. Transporters

. Arithmetic Group

. Decision-Makers

. Loop Group

. Subroutine and Jump Group
. Debuggers

N U WN =

We will deal with each group in order, pointing out
similarities to BASIC and describing the major uses for each.

As always, the best way to learn is by doing. Move bytes
around. Use each instruction, typing a BRK as the final
instruction to see the effects. If you LDA #65, look in the A
register to see what happened. Then, STA $12 and check to
see what was copied into address $12. If you send the byte in
the accumulator (STA), what is left behind in the accumulator?
Is it better to think of bytes being copied rather than being
sent?

Play with each instruction to get a feel for it. Discover the
effects, qualities, and limitations of these ML commands.

86

The Instruction Set

1. The Transporters:
LDA, LDX, LDY
STA, STX, STY

TAX, TAY
TXA, TYA

These instructions move a byte from one place in memory
to another. To be more precise, they copy whatever value is in
a source location into a target location. The source location
still contains the byte, but after a “transporter” instruction, a
copy of the byte is also in the target location. This does replace
whatever was in the target.

All of them affect the N and Z flags, except STA, STX,
and STY which do nothing to any flag.

There are a variety of addressing modes available to dif-
ferent instructions in this group. Check the chart in Appendix
A for specifics.

Remember that the computer does things one at a time.
Unlike the human brain which can carry out a thousand dif-
ferent instructions simultaneously (walk, talk, and smile, all at
once), the computer goes from one tiny job to the next. It
works through a series of instructions, raising the program
counter (PC) each time it handles an instruction.

If you do a TYA, the PC goes up by one to the next ad-
dress, and the computer looks at that next instruction. STA
$80 is a two-byte-long instruction; it’s zero page addressing,
so the PC=PC+2. STA $8600 is a three-byte-long absolute
addressing mode and PC=PC+3.

Recall that there’s nothing larger than a three-byte in-
crement of the PC. However, in each case, the PC is cranked
up the right amount to make it point to the address for the
next instruction. Things would get quickly out of control if the
PC pointed to some argument (some address) thinking it was
an instruction. It would be incorrect (and soon disastrous) if
the PC pointed to the $15 in LDA $15.

If you type CALL 15000, the program counter is loaded
with 15000 and the computer transfers control to the ML
instructions which are (we hope!) sitting at address 15000
(decimal) on up. It will then look at byte 15000 (decimal),
expecting it to be an instruction. Since the computer does all
this very fast, it can seem to be keeping score, bouncing the

87

The Instruction Set

ball, moving the paddle, and everything else—simultaneously.
It’s not, though. It’s flashing from one task to another and do-
ing it so fast that it creates the illusion of simultaneity much
the way that 24 still pictures per second look like motion in
movies.

The Programmer’s Time Warp

Movies are, of course, lots of still pictures flipping by in rapid
succession. Computer programs are composed of lots of in-
dividual instructions performed in rapid succession.

Grasping this sequential, step-by-step activity makes our
programming job easier: We can think of large programs as
single steps, coordinated into meaningful, harmonious actions.
Now the computer will put a blank over the ball at the ball’s
current address, then adjust the ball address to move it
slightly downward on the screen, then print the ball character
to the new address. The main single-step action is moving
information, as single-byte numbers, from here to there, in
memory. We are always creating, updating, modifying, mov-
ing, and destroying single-byte variables. The moving is gen-
erally done from one double-byte address to another. But it all
looks smooth to the player during a game.

Programming in ML can pull you into an eerie time warp.
You might spend several hours constructing a program which
executes in seconds. You are putting together instructions
which will later be read and acted upon by coordinated elec-
trons, moving at electron speeds. It’s as if you spent an after-
noon slowly and carefully drawing up pathways and patterns
which would later be a single bolt of lightning.

Registers

In ML there are three primary places where variables rest

briefly on their way to memory cells: the X, the Y, and the A

registers. And the A register (the accumulator) is the most fre-

quently used. X and Y are used for looping and indexing. Each

of these registers can grab a byte from anywhere in memory

or can grab the byte from the address right after its own

opcode (immediate mode addressing):

LDY $8000 (Puts the number at hex address 8000 into Y, without
destroying it at $8000)

LDY #65 (Puts the decimal number 65 into Y)

LDA and LDX work the same

88

The Instruction Set

Be sure you understand what is happening here. LDY
$1500 does not copy the byte in the Y register into address
$1500. It’s just the opposite. The number (or value, as it's
sometimes called) in $1500 is copied into the Y register.

To copy a byte from X, Y, or A, use STX, STY, or STA.
For these ““store-bytes” instructions, however, there is no im-
mediate addressing mode. No STA #$15. It would make no
sense to have STA #$15. That would be disruptive, for it
would modify the ML program itself. It would put the number 15
into the next cell beyond the STA instruction within the ML pro-
gram itself.

Another type of transporter moves bytes between reg-
isters—TAY, TAX, TYA, TXA. See the effect of writing the
following. Look at the registers after executing this:

1000 LDA #$65
1002 TAY
1003 TAX

The number $65 is placed into the accumulator, then
transferred to the Y register, then sent from the accumulator to
X. All the while, however, the A register (the accumulator) is
not being emptied. Sending bytes is not a transfer in the usual
sense of the term sending. It is more as if a photocopy were
made of the number, and then the copy was sent. The original
stays behind after the copy is sent.

LDA #$15 followed by TAY would leave the $15 in the
accumulator, sending a copy of $15 into the Y register.

Notice that you cannot directly move a byte from the X to
the Y register, or vice versa. There is no TXY or TYX.

Flags Up and Down

Another effect of moving bytes around is that it sometimes
throws a flag up or down in the status register. LDA (or LDX
or LDY) will affect the N and Z, negative and zero, flags.

We will ignore the N flag. It changes when you used
“signed numbers,” a special technique to allow for negative
numbers. For our purposes, the N flag will fly up and down
all the time, and we won’t care. We won't pay any attention to
it; we won't test to see where it is. If you're curious, signed
numbers are manipulated by allowing the seven bits on the
right to hold the number, the leftmost bit to stand for positive
or negative. We normally use a byte to hold values from 0

89

The Instruction Set

through 255. If we were working with “signed” numbers, any-
thing higher than 127 would be considered a negative num-
ber, since the leftmost bit would be “on”—and an LDA #255
would be thought of as —1.

This is another example of how the same thing (the num-
ber 255 in this case) can signify several different conditions,
depending on the context in which it is being interpreted.

The Z flag, on the other hand, is quite important; we can't
ignore this flag. It shows whether or not some action during a
program run resulted in a zero. The branching instructions and
looping depend on this flag, and we’ll deal with the important
zero-result effects below with the BNE and INX instructions,
and so on.

No flags are affected by the STA, STX, or STY instruction.

The Stack Can Take Care of Itself

There are some instructions which move bytes to and from the
stack. These are for advanced ML programmers. PHA and
PLA copy a byte from A to the stack, and vice versa. PHP and
PLP move the status register to and from the stack. TSX and
TXS move the stack pointer to or from the X register. Forget
them. Unless you know precisely what you are doing, you can
cause havoc with your program by fooling with the stack. The
main job for the stack is to hold the return addresses pushed
into it when you JSR (Jump to SubRoutine). Then, when you
come back from a subroutine (RTS), the computer pulls the
addresses off the stack to find out where to go back to.

For most ML programming, avoid stack manipulation un-
til you are an advanced programmer. If you manipulate the
stack without great care, you'll cause an RTS to the wrong re-
turn address, and the computer will travel far, far beyond your
control. If you are lucky, it sometimes lands on a BRK instruc-
tion and you fall into the monitor mode. The odds are that
you would get lucky roughly once every 256 times. Don't
count on it. Since BRK is rare in your BASIC ROM, the
chances are pretty low.

You could fill large amounts of RAM with “snow”” by
putting zeros everywhere. This greatly improves the odds that
a crash will hit a BRK. But why bother? Play it safe when
you're writing a program.

As an aside, there is another use for snow, a blanket of

90

The Instruction Set

““zero page snow.” Recall that you can safely use some loca-
tions in zero page (addresses 0-255), but that your computer
and many commercial programs compete for space in zero
page because it’s such a fast place to access. If you are plan-
ning to modify, say, a commercial word processor and need to
make sure that it’s not using a particular area of zero page for
its own purposes, fill zero page with 00 (snow), put the word
processor through its paces, and then take a look at the tracks,
the nonzeros, in the snow.

2. The Arithmetic Group:
ADC, SBC, SEC, CLC

Here are the commands which add, subtract, and set or
clear the carry flag. ADC and SBC trigger the N, Z, C, and V
(overflow) flags. CLC and SEC, needless to say, affect the C
flag, and their only addressing mode is implied.

ADC and SBC can be used in eight addressing modes: im-
mediate, absolute, zero page, (indirect,X), (indirect),Y, zero
page, X, and absolute, X and Y.

Arithmetic was covered in the previous chapter. To re-
view, before any addition, the carry flag must be cleared with
CLC. Before any subtraction, it must be set with SEC. The
decimal mode should be cleared at the start of any program
(the initialization) with CLD. You can multiply by two with
ASL and divide by two with LSR. You can divide by four with
LSR LSR or by eight with LSR LSR LSR. You could multiply a
number by eight with ASL ASL ASL. What would this do to a
number: ASL ASL ASL ASL? To multiply by numbers which
aren’t powers of two, use addition plus multiplication. To mul-
tiply by ten, for example, copy the original number temporar-
ily to a vacant byte somewhere in memory. Then ASL ASL
ASL to multiply it by eight. Multiply the original number by
two with a single ASL. Then add them together.

If you're wondering about the V flag, it is rarely used for
anything. You can forget about the branch which depends on
it, BVC, too. Only five instructions affect it, and it relates to
twos complement arithmetic which we’ve not touched on in
this book. Like decimal mode or negative numbers, you will
be able to construct your ML programs very effectively if you
remain in complete ignorance of this mode. We have largely
avoided discussion of most of the flags in the status register: B,

91

The Instruction Set

D, I, N, and V. This avoidance has also removed several branch
instructions from our consideration: BMI, BPL, BVC, and BVS.
These flags and instructions are not usually found in ML pro-
grams, and their use is confined to specialized mathematical or
interfacing applications. They will not be of use or interest to
the majority of ML programmers.

The two flags of interest to most ML programmers are the
carry flag and the zero flag. That is why, in the following sec-
tion, we will examine only the four branch instructions which
test the C and Z flags. They are likely to be the only branch-
ing instructions that you'll ever find occasion to use.

3. The Decision-Makers:
BCC, BCS, BEQ, BNE, CMP

The four “branchers” here—they all begin with a B—have
only one addressing mode. In fact, it’s an interesting mode
unique to the B instructions and created especially for them:
relative addressing. They do not address a memory location as
an absolute thing; rather, they address a location which is just
a certain distance from their position in the ML code. Put an-
other way, the argument of a B instruction is an offset which
is relative to the position of the instruction itself. You never
have to worry about relative instructions if you relocate an ML
program, if you locate the ML program in some other place in
RAM memory. The B instructions will work just as well no
matter where your ML program is moved.

That’s because their argument just says “add 5 to the
present address” or “subtract 27" or whatever argument you
give them. You do give the branchers actual addresses as you
would in absolute addressing: BEQ $3560. However, your
assembler will translate that $3560 into a different, somewhat
strange, number that is used in relative addressing. (If you are
using an advanced assembler like LADS, you will give label
names as the argument of the branchers instead of actual nu-
meric addresses.)

The branchers cannot branch further back than 127 or further
forward than 128 bytes.

None of the brancher instructions have any effect whatso-
ever on any flags; instead, they are the instructions which look
at the flags. They are the only instructions which base their
activity on the condition of the status register and its flags.
They’re why the flags exist at all.

92

The Instruction Set

CMP is an exception. Many times it is the instruction that
comes just before the branchers and sets flags for them to look
at and make decisions about. Lots of instructions—LDA is
one—will set or clear (put down) flags—but sometimes you
need to use CMP to find out what’s going on with the flags.
CMP affects the N, Z, and C flags. CMP has many addressing
modes available to it: immediate, absolute, zero page,
(indirect,X), (indirect),Y, zero page,X, and absolute, X and ,Y.

The Foundations of Computer Power

This decision-maker group and the following group (loops) are
the basis of our computers” enormous strength. The decision-
makers allow the computer to decide between two or more
possible courses of action. This decision is based on compari-
sons. If the ball hits a wall, then reverse its direction. In
BASIC, we use IF-THEN and ON-GOTO structures to make
decisions and to make appropriate responses to conditions as
they arise during a program run.

Recall that the Apple uses memory-mapped video, which
means that you can treat the screen like an area of RAM
memory. You can PEEK and POKE into it to create animation,
text, or other visual events. In ML, you PEEK by LDA
SCREEN and examine what you’ve PEEKed with CMP. You
POKE via STA SCREEN.

CMP does comparisons. It tests the value at an address
against what is in the accumulator. Less common are CPX and
CPY.

Assume that we have just added 40 to a register we set
aside to hold the current address-location of FINGER which
points to records in our database. We want to POKE in a new
record, but we need to locate a vacant record. We don’t want
to cover over a record that’s in use.

In practical terms, you might have deleted several records
within your database and, each time one is deleted, you just
stick a zero into the first byte of the record’s 40-byte space to
show that it’s empty. Thus, we can bounce along the records,
looking at the first byte of each, to find an available empty
record.

Recall that the very useful indirect Y addressing mode al-
lows us to use an address in zero page as a pointer to another
address in memory. The number in the Y register is added to
whatever address sits in $D6,$D7; so we don’t LDA from $D6

93

The Instruction Set

or $D7, but rather from the address that they contain, plus Y’s
value.

To see what's in the first byte of a record, we can do the
following:

LDY #$0 (We want to fetch from the first byte, so we don't
want to add anything to it. Y is set to zero.)

LDA ($D6),Y (Fetch whatever is sitting there. To review indirect,Y
addressing once more, say that the address we are
fetching from here is $1077. Address $D6 would hold
the least significant byte, LSB [$77], and address $D7
would hold the MSB [$10]. Notice that the argument
of an indirect,Y instruction only mentions the lower
address of the two-byte pointer, the $D6. The com-
puter knows that it has to combine $D6 and $D7 to
get the full address—and it does this automatically.)

At this point, there might be a $CD (Apple ASCII for the
letter M) or some other number which we would know in-
dicated that this record was not deleted. Now that this
questionable number sits in the accumulator, we will CMP it
against a $0 which signals a deleted record. We could compare
it with other numbers, too, numbers which we—in setting up
the database—had decided would mean “old record” or
“duplicated record” or some other housekeeping information
which would help us in managing the data. It doesn’t matter.
The main thing is to compare it and find out the condition of
this particular record:

2000 CMP #$0 (Is it a zero?)

2002 BNE $200A (Branch if Not Equal [if not zero] to address
$200A, which contains the first of a series of
comparisons to see if it's an “old”” or “duplicated”
record, or the like. On the other hand, if the
comparison worked, if it was a zero, so we didn’t
Branch Not Equal, then the next thing that hap-
pens is the instruction in address $2004. We “fall
through” the BNE to an instruction which jumps
to the subroutine, JSR, which moves the new
record into the vacant record space, thus jumping
past the series of comparisons for old, duplicated,
and so forth.)

2004 JSR $3000 (Insert new record subroutine.)

2007 JMP $2020 (Jump over the rest of the comparisons.)

200A CMP #$1 (Is it an old record?)

200C BNE $2014 (If not, continue to next comparison.)

94

The Instruction Set

200E JSR $3050 (Perform the ““old records” subroutine and...

2011 JMP $2020 jump over the rest, as before in $2007.)

2014 CMP #$2 (Is it a duplicated record?...and so forth with as
many comparisons as needed.)

This structure is to ML what ON-GOTO or ON-GOSUB is
to BASIC. It allows you to take multiple actions based on a
single LDA. Doing the CMP only once would be like IF-
THEN.

Other Branching Instructions

In addition to the BNE we just looked at, there are BCC, BCS,
BEQ, BMI, BPL, BVC, and BVS. Learn BCC, BCS, BEQ, and
BNE and you can safely ignore the others.

All of them are branching, if-then, instructions. They
work in the same way that BNE does. You would write BEQ
followed by the address you want to go to. If the result of the
comparison is “yes, equal-to-zero is true,” then the ML pro-
gram will jump (branch) to the address which is the argument
of the BEQ instruction. “True” here means that something
EQuals zero. One example that would send up the Z flag
(thereby triggering a branch with BEQ) is LDA #$00. The ac-
tion of loading a zero into the accumulator sets the Z flag up.

You are allowed to branch either forward or backward
from the address that holds the B instruction. However, you
cannot branch any further than 128 bytes in either direction. If
you want to go further, you must JMP (JuMP) or JSR (Jump to
SubRoutine). For all practical purposes, you will usually be
branching to instructions located within 30 bytes of your B
instruction in either direction. You will be taking care of most
things right near where the CoMPare, or other flag-flipping
event, takes place.

If you need to use an elaborate, big subroutine which can-
not reside within 128 bytes of a branch, simply JSR to it at the
target address of your branch:

2000 LDA $65

2002 CMP $85 (Is what was in address 65 equal to what was in
address 85?)

2004 BNE $2009 (If Not Equal, branch over the next three bytes
which perform some elaborate job.)

2006 JSR $4000 (At $4000 sits the elaborate subroutine to take care
of cases where addresses $65 and $85 turn out to
be equal.)

2009 (Continue with the program here.)

95

The Instruction Set

If you are branching backward, you've already written
that part of your program, so you know the address to type in
after a BNE or one of the other branches. But, if you are
branching forward, to an address in part of the program not
yet written—how do you know what to give as the address to
branch to? In sophisticated, two-pass assemblers like LADS,
you can just use a word like BRANCHTARGET, and the
assembler will pass twice through your program when it
assembles it. The first pass simply notes that your BNE is sup-
posed to branch to BRANCHTARGET, but it doesn’t yet know
where that is.

When it finally finds the actual address of BRANCH-
TARGET, it makes a note of the correct address in a special la-
bel table. Then, it makes a second pass through the program
and fills in (as the next byte after your BNE or whatever) the
correct address of BRANCHTARGET.

All of this is automatic, and the labels make the program
you write (called the source code) look almost like English. In
fact, LADS includes so many special features that it gets close
to higher-level languages, like BASIC:

2000 TESTBYTE = $80 (These initial definitions of labels
2002 NEWBYTE = $99 are sometimes called equates.)
2004 LDA TESTBYTE
2006 CMP NEWBYTE
2008 BNE BRANCHTARGET
200A JSR SUBROUTINE

BRANCHTARGET 200D ..etc.

Instead of using lots of numbers (as you do when using
the built-in mini-assembler in the monitor) for the target/
argument of each instruction, LADS allows you to define
(equate) the meanings of words like testbyte and then use the
word instead of the number. And LADS does simplify the
problem of forward branching since you just give (as above)
address $200D a name, BRANCHTARGET, and the word at
address $2009 is later replaced with $200D when the assem-
bler does its passes.

Program 6-1 shows how the example above looks as
source code to be fed into a deluxe, two-pass assembler like
LADS.

Actually, we should point out in passing that a $200D
will not be the number which finally appears at address $2009
to replace BRANCHTARGET. (Take a look at Program 6-1.)

96

The Instruction Set

€€ VYJdT INILNOYENS

*oLd “oLd @sT

1Z SY 9192 ov1

*d3dS NOX SY @TT

‘NOTODIWIS ¥V HLIM FIMIHMANY MONLS I NVD ANV SAV¥T A9 QT1

QIYONDI dd TTIIM SINIWWOD ‘0OSTV

STIEVT XIW ATIddd NVO NOX PeHS VAT LIADIVILHONVYE
ONISSIYAAY dLNTOSHY INILNOYENS d¥SC
ONISSIYAAVY FAILYTIAA LIDIVILHONVEE IANL

ONISSIIAAV dOVd OddZ ALAIMIN dWO
ONISSTIAAY JLVIAIWWI ALAELSIL VYAT LYVLS

665 = TLAEMIN
98% = JLAHLSHL

*SANILNOYENS ANY 29T

v9 0@ AV dPeZ 96
@Z 91 OZ VPP @8
€0 9d 800C AL
66 SO 998C 09
98 SY v90Z @S

vo0C o¢
veeT @t

1-9 weidold

97

The Instruction Set

As we mentioned, all branches are relative, an offset from the
address of the branch. The number which will finally replace
BRANCHTARGET at $2009 is, as you can see, a three. This is
similar to the way that the value of the Y register is added to
an address in zero page during indirect Y addressing: The
number given as an argument of a branch instruction is added
to the address of the next instruction. So, $2008 + $3 =
$200B. If this seems confusing, forget about it. LADS, or even
the mini-assembler in the monitor, will take care of all this for
you. All you need to do is give $200D as the argument to the
mini-assembler, or a label name to LADS, and they will com-
pute the three for you.

Forward Branch Solutions

There is one responsibility that you do have, though, if you
are using the mini-assembler. When you are writing 2008 BNE
$200D, how do you know to write in $200D? You can’t yet
know to exactly which address up ahead you want to branch.
There are two ways to deal with this. Perhaps easiest is just to
put in BNE $2008 (have it branch to itself). This will result in
an $FE being temporarily left as the target of your BNE. Then,
you can make a note on paper to later change the byte at
$2009 to point to the correct address, $200B. You've got to
remember to “resolve” that $FE, to POKE in the correct offset
to the target address, or you will leave a little bomb in your
program—an endless loop.

The other, even simpler, way to deal with forward branch
addresses will come after you are familiar with which instruc-
tions use one, two, or three bytes. The BNE-JSR-TARGET
construction is common and will always be three above the
current address, an offset of three. If your branch instruction is
at $2008, you just count off three: $200A,B,C and write BNE
200D.

Other, more complex branches such as ON-GOTO con-
structions will also become easy to count off when you're
familiar with the instruction byte-lengths. In any case, it's
simple enough to make a note of any unsolved branches and
correct them before running the program.

Of course, LADS is the easiest assembler to use for for-
ward branching: It allows you to branch to any address by just
giving the label name of that address.

98

The Instruction Set

Recall our previous warning about not using the infamous
BPL and BMI instructions? BPL (Branch on PLus) and BMI
(Branch on MlInus) sound good, but should be avoided. To test
for less-than or more-than situations, use BCC and BCS
respectively. (Recall that BCC is alphabetically less-than BCS—
an easy way to remember which to use.) The reasons for this
are exotic. We don’t need to go into them. Just be warned that
BPL and BMI which sound so logical and useful are not. They
can fail you and neither one lives up to its name. Stick with
the always trustworthy BCC, BCS.

Also remember that BNE and the other three main B
group branching instructions often don’t need to have a CMP
come in front of them to affect a flag that can be tested by a
following B instruction. Many actions of many opcodes will
automatically affect flags. For example, LDA $80 will affect
the Z flag so you can tell (using BNE or BEQ) if the number in
address $80 was or wasn’t zero. LDA $80 followed by BNE
would branch away if there were anything besides a zero in
address $80. If in doubt about which flags are affected by
which instructions, check in Appendix A. You'll soon get to
know the common ones. If you are really in doubt, go ahead
and stick in a CMP. It can’t do any harm.

4. The Loop Group:
DEY, DEX, INY, INX, INC, DEC

INY and INX raise the Y and X register values by one each
time they are used. If Y is a 17 and you INY, Y becomes an
18. Likewise, DEY and DEX decrease the values in these reg-
isters by one. There is no such increment or decrement
instruction for the accumulator.

Similarly, INC and DEC will raise or lower a memory ad-
dress by one. You can give arguments to these instructions in
four addressing modes: absolute, zero page, zero page,X, and
absolute, X. These instructions affect the N and Z flags.

The Loop Group are usually used to set up FOR-NEXT
structures. The X register is used most often as a counter to
allow a certain number of events to take place. In the structure
FOR I = 1 TO 10:NEXT I, the value of the variable I goes up
by one each time the loop cycles around. The same effect is
created by:

99

The Instruction Set

2000 LDX #$0A (Decimal 10)

2002 DEX (“DEcrement” or “DEcrease X"’ by one)
2003 BNE $2002 (Branch if Not Equal [to zero] back up to address
$2002)

Notice that DEX is tested by BNE (which sees if the Z
flag, the zero flag, is up). DEX sets the Z flag up when X fi-
nally gets down to zero after ten cycles of this loop. The only
other flag affected by this loop group is the N (negative) flag
for signed arithmetic.

Why didn’t we use INX, INcrease X by one? This would
parallel exactly the FOR I = 1 TO 10, but it would be clumsy
since our starting count which is #10 above would have to be
#245. This is because X will not become a zero going up until
it hits 255. So, for clarity and simplicity, it is customary to set
the count of X and then DEX it downward to zero. The follow-
ing program will accomplish the same thing as the one above,
and allow us to INX, but it too is somewhat clumsy:

2000 LDX #$0
2002 INX

2003 CPX #$0A
2005 BNE $2002

Here, we had to use zero to start the loop because, right
off the bat, the number in X is INXed to one by the instruction
at $2002. In any case, it is a good idea simply to memorize the
simple loop structure in the first example. It is easy and ob-
vious and works very well.

Big Loops

How would you create a loop which has to be larger than 256
cycles? When we wanted to add large numbers, numbers too
big to be held in a single byte, we simply used two-byte units
instead of single-byte units to hold our information. Likewise,
to do large loops, you can count down using two bytes, rather
than one. In fact, this is quite similar to the idea of nested
loops (loops within loops) in BASIC.

2000 LDX #$0A (Start of first loop)

2002 LDY #$0 (Start of second loop)

2004 DEY

2005 BNE $2004 (If Y isn’t yet zero, loop back to DEcrease Y
again—this is the inner loop.)

2007 DEX (Reduce the outer loop by one.)

100

The Instruction Set

2008 BNE $2002 (If X isn't yet zero, go through the entire DEY loop
again.
200A (éonti)nue with the rest of the program....)

One thing to watch out for: Be sure that a loop BNE's
back up to one address after the start of its loop. The start of
the loop sets a number into a register and, if you keep looping
up to it, you'll always be putting the same number into it. The
DEcrement (decrease by one) instruction would then never
bring it down to zero to end the looping. You'll have created
an endless loop.

The example above could be used for a timing loop in a
similar way to the method that BASIC creates delays with
FOR T = 1 TO 2000: NEXT T. Also, sometimes you do want
to create a pseudo endless loop (the BEGIN-UNTIL in struc-
tured programming). A useful pseudo endless loop in BASIC
waits until the user hits any key: 10 GET K$: IF K$ = "~
THEN 10.

The simplest way to accomplish this in ML is to look on
the map of your computer to find which byte holds the last
keypressed number. On the Apple I, it's 49152. In any event,
when a key is pressed, it deposits its special numeric value
into this cell. If no key is pressed, the leftmost bit in this cell
remains off:

2000 LDA $C010; THIS SETS THE LEFTMOST BIT IN $C000
(49152) TO 0

2003 LOOP LDA $C000

2006 BPL LOOP; IF THE LEFTMOST BIT IS OFF, KEEP
LOOPING

If the BPL is triggered, this means that the LDA found the
leftmost bit off in address $C000 (49152) and, thus, no key
has been pressed. So, we keep looping until the value in ad-
dress $C000 has the leftmost bit on. This setup is the same as
GET in BASIC, because not only does it wait until a key is
pressed, but it also leaves the value of the key in the accu-
mulator when it’s finished.

The BPL instruction is triggered when the LDA loads in
the byte from address $C000, if the value loaded in has a zero
in the leftmost bit. Thus, 01111111 would cause a branch back
to the loop to keep looking for a legitimate keypress;
10000000 would “fall through” the BPL test because BPL is
not triggered when the leftmost bit is on—regardless of the

101

The Instruction Set

condition of the rest of the bits in the byte. The leftmost bit is
on, in effect, if the number in address $C000 is higher than
127. Although it’s best to avoid BMI and BPL when dealing
with quantities like less-than or greater-than, here is one of
the legitimate uses of these instructions.

Dealing with Strings
You've probably been wondering how ML handles strings.

It's pretty straightforward. There are essentially two ways:
known-length and zero-delimit. If you know how many
characters there are in a message, you can store this number at
the very start of the text: 5SERROR. (The number 5 will fit into
one byte.) If this little message is stored in your “message
zone”’—some arbitrary area of free memory set aside by you
at the beginning to hold all of your messages—you would
make a note of the particular address of the “ERROR" mes-
sage. Say it’s stored at address $0FE6 (4070).

To print out the message, you pluck off the length and
then repeatedly JSR to $FDED, the Apple character output
routine in ROM.

Alternatively, you could simply set up your own zero
page pointers to the screen and use the STA (NN),Y address-
ing mode.

For Apple II, the screen memory starts at $0400 (1024).
You can set up a “cursor management” system for yourself.
To simplify, we’ll send our message to the beginning of Apple’s
screen and just use the simple absolute,Y addressing mode:

2000 LDX $0FE6 (Remember, we put the length of the message as
the first byte of the message, so we load our
counter with the length.)

2003 LDY #8$0 (Y will be our message offset.)

2005 LDA $0FE7,Y (Gets the character at the address plus Y. Y is
zero the first time through the loop, so the “e”
from here lands in the accumulator. It also stays
in $0FE7 [4071]. It's just being copied into the
accumulator.)

2008 STA $0400,Y (We can make Y do double duty as the message
and the screen-printout offset. Y is still zero, so
the “e” goes to $0400 the first time through the

loop.)

200B INY (Prepare to add one to the message-storage loca-
tion and to the screen-print location.)

200C DEX (Lower the counter.)

102

The Instruction Set

200D BNE $2005 (If X isn’t used up yet, go back and get-and-
print the next character, the “r.”)

If the Length Is Not Known

Yet another way to print to the screen—probably the most
common and the easiest, and doesn’t require that you know
the length of the string. You just put a special character
(usually zero) at the end of each message to show its limit.
This is called a delimiter. A zero works well because, in ASCII,
the value 0 has no character or function (such as a carriage re-
turn) coded to it. Consequently, any time the computer loads a
zero into the accumulator (which will flip up the Z flag), it
will then know that it is at the end of your message. At
$0FE6, we might have a couple of error messages: ““Ball out of
range0Time nearly up!0”. (These zeros are not ASCII zeros,
remember. ASCII zero, the zero character that can be printed,
has a value of 176.)

To print the time warning message to the top of the Apple
screen:

2000 LDY #8$0

2002 LDA $0FF8,Y (Get the “T.”)

2005 BEQ $2005 (The LDA just above will flip the zero flag up if
it loads a zero, so we forward branch out of our
message-printing loop.)

2007 STA $0400,Y (We're using the Y as a double-duty offset again.)

200A INY

200B JMP $2002 (In this loop, we always jump back. Our exit
from the loop is not here, at the end. Rather, it
is the Branch if EQual which is within the loop.
This is similar to the BEGIN-UNTIL structure in
structured programming.)

200E (Continue with another part of the program.)

Now that we know the address which follows the loop
($2014), we can store that address into the “false forward
branch” we left in address $2006. What number do we store
into $2006? Just subtract $2007 from $200E which is 7.

Of these two ways of handling strings, the zero-delimit
method is the most popular and probably the easiest to use.
It's even easier if you use LADS. With LADS, you don’t need
to remember the address of the stored string, you just give
each string a label. Also, you don’t need to translate the mes-
sage into ASCII, just use the .BYTE pseudo-op in LADS.

103

The Instruction Set

Here’s how you would write the source code for LADS using
the zero-delimit technique example above:

100 SCREEN = 1024 (This variable is defined at the start of the
program, not in with the body of the ML. The
numbers on the left are not addresses. They
are line numbers that you use when writing
the source code. The assembler handles mem-
ory addresses for you.)

500 LDY #0

510 MESSAGE LDA TIMEOUT,Y (Get the “T.”)

520 BEQ MORE

530 STA SCREEN,Y

540 INY

550 JMP MESSAGE

560 MORE (Continue with another part of the program.)

1000 TIMEOUT .BYTE “TIME NEARLY UP!”: .BYTE 0
(Message stored with a true zero at the end. This is
stored at the very end of the ML program, not in with
the instructions themselves.)

The .BYTE pseudo-op in LADS is designed to work with
true ASCII. This means that your messages would be under-
stood by other computers, over modems, by printers, and so
forth. However, the Apple’s internal version of the ASCII code
(which prints messages to the screen) differs from true ASCII.
True ASCII characters appear in reverse field on the Apple
screen. For more information, see the discussion of the .BYTE
and #” pseudo-ops in Appendix B.

All the ways of handling messages discussed above are
effective, but you must keep a list on paper of the starting ad-
dresses of each message if you are using the monitor assem-
bler so that you can remember from where to pick off the
letters of the message. In ML, you have the responsibility for
some of the tasks that BASIC (at an expense of speed) does for
you. If you're using a more advanced assembler like LADS,
however, you can simply define the location of the message
with a label.

104

The Instruction Set

Also, when using these techniques, no message can be
larger than 255 characters because the offset and counter reg-
isters (X and Y) can count only that high before starting over
at zero again. To print two strings back-to-back gives a longer,
but still less than 255-byte-long, message:

2000 LDY #8$0

2002 LDX #$2 (In this example, we use X as a counter which
represents the number of messages we are
printing.)

2004 LDA $4000,Y (Get the “B” from “Ball out of....”")

2007 BEQ $2011 (Go to increment Y, reduce [and check] the

value of X.)

2009 STA $1024,Y (We're using the Y as a double-duty offset
again.)

200D INY

200E JMP $2004

2011 INY (We need to raise Y since we skipped that step
when we branched out of the loop.)

2012 DEX (At the end of the first message, X will be a one;
at the end of the second message, it will be
zero.)

2013 BNE $2004 (If X isn't down to zero yet, reenter the loop to
print out the second message.)

This example, too, could not deliver a message longer
than 255 characters. To fill your screen with instructions in-
stantly (say, at the start of a game), you can use the following
mass-move. We'll assume that the instructions go from $5000
to $6024 in memory and you want to transfer them to the
screen (at $0400):

2000 LDY #$0

2002 LDA $5000,Y

2005 STA $0400,Y

2008 LDA $5100,Y

200B STA $0500,Y

200E LDA $5200,Y

2011 STA $0600,Y

2014 LDA $5300,Y

2017 STA $0700,Y

201A INY

201B BNE $2002 (If Y hasn’t counted up to 0—which comes just
above 255—go back and load-store the next
character in each quarter of the large message.)

105

The Instruction Set

This technique is fast and easy anytime you want to
mass-move one area of memory to another. It makes a copy
and does not disturb the original memory. To mass-clear a
memory zone (to clear the screen, for example), you can use a
similar loop, but instead of loading the accumulator each time
with a different character, you load it at the start with $A0
(160 decimal), the Apple ASCII code for the character that the
Apple uses to print a space:

2000 LDA #$A0
2002 LDY #$0
2004 STA $0400,Y
2007 STA $0500,Y
200A STA $0600,Y
200D STA $0700,Y
2011 INY

2012 BNE $2004

Of course, you could simply JSR to the routine which al-
ready exists in BASIC to clear the screen (JSR $FC58 or [SR
64600). In Chapter 7 we will explore the techniques of using
BASIC as examples to learn from and also as a collection of
ready-made ML subroutines. Now, though, we can look at
how subroutines are handled in ML.

5. The Subroutine and Jump Group:
JMP, JSR, RTS

JMP has only one useful addressing mode: absolute. You
give it a firm, two-byte argument and it goes there. The com-
puter puts the argument into the program counter, and control
is transferred to this new address where an instruction located
there is acted upon. (There is a second addressing mode, JMP
indirect which has a bug and is best left unused.)

JSR can use only absolute addressing.

RTS’s addressing mode is implied. The address is on the
stack, put there during the JSR.

JSR (Jump to SubRoutine) is the same as GOSUB in
BASIC, but instead of giving a line number, you give an ad-
dress in memory where the subroutine sits (or, with LADS,
you give a label name). BASIC’s CALL is a kind of JSR, too. It
acts like GOSUB except the destination is an ML routine
rather than a BASIC subroutine.

RTS (ReTurn from Subroutine) is the same as RETURN in

106

The Instruction Set

BASIC, but instead of returning to the next BASIC command,
you return to the address following the JSR instruction (it's a
three-byte-long instruction containing JSR and the two-byte
target address). JMP (JuMP) is GOTO. Again, you JMP to an
address or label name, not a line number. As in BASIC, there
is no RETURN from a JMP.

Some Further Cautions About the Stack

The stack is like a pile of coins. The last one you put on top of
the pile is the first one you'll pull off later. The main reason
that the 6502 chip sets aside an entire page of memory for the
stack is that it has to know where to go back to after GOSUBs
and JSRs.

A JSR instruction “pushes” the address held in the pro-
gram counter plus two onto the stack and, later, the next RTS
“pulls” the top two numbers off the stack, increments the re-
sult, and uses this number as its argument (target address) for
the return. Some programmers, as we noted before, like to
play with the stack and use it as a temporary register to PHA
(PusH Accumulator onto stack). This sort of thing is best
avoided until you are an advanced ML programmer. Stack
manipulations often result in a very confusing program. Han-
dling the stack is one of the few things that the computer does
for you in ML. Let it.

The main function of the stack (as far as we're concerned)
is to hold return addresses. It's done automatically for us by
“pushes” with the JSR and, later, “pulls” (sometimes called
pops) with the RTS instruction. If we don’t bother the stack, it
will serve us well. There are thousands upon thousands of
cells where you could temporarily leave the accumulator—or
any other value—without fouling up the orderly arrangement
of your return addresses.

Subroutines are extremely important to ML programming.

ML programs are designed around them, as we’ll see.
There are times when you'll be several subroutines deep (one
will call another which calls another); this is not as confusing
as it sounds. Your main Player-input routine might call a
Print-message subroutine which itself calls a Wait-until-key-is-
pressed subroutine. If any of these routines PHA (PusH the
Accumulator onto the stack), they then disturb the addresses
on the stack. If the extra number on top of the stack isn't
PLAed off (PulL Accumulator), the next RTS will pull off the

107

The Instruction Set

number that was PHAed along with half the correct address. It
will then merrily return to what it thinks is the correct ad-
dress: It might land somewhere in the RAM, it might go to an
address somewhere in the outer reaches of your operating sys-
tem—but it certainly won’t go where it should.

Some programmers like to change a GOSUB into a GOTO
(in the middle of the action of a program) by PLA PLA. Pull-
ing the two top stack values off with PLA PLA has the effect
of eliminating the most recently stored RTS address. It does
leave a clean stack, but why bother to JSR in the first place if
you later want to change it to a GOTO? Why not use JMP in
the first place. (There is some use for this technique, but it’s
for advanced ML programming where you want to speed up a
program by returning directly to some routine elsewhere in
the calling subprogram. LADS uses this method in places.)

There are cases, too, when the stack has been used to
hold the current condition of the flags (the status register
byte).

i This is pushed/pulled from the stack with PHP and PLP.
You probably never will, but if you should need to “remem-
ber” the condition of the status flags, why not just PHP PLA
STA $NN (NN means the address is your choice)? Set aside a
byte somewhere that can hold the flags (they are always
changing inside the status register during a program run) for
later and keep the stack clean. Leave stack acrobatics to Forth
programmers. The stack, except for advanced ML, should be
inviolate.

Forth, an interesting language, requires frequent stack
manipulations. But in the Forth environment, the reasons for
this and its protocol make excellent sense. In ML, though,
stack manipulations are a sticky business.

Saving the Current Environment
There are two exceptions to our leave-the-stack-alone rule.
Sometimes (especially when you are “borrowing” a routine
from BASIC by JSRing into the ROM) you will want to take
up with your own program from where it left off. That is, you
might not want to write a “clear the screen” subroutine be-
cause you find the address of such a routine on your map (in
your computer’s Reference Guide) of BASIC. (The HOME sub-
routine is located at address $FC58, 64600 decimal.)
However, when you JSR into one of these ready-made

108

The Instruction Set

subroutines, you don’t know what sorts of things the sub-
routine will do to your accumulator or X and Y registers. In
other words, you just want to clear the screen, but you might
well need to retain the status of the registers because your
program is going to need them. You sometimes cannot afford
to have unpredictable things happen to your X, Y, A, and sta-
tus registers. If you know you don’t need to preserve the state
of the accumulator or the X or Y registers, then JSR blithely
away. The JSR into ROM will probably change the registers,
but you don’t care.

However, sometimes you are using, let’s say, Y to hold
the offset of a line of information or a screen line. You can’t
allow it to suffer from some unknown event in the ROM sub-
routine. In such cases, you can use the following ““save the
state of things” routine:

2000 PHP (Push the status register onto the stack.)

2001 PHA

2002 TXA

2003 PHA .

2004 TYA

2005 PHA

2006 JSR $FC58 (To the clear-the-screen routine in BASIC. When
the BASIC routine is finished, it will end with an
RTS. This RTS will remove the return address
($2009), and you'll have a mirror image of the
things you had pushed onto the stack. They are
pulled out in reverse order, as you can see below.
This is because the first pull from the stack will
get the most recently pushed number. If you make a
little stack of coins, the first one you pull off will
be the last one you put onto the stack.)

2009 PLA (Now we reverse the order to get them back.)
200A TAY

200B PLA

200C TAX

200D PLA (This one stays in A.)

200E PLP (The status register)

This little routine will enter your JSR while preserving
everything as it was before you JSRed. Use it when you're un-
sure. Nearly every ROM routine mentioned in this book will
mess with one or more of the registers. The only truly safe
one is JSR $FDED, the output-a-character routine. You can use
this one with impunity.

109

The Instruction Set

Saving the current state of things before visiting an un-
charted, unpredictable subroutine is probably the only valid
excuse for playing with the stack as a beginner in ML. The
routine above is constructed to leave the stack intact. Every-
thing that was pushed on has been pulled back off.

If you dare, you can also use the stack as a temporary
storage place when you need to save something briefly. You
could save the accumulator (while JSRing to the HOME rou-
tine in BASIC) by PHA:JSR $FC58:PLA. That would temporar-
ily push the accumulator onto the stack, hold it there beneath
the two-byte return address pushed onto the stack by the JSR,
and then pull it off again after the RTS had fetched the return
address (leaving your accumulator on top of the stack). This
pushing is sometimes considered a dangerous practice be-
cause, if you forget to match every push with a subsequent
pull, the stack will overflow and you might not realize why.
Use this trick at your own risk. For simple register saves, it’'s
pretty easy to define register “holding bytes”” using LADS and
then stuff things there whenever you need temporary storage:

10 HOME = $FC58
100 STY Y:STA A:JSR HOME:LDA A:LDY Y

While, somewhere after the end of your program proper,
down with the messages and other things that are data, not
program, you have:

5000 A .BYTE 0
5010 Y .BYTE 0
5020 X .BYTE 0

A third alternative is to use the built-in “save registers”
and “restore registers’” routines in ROM:

10 SAVER = $FF4A
20 RESTORE = $FF3F

which would be used thus:

30 HOME = $FC58
100 JSR SAVER:JSR HOME:JSR RESTORE

The Significance of Subroutines

Possibly the best way to approach ML program writing—es-
pecially a large program—is to think of it as a collection of
subroutines. Each of these subroutines should be small. It
should be listed on a piece of paper followed by a note on

110

The Instruction Set

what it needs as input and what it gives back as parameters.
““Parameter passing” simply means that a subroutine needs to
know things from the main program (parameters) which are
handed to it (passed) in some way. Alternatively, if you are
using LADS, you can insert parameter information into the
body of the source code of the program using the ;" remark
pseudo-op.

The current position of the record in a database is a
parameter which has its own “register’” (we would have set
aside a register for it at the start when we were assigning
memory space either on paper for simple assemblers or by
using the equate pseudo-op for LADS). So, the “look at the
next record in the database” subroutine is a double-adder
which adds 40 or whatever to the “current position register.”
This value always sits in the register to be used anytime any
subroutine needs this information. In other words, the register
(we called it FINGER in a previous example) is always point-
ing to our current position within the database. This is why
such registers are called pointers.

The “look at the next register” subroutine sends the cur-
rent-position parameter by passing it to the current-position
register.

This is one example of a way that parameters are passed.
Another example might be when you are telling a delay loop
how long to delay. Ideally, your delay subroutine will be
multipurpose. That is, it can delay for anywhere from 1/2 sec-
ond to 60 seconds or something. This means that the sub-
routine itself isn’t locked into a particular length of delay.

The main program will “pass”” the amount of delay to the
subroutine.

3000 LDY #$0
3002 INY

3003 BNE $3002
3005 DEX

3006 BNE $3000
3008 RTS

Notice that X never is initialized (set up) here with any
particular value. This is because the value of X is passed to
this subroutine from the main program. If you want a short
delay, you would:

2000 LDX #$5
2002 JSR $3000

111

The Instruction Set

And for a delay which is twice as long as that:

2000 LDX #$0A (10 decimal)
2002 JSR $3000

In some ways, the less a subroutine does, the better. If it’s
not entirely self-sufficient, and the shorter and simpler it is,
the more versatile it will be. For example, our delay above
could function to time responses, to hold sounds for specific
durations, and so on. When you make remarks about a gen-
eral-purpose routine, write something like this: 3000 ; DELAY
LOOP (expects duration in X; returns zero in X).

The longest duration delay would be set up with LDX #0.
This is because the first thing that happens to X in the delay
subroutine is DEX. If you DEX a zero, you get 255. If you
need longer delays than the maximum value of X, simply:
2000 LDX #$0
2002 JSR $3000
2005 JSR $3000 (Notice that we don’t need to set X to zero this

second time. It returns from the subroutine with a
zeroed X.)

You could even make a loop out of the JSRs above for ex-
tremely long delays. The point to notice here is that it helps to
document each subroutine in your library: what parameters it
expects; what registers, flags, and so on, it changes; and what
it leaves behind as a result. This documentation—on a single
sheet of paper or within LADS source—helps you remember
each routine’s address and lets you know what effects and
preconditions are involved.

JMP

Like BASIC’s GOTO, JMP is easy to understand. It goes to an

address: JMP $5000 leaps from wherever it is to start carrying
out the instructions which start at $5000. It doesn’t affect any

flags. It doesn’t do anything to the stack. It’s clean and simple.
Yet some advocates of structured programming suggest avoid-

ing JMP (and GOTO). Their reasoning is that JMP is a shortcut
and a poor programming habit.

For one thing, they argue, using GOTO makes programs
confusing. If you drew lines to show a program’s “flow” (the
order in which instructions are carried out), a program with
lots of GOTOs would look like boiled spaghetti. Many pro-
grammers feel, however, that JMP has its uses. Clearly, you

112

The Instruction Set

should not overdo it and lean heavily on JMP. In fact, you
might see if there isn’t a better way to accomplish something
if you find yourself using it all the time and your programs are
becoming impossibly awkward. But JMP is convenient, often
necessary, in ML.

A 6502 Chip Bug

On the other hand, there is another, rather peculiar JMP
addressing mode which is hardly, if ever, used in ML: JMP
($5000). This is an indirect jump which works like the indirect
addressing we’ve seen before. Remember that with the
indirect,Y addressing mode, LDA ($81),Y, the number in Y is
added to the address found in $81 and $82. This address is the
real place we are LDAing from, sometimes called the effective
address. If $81 holds a 00, $82 holds a $40, and Y holds a 2,
the address we LDA from is going to be $4002. Similarly (but
without adding Y), the effective address found at the two
bytes within the parentheses becomes the place we JMP to in
JMP ($5000).

There are no necessary uses for this instruction. Best
avoid it the same way you avoid playing around with the
stack until you're an ML expert. If you find it in your comput-
er's BASIC code, it will probably be involved in an “indirect
jump table,”” a series of registers which are dynamic. That is,
they can be changed as the program progresses. Such a tech-
nique is very close to a self-altering program and would have
few applications in ML. But worse than than, there is a bug in
the 6502 chip itself which causes the indirect JMP instruction
to malfunction under certain circumstances. Just put JMP
(3NNNN) into the same category as BPL and BMI. Avoid them.

If you decide that for some reason you must use indirect
JMP, be sure to avoid the edge of pages, such as J]MP
(3NNFE). (The NN means “any number.”’) Whenever the low
byte is right on the edge of a page ($FF is on the edge, it’s
ready to reset to $00), an indirect J]MP will correctly use the
low byte (LSB) from the pointer at $NNFF, but it will not pick
up the high byte (MSB) from $NNFF+1 as it should. Instead,
it gets the high byte from $NNOO!

Here’s how this error would work if you had set up a
pointer to address $5043 with the pointer located at $40FF:

$40FF 43
$4100 50

113

The Instruction Set

Your intention would be to JMP to $5043 by bouncing off
this pointer. You would write JMP ($40FF) and expect that the
next instruction the computer would follow would be the
instruction located at $5043. Unfortunately, your pointer
would malfunction in this example. You would land at $0043
(if address $4000 held a zero). The indirect JMP would get its
MSB from $4000.

This bug does not apply to any other addressing modes,
just JMP (indirect). So, unless you want to take a chance with
an addressing mode that’s strictly for advanced programmers,
contains a bug, and has no compelling uses, avoid JMP
(indirect).

6. Debuggers:
BRK and NOP

BRK and NOP have no arguments and are therefore
members of that class of instructions which use only the im-
plied addressing mode. They also affect no flags in any way
with which we would be concerned. BRK does affect the I and
B flags, but since it is a rare situation which would require
testing those flags, we can ignore this flag activity altogether.

After you've assembled your program and it doesn’t work
as expected (few do), you start debugging. Some studies have
shown that debugging takes up more than 50 percent of
programming time. Such surveys can be misleading, however,
because “‘making improvements and adding options” fre-
quently take place after the program is allegedly finished, and
would be thereby categorized as part of the debugging process.

Another factor is that these surveys reflect the sometimes
inefficient programming styles adopted by professional or aca-
demic programming teams. Some assemblers and compilers
used by professionals are extraordinarily cumbersome, requir-
ing heroic efforts with linkers, maps, variable definition, and
so forth, before a piece of program can be tested. LADS, by
contrast, is virtually instantaneous. It will make the process of
debugging very efficient.

In ML, debugging is facilitated by setting breakpoints with
BRK and then seeing what’s happening in the registers or
memory. If you insert a BRK, it has the effect of halting the
program and throwing you into the monitor where you can
examine, say, the Y register to see if it contains what you

114

The Instruction Set

would expect it to at this point in the program. It’s similar to
BASIC’s STOP instruction:
2000 LDA #$15

2002 TAY
2003 BRK

At this point, you could use the monitor to examine any
areas of memory just as you would examine variables after
having your BASIC program STOP.

Debugging Methods

In practice, you debug whenever your program runs merrily
along and then does something unexpected. It might crash and
lock you out. You look for a likely place where you think it is
failing and just insert a BRK right over some other instruction.

Remember that when you're in the monitor mode, you
can directly change bytes, you can insert $00 (BRK) where you
want.

In the example above, imagine that we put the BRK over
a STY $8000. Make a note of the instruction you covered over
with the BRK so that you can restore it later. After checking
the registers and memory, you might find something wrong,
some variable or register isn’t behaving as it should or you
somehow never even arrive at the break (some branch or JMP
is being incorrectly activated). Now you have narrowed things
down. Now you can locate and fix the error.

Sometimes it helps to have a printed listing of the suspect
area in a program. You can turn your printer on and off with
the .P and .NP options in LADS, printing out only the suspect
zone of the program and use that to help you locate errors
while working with the monitor. Alternatively, you can check
the program with the built-in disassembler.

If nothing seems wrong at this point, restore the original
STY over the BRK, and put BRK in somewhere further on. By
this process, you can isolate the cause of the oddity in your
program. Setting breakpoints (like putting STOP into BASIC
programs) is an effective way to run part of a program and
then examine the variables.

If your monitor or assembler allows single-stepping, this
can be an excellent, though more time-consuming, way to de-
bug. Your computer performs each instruction in your pro-
gram one step at a time. This is like having BRK between each

115

The Instruction Set

instruction in the program. You can control the speed of the
stepping from the keyboard. Single-stepping automates break-
point checking. It is like the TRACE command sometimes
used to debug BASIC programs.

Like BRK ($00), the hex number of NOP ($EA) is worth
memorizing. If you're working within your monitor, you will
need to use hex numbers, and these two are particularly worth
knowing.

NOP means NO oPeration. The computer slides over
NOPs without taking any action other than increasing the pro-
gram counter. There are two ways in which NOP can be effec-
tively used.

First, it can be an eraser. If you suspect that JSR $8000 is
causing all the trouble, try running your program with every-
thing else the same, but with JSR $8000 erased. Simply put
three $EAs over the instruction and argument. (Make a note,
though, of what was under the $EAs so that you can restore
it.) Then, the program will run without this instruction, with-
out going to that subroutine at $8000, and you can watch the
effects.

Second, it is sometimes useful to use $EA to temporarily
hold open some space. If you don’t know something (an ad-
dress, a graphics value) during assembly, $EA can mark that
this space needs to be filled in later before the program is run.
As an instruction, it will let the program slide by. $EA could
become your “fill this in”” alert within programs in the way
that we use self-branching (leaving a zero) to show that we
need to put in a forward branch’s address when using a mini-
assembler.

Less Common Instructions

The following instructions are not often necessary for begin-
ning applications, but we can briefly touch on their main uses.
There are several logical instructions which can manipulate or
test individual bits within each byte. This is most often nec-
essary when interfacing. If you need to test what’s coming in
from a disk drive, or translate on a bit-by-bit level for 1/O
(input/output), you might work with the logical group.

In general, I/O is handled for you by your machine’s
operating system and is well beyond beginning ML program-
ming. I/O is perhaps the most difficult, or at least the most
complicated, aspect of ML programming. When putting things

116

The Instruction Set

on the screen, programming is fairly straightforward, but han-
dling the data stream into and out of a disk is pretty involved.
Timing must be precise, and the preconditions which need to

be established are complex.

For example, if you need to mask a byte by changing
some of its bits to zero, you can use the AND instruction.
After an AND, both numbers must have contained a one in
any particular bit position for it to result in a one in the an-
swer. This lets you set up a mask: 00001111 will zero any bits
within the left four positions. So, 00001111 and 11001100 re-
sult in 00001100.

The unmasked bits remained unchanged, but the four
high bits were all masked and, thus, zeroed.

There is a minor use for AND when you want to change
a character to a reverse (black on white) or flashing character.
The letter A, for example, has a value of $C1 which looks like
this in binary (all the bits within the byte showing): 11000001.
Notice that the left two bits are “on.” To change this to a
flashing A character, we need to turn the leftmost bit off so
that we end up with 01000001, which is $41. You can turn off
the leftmost bit by 11000001 AND 01111111, which will leave
01000001. Expressed in hex numbers you take the ordinary A
($C1) and AND it with 01111111 ($7F) to get the flasher, $41.
Likewise, B ($C2) AND $7F results in a flashing B ($42). To
change A into a reverse character, $C1 AND $3F.

Going the other way, you can change a flashing A back
into a stable ordinary A by $41 ORA $80 (10000000). The
ORA instruction is the same as AND, except it lets you mask
to set bits (make them a one). Thus, 11110000 ORA 11001100
results in 11111100. The accumulator will hold the results
when these instructions are used.

EOR (Exclusive OR) permits you to toggle bits. If a bit is
1, it will go to 0. If it’s 0, it will flip to 1. EOR is sometimes
useful in games. If you are heading in one direction and you
want to go back when bouncing a ball off a wall, you could
toggle. Let’s say that you use a register to show direction:
When the ball’s going up, the byte contains the number 1
(00000001), but down is 0 (00000000). To toggle this least
significant bit, you would EOR with 00000001. This would flip
1to 0, and 0 to 1. This action results in the complement of a
number. Thus, 11111111 EOR 11001100 results in 00110011.

117

The Instruction Set

To know the effects of these logical operators, we can
look them up in truth tables which give the results of all pos-
sible combinations of zeros and ones:

AND OR EOR
OANDO=0 OORO=0 O0OEORO=0
0AND1=0 0OR1=1 O0EOR1=1
1ANDO=0 10RO0=1 1 EORQO =1
1AND1=1 1OR1=1 1 EOR1 =0

Another instruction, BIT, also tests (it does an AND), but,
like the BNE and so forth, branch instructions, it does not af-
fect the number in the accumulator—its sole purpose is to set
flags in the status register. The N flag is set (has a one) if bit
7 has a one (and vice versa). The V flag responds similarly to
whatever value is in the sixth bit of the tested byte. The Z flag
shows whether or not the result of the AND resulted in a
zero. Instructions, like BIT, which do not affect the numbers
being tested are called nondestructive.

We discussed LSR and ASL in the chapter on arithmetic:
They can conveniently divide and multiply by two. ROL and
ROR rotate the bits left or right in a byte, but, unlike with the
Logical Shift Right or Arithmetic Shift Left, no bits are lost off
one end during the shift. ROL will leave the seventh (most
significant) bit in the carry flag, leave the carry flag in the
zeroth bit (least significant bit), and move every other bit one
space to the left:

ROL 11001100 (with the carry flag set results in:)
10011001 (carry is still set, it got the leftmost one)

If you disassemble your computer’s BASIC, you may well
look in vain for an example of ROL, but it and ROR are avail-
able in the 6502 instruction set if you should ever find a use
for them.

Should you go into advanced ML arithmetic, they can be
used for multiplication and division routines. Please see
Appendix A for more details on some of these obscure instruc-
tions if you're interested.

Three other instructions remain to be discussed: SEI (SEt
Interrupt), RTI (ReTurn from Interrupt), and CLI (CLear Inter-
rupt). These operations are also beyond the scope of a book on
beginning ML programming, but we’ll briefly note their ef-
fects. Your computer gets busy as soon as the power goes on.
Things are always happening: Timing registers are being up-

118

The Instruction Set

dated; the keyboard, the video, and the peripheral connectors
are being refreshed or examined for signals. To interrupt all
this activity, you can SEI, perform some task, and then CLI to
let things pick up where they left off. This description applies
to a degree to the Ilc, but the Apple II does not use the inter-
rupt option. The following is simply for your information
should you later decide to try some sophisticated ML interrupt
programming on the Ilc or another computer.

SEI sets the interrupt flag. Following this, all maskable
interruptions (things which can be blocked from interrupting
when the interrupt status flag is up) are no longer possible.

There are also nonmaskable interrupts which, as you might
guess, will jump in anytime, ignoring the status register.

The RTI instruction (ReTurn from Interrupt) restores the
program counter and status register (takes them from the
stack), but the X and Y registers, and so on, might have been
changed during the interrupt. Recall that our discussion of the
BRK instruction involved the above actions. The key difference
is that BRK stores the program counter plus two on the stack
and sets the B flag on the status register. CLI puts the inter-
rupt flag down and lets all interrupts take place.

If these last instructions are confusing to you, it doesn't
matter. They are essentially hardware and interface related.

You can do nearly everything you will want to do in ML
without them. How often have you used WAIT in BASIC?

A Newer Chip

The venerable 6502 chip, which has been the brains of most
of the popular home computers for years, is being replaced in
newer Apples with a slightly different younger sibling, the
65C02 chip. The C version is identical to the 6502, but has a
few additional instructions. These new instructions offer noth-
ing which cannot be done by the 6502, but in a couple of
cases, they simplify things. For example, the STZ (STore Zero)
instruction would simplify putting a zero into a memory loca-
tion. Now, we have to LDA #$0:STA $5000. With the new
instruction, we could STZ $5000. Not much of an advantage,
but useful.

There is a new branching instruction, BRA, which means
BRanch Always and is like the rest of the branchers, but
doesn’t check the flags. It always branches.

DEA and INA decrement or increment the accumulator.

119

The Instruction Set

That, too, is something you want to do once in awhile and
would be easier with these new instructions. Normally,
though, you use the X and Y registers as counters and they
can be INY/DEY in the 6502.

There are PHX, PHY, PLX, and PLY which directly push
or pull the X or Y registers to or from the stack. Now, if you
want to put the X register on the stack, you have to TXA:PHA,
because X and Y can’t directly address the stack in the 6502
instruction set.

Finally, TRB and TSB will test and turn on (or off) bits
within a given byte, somewhat simplifying the job.

There is also a new addressing mode, called zero page in-
direct addressing, which can operate much like the useful
indirect,Y mode, but without adding the Y offset.

In general, it would be best to ignore these additional
instructions. While they do offer, in some cases, minor conve-
niences, any program you write with them will not work on
the majority of Apples. The 65C02 is inside all IIc’s and any
Ile’s sold after March 1984. Using the extra instructions in the
65C02 will limit your programs to these recent models. Using
the 6502 instruction set, however, will permit your programs
to run on any Apple, including the new models.

LADS does not support the 65C02’s new instructions, but
LADS can be customized. (You could even make up com-
mands for LADS which added clusters of frequently used
instructions which were inserted into your ML program auto-
matically.) Customizing LADS is for programmers who are rel-
atively conversant in ML, but approaches and examples are
described in Appendix C.

120

Chapter 7

Borrowing from
BASIC

Borrowing from BASIC

BASIC is a collection of ML subroutines. It is a large web of
hundreds of short ML programs. Why not use some of them
by JSRing to them? At times, this is in fact the best solution to
a problem.

How would this differ from BASIC itself? Doesn’t BASIC
just create a series of JSRs when it runs? Wouldn’t using BA-
SIC’s ML routines in this way be just as slow as BASIC is?

In practice, you will not be borrowing from BASIC all that
much. One reason is that such JSRing makes your program far
less portable, less easily run on other computers or other mod-
els of your computer. When you JSR to an address within your
ROM set to save yourself the trouble of reinventing the wheel,
you are, unfortunately, making your program applicable only
to machines which are the same model as yours.

While Apple has been better than many computer compa-
nies at keeping important ROM addresses like $FDED in the
same place in new Apple models, there are no guarantees that
this will always be the case.

However, if you want your program to work on many dif-
ferent computer brands, you'll need to limit the degree to
which you make it ROM-specific. Stick to the few essential
ones (input/output, clear screen, and so on, listed in this book
and in your Reference Guide). If you try to get too tricky—
using your BASIC’s or operating system’s ROM to the maxi-
mum—your programs will be pretty hard to translate to other
Apple models, not to mention other computer brands. For ex-
ample, the subroutine to allocate space for a string in memory
is found at $D3D2 in the earliest Commodore PET model. A
later version of PET BASIC (Upgrade) used $D3CE, and the
current models use $C61D. Although Microsoft BASIC is
nearly universally used in personal computers (Atari is the
exception), each computer’s version differs in both the order
and the addresses of key subroutines.

Jump Tables and Other Menus

To help overcome this lack of portability, some computer
manufacturers set aside a group of frequently used subroutines
and create a “Jump Table,” or “Kernal,” for them. The idea is
that future, upgraded BASIC versions will still retain this table.
It would look something like this:

123

Borrowing from BASIC

FFCF 4C 15 F2 (INPUT one byte)
FFD2 4C 66 F2 (OUTPUT one byte)
FFD5 4C 01 F4 (LOAD something)
FFD8 4C DD F6 (SAVE something)

This example is part of the Commodore Kernal and is in-
tended to apply to all future versions of BASIC on Com-
modore machines.

The interesting thing about this table of jumps for Apple
users is that there is a trick to the way this sort of table works,
and you might want to use it yourself sometime. Notice that
each member of the table begins with 4C. That’s the JMP
instruction and, if you land on it, the computer bounces right
off to the address which follows.

Now, at that address following the 4C, there is going to
be a subroutine (so it will end in RTS). So when we JSR to
one of the JMPs inside this table, to, say, FFD2, we're going to
land on a JMP and rebound, just bounce right off the JMP ta-
ble to the correct subroutine. When that subroutine finally fin-
ishes its work and ends in RTS, we will be returned to our
starting place. That’s how a JMP table works and it can be a
useful technique.

By the way, the PRINT subroutine is a fundamental one
in any computer because it offers you so much value. For
one thing, it keeps track of the cursor position which is in-
cremented each time you access PRINT. It works semi-
automatically, and you don’t have to keep track of where you
are on the screen. The PRINT-the-character routine in the Ap-
ple is $FDED (65005 decimal). This is a very important ad-
dress; you should memorize it.

For convenience, you might want to make a standard
“header” for all your ML source programs that you use with
LADS. It would consist of a series of “equates”” which define
frequently used internal subroutines by giving them labels:

30 PRINTIT = $FDED; PRINTS CHARACTER IN
ACCUMULATOR

40 HOME = $FC58; CLEAR SCREEN

50 SCREEN = $0400; LOCATION OF TEXT SCREEN

60 TEXT = $FB2F; SET TEXT MODE

70 GRAPHICS = $FB40; SET GRAPHICS MODE (LIKE GR)

Then, when you're writing an ML source program using LADS
and want to print some character, you just JSR PRINTIT.
Whenever you want to clear the text screen, you JSR HOME.

124

Borrowing from BASIC

You would write JSR TEXT to set the text mode; JSR GRAPH-
ICS to set graphics mode. ML can thus be very similar to
BASIC in that, when you are going to use a known sub-
routine, a subroutine that you've given a label at the begin-
ning of your program in the manner illustrated above, you just
type a word like TEXT that means something to your program
and also means something memorable to you.

The same PRINT routine will work for a printer or a disk
or a tape—anything that the computer sees as an output de-
vice. However, unless you open a file to one of the other de-
vices (it’s simplest to do this from BASIC in the normal way
and then SYS to an ML subroutine), the computer defaults to
(assumes) the screen as the output device, and $FDED prints
there. To see how to set up different output targets, see the
Open1 source code of LADS in Appendix D.

So, if you look into any ML program and discover a series
of JMPs (4C xx xx 4C xx xx), you've found a jump table. Using
a jump table should help make your programs compatible
with later versions of BASIC which might be released. Though
this is the purpose of such tables, there are never any guar-
antees that the manufacturer will consistently observe them.
And, of course, the program which depends on them will cer-
tainly not work on any other brand.

What's Fastest?
Since, when a BASIC program runs, it is JSRing around inside
itself, how, then, is a JSR into BASIC code faster than a BASIC
program? The answer is that a program written entirely in ML,
aside from the fact that it borrows only sparingly from BASIC
prewritten routines, differs from BASIC in an important way.
A finished ML program is like compiled code; that is, it is
ready to execute without any overhead. BASIC, for each com-
mand or instruction, must be interpreted as it runs. This is
why BASIC is called an interpreter. Each instruction must be
looked up in a table to find its address in ROM. And many
other aspects of a BASIC instruction need to be interpreted.
All this takes time. Your ML code will contain the direct ad-
dresses for its JSRs. When that ML program runs, the instruc-
tions don’t need elaborate interpretation, time-consuming
cross-checking, table lookups, or any other delay. The JSR just
leaps into the right area of BASIC ROM without further ado.

125

Borrowing from BASIC

There are special programs called compilers which can
take a BASIC program and transform (compile) it into ML-like
code which can then be executed like ML, without having to
interpret each command during the program’s run. The JSRs
are within the compiled program, just as in ML. Compiled
programs will run perhaps 20 to 40 times faster than the
BASIC program they grew out of. (Generally, there is a small
price to pay in that the compiled version is almost always
larger than its BASIC equivalent.)

Compilers are interesting; they act almost like automatic
ML writers. You write it in BASIC, and they translate it into
an ML-like program. Even greater improvements in speed can
be achieved if a program uses no floating point (decimal
points) in the arithmetic. Also, there are “optimized” com-
pilers which take longer during the translation phase to com-
pile the finished program, but which try to create the fastest,
most efficient compiled program design possible. No compiler
is excessively slow, however. A good optimizing compiler can
translate an 8K BASIC program in two or three minutes. Well,
why not just compile BASIC programs and forget about ML
altogether? The main reason is that ML is always far faster
than even optimized compilations. You just can’t beat the ef-
ficiency of hand-crafted communications which speak directly
to the chip in its own language.

GET and PRINT

Two of the most common activities of a computer program are
getting characters from the keyboard and printing them to the
screen. To illustrate how to use BASIC from within an ML
program, we’ll show how both of these tasks can be accom-
plished from within ML.

Try this program and hit a key on the keyboard. Notice
that the code number for whatever character you typed on the
keyboard appears in the accumulator.

Apple Microsoft BASIC’s GET waits for user input:

2000 JSR $FD1B (GET a byte from the keyboard)

This address, $FD1B, will wait until the user types in a
character, but will not show a cursor on the screen. It will po-
sition a flashing cursor at the correct position. However, it will
not print an “echo,” an image of the character on the screen.

To print to the screen:

126

Borrowing from BASIC

2000 LDA #$C1 (Put “A” into the accumulator)
2002 JSR $FDED (Print it)

If you combine these routines into a “GET and PRINT,”
you can leave out the LDA #$C1, because JSR $FD0C will
have left the value of whatever key you typed in the accu-
mulator, and JSR $FDED will print it to the next available
location on screen:

2000 JSR $FDOC; (Get a keypress)
2003 JSR $FDED; (Print it)

However, if you intend to use or analyze what’s being
typed into the computer, you must also store each character
somewhere in RAM:

2000 LDY #8$0; (Use Y as an offset into your buffer)
2002 LOOP JSR $FD0OC
2005 STA BUFFER,Y

2008 INY; (Raise the offset)
2009 JSR $FDED; (Echo the character to the screen)
2012 JMP LOOP; (Return to fetch the next character)

Notice that this example is an endless loop: It has no way
to exit its loop. You would need to add a CMP #141 if you
wanted to exit when the typist hit the RETURN key. You
would CMP #141:BEQ END to branch to a label called END
which you put somewhere beyond this loop, beyond that JMP
LOQOP instruction in line 2012.

In any event, an ML routine within BASIC which keeps
track of the current cursor position and will help you print
things to the screen is often needed in ML programming. Ap-
ple uses $FDED. You can safely use the Y register to print out
a series of letters, by having Y hold the index, the counter,
that keeps moving through the message and, simultaneously,
through the screen RAM. You could print out an entire word
or paragraph of text or graphics using the method illustrated
in Program 7-1.

If you look at a map of the ROM chips in your computer’s
Reference Manual from Apple, you will discover that there are
many freeze-dried ML modules sitting in BASIC. These
routines were written by the professionals who built BASIC it-
self, and their methods can seem intimidating at first. How-
ever, disassembling some of these routines and picking them
apart is a good way to discover new techniques, new efficien-
cies, and to see how the best ML programs are constructed.

127

Borrowing from BASIC

Studying your computer’s BASIC is worth the effort, and
it’s something you can do for yourself. You won’t understand
everything (some shortcuts are taken which are obscure in the
extreme). Nevertheless, if you've got some time, take a look at
a particular routine and see if you can see the logic in it, its
purpose and structure.

128

Borrowing from BASIC

HIONIT INYL JHL NVHL ddD¥VT IANO

dddnNadadns, dLAE*® ONIYLS d@@8 OST

¥

ShA 29 d@P8 PET

dO0OT dANH™ Sd 9d 9998 @CI
HLONdT# XdD g0 20 6008 001
ANI 80 8008 06

LILNI¥4d dSr ad dZ @T SeP8 @8
A'ONINLS V¥d1 d0O01 28 4@ 69 T8 OL
o# AdT LAYLS 29 oY 9008 09

s

a3ads = LILNIdd 0008 oV
1T = HLONAT 0008 0
66§ = ¥ILNNOD 2008 0T

1-£ weidoid

129

Chapter 8
Building a Program

Building a Program

Using what we’ve learned so far, and adding a couple of
new techniques, let’s build a useful program. This example
will demonstrate many of the techniques we’ve discussed and
will also show some of the thought processes involved in writ-
ing ML.

Among the computer’s more impressive talents is search-
ing. It can run through a mass of information and find some-
thing very quickly. We can write an ML routine which looks
through any area of memory to find matches with anything
else. Based on an idea by Michael Erperstorfer published in
COMPUTE! magazine, this ML program will report the line
number of all the matches it finds.

Safe Havens

Before we go through some typical ML program-building
methods, let’s clear up the “where do I put it?”" question. ML
can’t be just dropped anywhere in RAM. When you give the
starting address to LADS at the beginning of your source code
with the *= symbol, you can’t just put in any address that
pops into mind.

There are other things going on in the computer in addi-
tion to your hard-won ML program. RAM is used in many
ways. There is always the possibility that you want to have a
BASIC program coresident with your ML program. If so, you'll
need to figure out where to put the ML so that it won’t cover
up, or be covered up by, the BASIC. Too, BASIC needs to use
part of RAM to store some of its variables. During execution,
these variables might be written (POKEd) into your vulnerable
ML if you located it in a vulnerable zone. That would fatally
corrupt your ML.

Also, the operating system, the disk operating system,
cassette or disk loads, printers—they all use parts of RAM for
their housekeeping activities. There are other things going on
besides your ML. And you obviously can’t put your ML pro-
gram into ROM addresses. That’s impossible. Nothing can be
POKEd into those frozen ROM addresses; they’re read only
memory, no writing allowed.

Where to put ML? There are some fairly safe areas. Ad-
dresses 768-1023 ($300-$3FF), also called page 3, is safe.

The “safe storage problem” is solved most easily by
knowing about this free zone, or by creating artificial space by

133

Building a Program

changing the computer’s knowledge about the start or end of
your BASIC RAM storage space. When BASIC is running, it
will set up arrays and strings in RAM memory. The RAM of a
BASIC program’s text (the line numbers, commands, and so
on, up to the top line number) isn’t the only RAM that a
BASIC program uses. Sometimes it stores strings just after the
program itself. Sometimes it builds them down from the “top
of memory,” the highest RAM address. Where are you going
to hide your ML routine if you want to use it along with a
BASIC program? How are you going to keep BASIC from
overwriting the ML code?

Misleading the Computer

If the ML is a short piece of program, you can stash it into the
safe $0300-3FF zone mentioned above. Because this safe area
is only a couple hundred bytes long, and because so many ML
routines want to use that area, it can become crowded. Worse
yet, we've been putting the word “‘safe”” in quotes because it
isn’t 100 percent safe. Apple uses this page 3 for high-res
work, for example. The alternative is to deceive the computer
into thinking that its RAM is smaller than it really is. This is
usually the best solution, unless you are writing short routines
or practicing with the examples in this book where you can
just go ahead and use $0300-03FF.

Your ML will be truly safe if your computer doesn’t even
suspect the existence of some set-aside RAM. It will leave the
now-safe RAM alone because you've told it that it has less
RAM than it really does. Nothing can overwrite your ML pro-
gram after you’ve misled your computer’s operating system
about the size of its RAM memory. There are two bytes in
zero page which tell the computer what its highest RAM ad-
dress is. You just change those bytes to point to a lower ad-
dress. You can have your ML program do this as its first job.

These crucial bytes are 115,116 ($73,$74 hex).

To repeat, pointers such as these are stored in LSB,MSB
order. That is, the more significant byte (the one that’s mul-
tiplied by 256) comes second (this is the reverse of normality).
For example, $8000, divided between two bytes in this top-of-
RAM pointer, would look like this:

0073 00
0074 80

134

Building a Program

As we mentioned earlier, this odd inversion of normal nu-
meric representation is a peculiarity of the 6502 that you just
have to get used to. You can take comfort in the fact that the
6502 and its family of chips have far fewer peculiarities and il-
logical rules than their main rivals, the Z80 family. You can be
driven to distraction with chips where the language is frequently
at odds with the way humans think. Destinations precede
sources, and so on. It's maddening. Fortunately, the 68000
chip, the chip in the Mag, is a sensible, programmer-friendly
chip, too. If you go on to learn how to work with this new
generation of chips, the 6502 family will seem both familiar
and reasonable. But do beware of the pointer inversion: The
LSB is stored in the lower byte in memory. It’s a small price to
pay for an otherwise well-designed microprocessor.

Anyway, you can lower the computer’s opinion of the
top-of-RAM-memory, thereby making a safe place for your
ML, by changing only the MSB. If you need one page (256
bytes), POKE 116, PEEK (116)—1. For four pages, POKE 116,
PEEK (116)—4, and so on. You don’t need to fiddle around
with the LSB of the pointer. Give yourself plenty of room.

If you want to reserve safe RAM as the first act of your
ML program (so that it protects itself), just take a look at the
LADS source code in the Eval subprogram. It protects itself by
stuffing its START into the top-of-RAM pointer. Take a look at
lines 80-150 in Eval; here, LADS is setting some of its own
pointers, but is also protecting itself by inserting its START
into the BMEMTOP (BASIC memory top) variable. BMEMTOP
was defined in the Defs subprogram.

For details on how to protect ML programs in high RAM
with ProDOS, see CALL in Chapter 9.

Building the Code

Now we return to the subject at hand—building an ML pro-
gram. Most people find it easiest to mentally divide a task into
several tasks, solve the individual small tasks, and then weave
them all together into a complete program. That’s how we’ll
attack the job of building a search program.

We will build our ML program in pieces and then tie
them all together at the end. The first phase, as always, is the
initialization. We set up the variables and fill in the pointers.
Lines 20 and 30 define two, two-byte zero page pointers. L1L
is going to point at the address of the BASIC line we are

135

Building a Program

currently searching through; L2L points to the starting address
of the line following it.

BASIC stores four important bytes just prior to the start of
the code in each BASIC line. Take a look at Figure 8-1. The
first two bytes contain the address of the next line in the
BASIC program. Thus, when BASIC has finished evaluating
and acting upon the current line, it will already know where
to go to find the next line. This is called linking.

The second two bytes hold the line number. The end of a
BASIC line is signaled by a zero. Zero does not stand for any-
thing in the ASCII code or for any BASIC command. This is
quite similar to the way we signal in ML programs that a text
message is finished—Dby storing a zero at the end of the text.
We discussed this earlier when we talked of delimiting an
ASCII message.

If there are three zeros in a row, it tells BASIC that it has
reached the end of the program in memory. Three zeros is a
super delimiter.

But back to our examination of the ML program. In line
40 is a definition of the zero page location which holds a two-
byte number that BASIC looks at when it is going to print a
line number on the screen. We’ll want to store line numbers in
this location as we come upon them during the execution of
our ML search. Each line number will temporarily sit waiting
in case a match is found. If a match is found, the program will
JSR to the BASIC ROM routine we're calling PLINE, as de-
fined in line 70. This routine prints a line number on the
screen, and it will need to have the “current line number”
where it expects to find it.

Line 50 establishes that BASIC RAM starts at $0800, and
line 60 gives the address of the “print the character in the
accumulator” ROM routine. Use *=768 to put the object code
into the traditional “safe” RAM area to store short ML
programs.

Refer to Program 8-1 to follow the logic of constructing
our search program. The search is initiated by typing in line 0
followed by a colon and the item we want to locate. It might
be that we are interested in removing all REM statements from
a program to shorten it. We would type 0:REM and hit RE-
TURN to enter this line into the BASIC program. Then we
would start the search by a CALL to the starting address of
the ML program: CALL 768.

136

Building a Program

0c ()] 8
AdNH3 dNIT ~ 1T H . ¢ HNIT

00 00 00 08 00 L 80 1L 00 ZC 6% 8% ¢C 66 00 VO 80 4000

1180 4080 0080
dN30¢
+IH,,LNTdd 01
spug Jisvd
wexBoxg aurj jo pug jo yelg

| |

010|0f ANITOISVA ANT | # ANIT | ¥4LNIOd | 0)3AOD JISV4d| # ANIT | ¥41INIOJ | 0

1 1

MON 0} pajurod s] SuryjoN

ainpnig swesdold HISVE V ‘L-8 24n8Y

137

Building a Program

By entering the “sample” string or command into the
BASIC program, we simplify our task in two ways. First, if the
thing we're searching for is a string, it will be automatically
stored as the ASCII code for that string, just as BASIC stores
strings.

If it is a keyword like REM, it will be translated into the
“tokenized,” one-byte representation of the keyword, just as
BASIC stores keywords.

The second problem this method solves is that our sample
is located in a known area of RAM. By looking at Figure 8-1,
you can tell that the sample’s starting address will always be
the start of BASIC plus six. In Program 8-1 that means $0806
(see line 550).

Set Up the Pointers

We will have to get the address of the next line in the BASIC
program we are searching. And then we need to store it while
we look through the current line. The way that BASIC lines
are arranged, we come upon the link to the next line’s address
and the line number before we see any BASIC code itself.
Therefore, the first order of business is to put the address of
the next line into our L1L location for safekeeping. Lines
150-180 take the link found in start-of-BASIC RAM (plus one)
and move it to the storage pointer L1L.

Next, lines 190-250 check to see if we have reached the
end of the BASIC program. It would be the end if we had
found two zeros in a row as the pointer to the next line’s ad-
dress. If it is the end, the RTS sends us back to BASIC mode.

The subroutine in lines 260-440 saves the pointer to the
following line’s address and also the current line number.

Note the double-byte addition in lines 390-440. We al-
ways CLC before any addition. If adding four to the LSB (line
400) results in a carry, we want to be sure that the MSB goes
up by one during the add-with-carry in line 430. At first
glance, it seems to make no sense to add a zero in that line.
What’s the point? We’re doing an addition with carry; in other
words, if the carry flag has been set up by the addition of four
to the LSB in line 400, then the MSB will have one added to
it. That’s the carry. The carry flag makes this happen.

138

Building a Program

First Characters

When you're searching for something, say, your car in a park-
ing lot, you look for something distinctive. You might search
for the color blue, or perhaps a plastic flower that you've at-
tached to the antenna. You certainly don’t look at each entire
car, at the hood, the wheels, the windows, the size, the color,
etcetera, etcetera. You look for a single attribute; then, if the
car is blue, you compare other attributes to see if it is indeed
entirely the same as yours.

Likewise, it’s better just to compare the first character in a
word against each byte in the searched memory than to try to
compare the entire sample word. If you are looking for the
word MEM, you don’t want to stop at each byte in memory
and see if M-E-M starts there. Just look for M’s. When you
come upon an M, then go through the full string comparison.
If line 490 finds a first-character match, it transfers the pro-
gram to the subroutine labeled SAME (line 520) which will
perform a thorough comparison.

On the other hand, if the routine starting at line 460
comes upon a zero (line 470), it knows that the BASIC line
has ended (all BASIC lines end with zero, and zero is not used
in any other way within a BASIC program). Our search pro-
gram then goes down to STOPLINE (line 610) which puts the
“next line” address pointer into the “current line”” pointer and
the whole process of reading a new BASIC line begins anew.

If, however, a perfect match was found (line 560 found a
zero at the end of the 0:REM line, showing that we had come
to the end of the sample string), we go to PERFECT and it
makes a JSR to print out the line number (line 660). The PER-
FECT subroutine bounces back (RTS) to STOPLINE which re-
places the “current line”” (L1L) pointer with the “next line”
pointer (L2L).

Then we JMP back to READLINE which, once again, pays
very close attention to zeros to see if the whole BASIC pro-
gram has ended with a pair of zeros. We have now returned
to the start of the main loop of this ML program.

This all sounds more complicated than it is. If you’'ve fol-
lowed it so far, you can see that there is enormous flexibility
in constructing ML programs. If you want to put the
STOPLINE segment before the SAME subroutine—go ahead.

It is quite common to see a structure like this:

139

Building a Program

Definitions
SCREEN = $0400
Initialization
LDA #15
STA $83
Main Loop
START JSR 1
JSR 2
JSR 3
BEQ START (Until some index runs out)
RTS (To BASIC)
Subroutines
1
2 (Each ends with RTS back to the Main Loop)
3
DATA
Table 1
Table 2
Table 3

These are the main subdivisions of machine language pro-
grams. If you use this structure, you will find that it simplifies
locating the different parts of a program and it also prevents
nonprogram data (such as tables, messages, definitions) from
getting mixed in with the program code proper. LADS is de-
signed using this nearly universal format. Since all but the
shortest programs will have defined variables, initialization, a
main loop, a cluster of subroutines, and, finally, a collection of
data tables, why not organize all your programs in this simple,
straightforward, and sensible way?

There is a BASIC loader program which will POKE in the
ML for you if you don’t want to assemble the source code.
Remember from Chapter 2 that a loader is a BASIC program
that creates an ML program. It POKEs numbers that are held
in DATA statements. These numbers form the ML. Once you
have entered and run the loader, you could examine the
resulting ML program by using the Apple built-in monitor.

Use CALL 768 to activate the program; that’s where it sits
in RAM when it's POKEd from the BASIC loader or created
via an assemb]er.

As your skills improve, you will likely begin to appreciate,
and finally embrace, the extraordinary freedom that ML con-
fers on the programmer.

At first, learning ML can seem fraught with apparently

140

Building a Program

endless obscure tricks and rules. It can even seem menacing,
beyond your understanding. It’s this way with every new lan-
guage because the words are still new, still odd.

Everyone, this author included, passes through this
(surprisingly brief) sense of dread. Once you know how to tell
your computer, directly in its language, how to print some-
thing on the screen, you don’t need to relearn this trick.
Things fall into place. It won't take as long as it might now
seem for you to begin to grasp the relatively few novelties in-
volved when programming in ML. ML isn’t the theory of
relativity; it’s no more difficult than BASIC. It’s just a new
vocabulary for the same programming techniques you've been
using with BASIC.

And this brief sensation, this brief confusion, is a very
small price to pay for the flights you will soon be taking
through your computer. Work at it. Try things. Learn how to
find your errors. It's not circular—there will be steady ad-
vances in your understanding. One day soon, you'll be able to
easily turbocharge your BASIC programs with ML; to write
convenient, custom utilities like our search routine; and to do
pretty much anything you could want to do with your machine.

141

Building a Program

JISYd 0L NMYNL13H S1y an3 29 SIS6 OSZ
NOOS 3Ng 16 84 S156 OvT
AT wai 64 19 11E0 O£Z
ANI 80 G150 @OZZ

NOOS 3NF 9@ 6a 3050 O1Z
ASCITT wan 64 19 J0E@ OOZ

o# AQ7 3NITAY3Y 90 OY YISO 06T

681

"WYHO0Md 3FHL 40 AN3 3HL 1Y 13A 88T

1ON 3¥Y 3M ‘W3IHL ANId L.NOG 3Im d4I 481
*SO0M3Z Z ¥H04 XJ3HD 0L 3INILNOMENS 98T

S8t

T+71171 YiS Y4 S8 8050 @81
Z+31svd van 80 Z6 AY SOLO BLT
171 YLS 64 GB £O£@ 891

1+3ISvd vad’ 80 10 AY OOSH OST

181

SHIINIOd 3IZIWILINI 281

26

28

3NIT INIMA ©23d3% = 3INId o0so 0L
a3dds = LINI¥d 200 B9
g98g%s = 21sva 9050 OS
G/% = ANNO4 0S8 O
g4 = 21 POSe O

64% = T 0050 B

91

*S713491 W3HL 9NIAI9 A S31EYINYA 3NI43d [~} ¢
T

3po) 324nog YoJeas ‘| -g wesdold

142

Building a Program

1SNIVOY 3NITT JISvH NI H3LIUHUHD L1ST X03HI N3IHL aNY
(CA3HSINIZ SI 3INIT) 0¥3Z HO04 >33HD 0L 3INILNOYENS
T+7171 UlS vd S8 920
o# Jav 08 69 vELH
(INITT LX3IN OL ¥3ILINIOJ T+7171 van vd SV Zg29
NP # 3INITT 1Svud) 171 vls 64 SB #£LP
1X31 J1Svd 40 1yvd tos# Oav ve 69 32O
184814 01 QduMmyd0d 3A0W 2710 81 4Zco
a1 van &4 SY HZ£P
d31971 1N0 d3LINI¥d I+dNNOd Y1S 9L S8 629
34 01 SA33N ASCITD wal &4 19 LZ%D
1I 38Y3J NI ANI 80 9Z:£9
001 399d01S NI aNnod vis SL S8 vZeo
3INIT 1nd AT van 64 149 ZZ%0
ANI 80 1220
I+71271 UiS J4 S8 d1£@
ASCITTD wal 64 1d ATLH
1271 NI 1I 3d01S ANI 83 JI1£H
aNYy SS534aav 1271 YiSs g4 S8 VIO
INIT LX3IN 139 AT val 64 19 BIES
o# AdT NOOS 20 69 10

"IATdWYS FHL 01 LI 3HYHW0D NYJ aONY 3INITT INIHHND 3HL NI
"HUHD 1ST 3HL 1Y 9ONILNIOd N3IHL 34Y 3IM “NOILUWMOGNI
«3INIT-LX3IN-0L-HIINIOd. ONY # 3NITT JHL 1SYd 3HY 3IM

1YH1 0S H3INIOd 3NIT LN3IYHND 3IHL OL ¢+ aay 3Im ‘oS

“# 3INIT JFHL INIMH 04 33N ANY HOLUW © ANId

3IM 3SUI NI H3GWON 3NITT LNIHHEND 3HL 3HO0LS aNY

3NIT LX3N 3HL 01 SH3INIOd 31vddn 0L 3INILNOoNENS

b4 4
A 4 4
1844
ovvy
5% 4
14 4
o1v
21514
g6s
8%
oLE
a9s
7=
v
75 %
(AN
21
oo
862
282
BLZ
29z
682
882
LSZ
9sZ
=1=r4
1 4°T4
£SZ
fA=rA
1SZ

143

Building a Program

HJOLYW ON 40071

IYYLWOI INNILNOD IHYLW0D
Af TN
INI¥d 0OS SAN3 3NIT 123443d
X ‘9+318vd

139491

01 3IdWUS 3HYLWOD o%

“3ANITT INIMHNT NI S3IHILYKW

3NIT OL HONOYHL 77194 3m

HOLUWSIW Y aONI4d 3M

dWe
0349
dWd
034
van
ANI
XNI
Xan

dI

JHYdW0D
3JWYS

£0 vUg
sS4
&4
LD
80 90

ar
24
1a
E]
asg
83
83
Y

vSEo
FASN
(215
3vso
av<co
Uvso
(-3 ¥
LYSED

"HUHD LST ¥0d4 INIXM00T
NO 3NNILINOD 3M IJH3IHM @9v 0L dN AJvE dWNC ONY 86S

‘OM3Z AN3-3NIT Y 3¥04349

“ITdWYS S3X3IANI X "L139¥vl

40 X39dl Sd33XM A "HILYUW 1034M3d ¥V SI 3¥3HL 41 33S
0L (3NIT IN3YHN3) 13948¢L 3JHL ANY (@ 3NIT) 3IdWYS JHL
HLO8 NI ¥313JUHUHI HJV3 1Y X007 01 3INILNoYaNS

4007

HOYY3S 3INNILNOD LON
ONINLIS JFI0OHM XI3IHD 4S3A 3WYSs
AHUHD 31dWYS 1ST SY 3WYs 9+21svd
A3HSINI4 3NITT SNY3W @ IANITHOLS
ACCITD
o8

dWr
ANI
0349
dWd
034
van
AQT

4007

£0 VUL

vo
80 90
art
64
o0

ar
83
E |
al
" E]
1d
2y

Yo
£veo
1§ 4%
3LLe
AEED
veeo
BEEO

"1X31 S.3INIT JIsvd

AIN3YHNI 3HL 40 "HYHD ANZ 3HL NI HJILYW Y d0d4 X33HO
ANY H3INNOJ «A. 3HL 3SIUH 3M ‘HOLUW L.NOd "SHYHI
1ST 41 "L 3WUS. 037930 3INILNONENS 3FHL NI NOSINYLWOO

GNIYLIS T4 v GL 3A0W 3IM

‘HOLUW SH3ILJVYYHI 1ST

3FHL 41 "9 3NIT LU ININLS 31dWUS NI H3LJYHUHD LST

268
28s
9LS

2ss
2vS
25S
9ZSs
61S
8IS
L1S
1S
=3 4
vIis
£Is
Zis
1is
21S
o0S
1) 4

OLY
o9
ISty
oSt
(344
=244
VA 44
vy

1444

144

Building a Program

LNOLNIYd M¥SC 133443d £6 S9 02 LSEO

89L =

8W0OD

69

i 169

Siy @9 d9eP 869

S.# 3INIT N3I3ML39 INIMd OL LINIMd MSC dd d3 62 v9se @89
ANUTEd ¥ SI SIHL gus# vdn BY &Y 8953 6.9
3NITd H¥SC LNOLNIYd a3 o2 @Z S9:£0 2099

8s9

"S3IHILYW 3HOW ANY ONI4 ANY 40071 NIYW 3HL /LS9

HLiIM NO 3NNILINOD Ol @19 3INIT Ol NYNL3Y aNY 959

30UdS XNYTd Y LNIYd 3M N3IHL SS9

"N3I3YIS 3HL NO NOILISOd HOSHNI LX3IN &9

JHL 1Y H3gGWNN 3HL SINIMd 3INILNOY WOM SIHL £59

“H3dWNN 3NIT JIsvd ¥ 1IN0 INIMd 0L 3NILNOMENs ZS9

159

3NITAY3Y duWl £0 Yo v Z9L0 0S9

I+7171 vUis vd S8 0920 &v9

T+7277 van J4 SY 3JGeG 059

171 vis 64 S8 IS8 o629

271 ¥a 3NINd0LS g4 SY UsEd 819

889

"WYH90Md 3HL 40 4007 NIYW 3HL NI 3INILNOYENS L@9

1SY1 3HL SI SIHLI "043Z 319N0d WYH90¥d-d40-AN3I 989

3HL H0d4 X33HD 3HL HLIM L13Y1S 3HL 01l X0vd 4dWNC N3IHL S69
"PFZ 3INIT LU ONILMYLS INILNOYENS +O9

3HL NI d3AYS 3M HILNIOd «3NITT LX3N« IHL HLIM £09
H3ILINIOd «3NIT LN3YHN3J. 3JVNd3d 01 3NILNOYMANS Ze9

189

209

145

Building a Program

T'YST'¥ST'96'€SC YIVA @8
LET'ZTE'PIT'69T 'LET 'ZE YIVA BLT
TE'E'PT'9L'PST ' EET YIVA @92
TST'G9T'6VT'EET'T1STG9T VYIVA @ST
€'TPT’'ZE'€'8S 9L YIVA BT
ShZ'evZ’'e6vZ ‘60T ‘L 'OYT YIVA @ET
8°9'68T'0MT'ZET 'Y YIVA @ZT
TOT'€'8G'9L'9PZ 'Y VIVA @12
o¥T’'8'9'GPT ‘8T 'OYT YIVA POT

6V LLT '@ 'P9T'PST ' EET YIVA Q6T
P'SPT'PST'SOT'6VZ'EE€T VIVA @8T
v'S@T'¥Z'6¥Z G991 '8TT VIVA BLT
EET'6VT LLT QBT 'LIT'EET YIVA @91
6YZ'LLT'POT'TST 'EECT'6VT YIVA PBST
LLT'PPZ ' TST'EET'6VT LLT YIVA @YT
2'091'96'1'80Z ‘6¥Z VYIVA QET
LLT'PPZT'9’'8QT '6%T LLT VYIVA BZ1
P'P9T’'PST'EET '8’ YIVA PTT
ELT'6VPT'EET'8'T ELT VIVA @OT

aNg :,SLNA
WILYLS VIVA NI d0¥dd, LNIdd NIHL 98LST < > MO JAI @2
X ILX3N :

¥’'X @MOd ¥ + MO = MDO:V aVd¥ :@88 OL 89L = X ¥0d @T

13peo] DSV Yoieas ‘z-g wesdoid

146

Chapter 9

ML Equivalents of
BASIC Commands

ML Equivalents of
BASIC Commands

What follows is a small dictionary, arranged alphabetically, of
the major BASIC commands. If you need to accomplish some-
thing in ML—TAB, for example—Ilook it up in this chapter to
see one way of doing it in ML. Often, because ML is so much
freer than BASIC, there will be several ways to go about a
given task.

Of these choices, one might work faster, one might take
up less memory, and one might be easier to program and
understand. When faced with this choice, I have selected ex-
ample routines for this chapter which are easier to program
and understand.

At ML'’s extraordinary speeds, and with the large amounts
of RAM memory available to today’s computerists, it will be
rare that you will need to opt for velocity or memory
efficiency.

CALL

This is BASIC’s way of using a piece of ML code, an ML rou-
tine, as a subroutine. The only difference between CALL and
GOSUB is that the computer is alerted to the fact that it needs
to switch mental gears: The next series of instructions will be
ML. In other words, the computer shouldn’t try to interpret
what it finds at the CALL address as more BASIC instructions.
When it comes upon an RTS instruction in the ML program
which was not matched by a previous JSR instruction, it will
then revert to the BASIC program and pick up where it left
off, following the CALL instruction.

There are times when you want to write in ML and use it
as a subroutine for a BASIC program. This can greatly speed
up the execution of the BASIC program. To put an ML pro-
gram in RAM where it will be safe from BASIC’s dynamic
variable storage (where it won’t be overwritten by BASIC),
you boot DOS and then lower the HIMEM pointer ($73,74) to
create some space in high RAM of which the computer is “un-
aware.”” HIMEM contains the address (in the usual LSB,MSB
format discussed earlier) beyond which BASIC is forbidden to
intrude.

149

CLR

After resetting this pointer, you are free to load in your
ML program into the now-safe RAM between HIMEM and the
true highest RAM byte in your computer.

The new ProDOS system, however, requires a slightly
more complicated way of setting aside safe RAM. In effect,
you access a routine which will lower the location of
ProDOS’s buffers and then you can put your ML program be-
tween these buffers and the ROM operating system starting
location.

You put the number of pages (256-byte increments) of
RAM memory you will require for your ML into the accu-
mulator and then JSR $BEF5. When finished, this subroutine
returns the MSB of the start address of your safe, reserved
block of RAM. As an example, if you LDA #1:JSR $BEF5, you
will have secured 256 bytes of RAM for your ML program be-
tween $9900 and $99FF. One page.

Short ML routines can always be stored in the page be-
tween $0300 and $03FF without any special preliminaries.

CIR

In BASIC, this clears all variables. Its primary effect is to reset
pointers. It is a somewhat abbreviated form of NEW since it
does not “blank out”” your program, as NEW does.

CLR, in fact, is rarely used.

We might think of CLR, in ML, as the initialization phase
of a program which erases (fills with zeros) the memory loca-
tions you've set aside to hold your ML flags, pointers,
counters, and so on. You can see an example of this in the
LADS source code in Eval between lines 30 and 70.

Before an ML program runs, you will usually want to be
sure that some of these variables are set to zero. If they are
in different places in memory, you will need to zero them
individually:

2000 LDA #$0

2002 STA $1990 (Put zero into one of the “variables.”)

2005 STA $1994 (Continue putting zero into each byte which needs
to be initialized.)

On the other hand, if you've put all your variables to-
gether at the end, the job is easy: Just loop through the list,
putting zero in each variable. BASIC sets up a group of its

variables (pointers) in zero page, so you can use a loop to zero
them out:

150

DATA

2000 LDA #$0

2002 LDY #$0F (Y will be the counter. There are 15 bytes to zero
out in this example.)

2004 STA $199,Y (The highest of the 15 bytes)

2007 DEY

2008 BNE $2004 (Let Y count down to zero, BNEing until Y is zero,
then the Branch if Not Equal will let the program
fall through to the next instruction at $200A.)

CONT

This BASIC command allows your program to pick up where
it left off after a STOP command (or after hitting the system
break key combination). You might want to look at STOP, be-
low. In ML, you can’t usually get a running program to stop
with the break (or STOP) key. If you like, you could write a
subroutine which checks to see if a particular key is being held
down on the keyboard and, if it is, BRK:

3000 LDA $C000; (The “key currently pressed”” location)

3002 CMP #$8D (This is the RETURN key on your machine, but
you’ll want CMP here to the value that appears in
the “currently pressed”” byte for the key you select
as your STOP key. It could be any key. If you
want to use A for your “stop” key, try CMP

#$C1.)
3004 BNE $3007 (If it's not your target key, jump to RTS.)
3006 BRK (If it is the target, BRK.)
3007 RTS (Back to the routine which called this subroutine)

The 6502 places the program counter (plus two) on the
stack after a BRK.

A close analogy to BASIC is the placement of BRK within
ML code to cause a halt to program execution. Then, after
examining registers or variables or buffers (places that hold in-
put or output before it’s received or sent), you can restart your
program by using the monitor G (go) command. G is the
equivalent of CONT.

DATA

In BASIC, DATA announces that the items following the word
DATA are to be considered pieces of information (as opposed
to being thought of as parts of the program). That is, the pro-
gram will probably use this data, but the data are not BASIC
commands. In ML, such a zone of “nonprogram” is called a

151

DATA

table. It is unique only in that the program counter never starts
trying to run through a table to carry out instructions. This
never happens because you never transfer program control to
anything within a table. (This is similar to the way that BASIC
slides right over DATA lines.) There are no meaningful
instructions inside a table. To see what a table looks like and
what it does, see the Tables subprogram in the LADS source
code in this book.

To keep things simple, tables of data are usually stored
together either above or below the program. Usually, tables
are stored above, at the very end of the ML program. (See Fig-
ure 9-1.)

Tables can hold messages that are to be printed to the
screen, hold variables, hold flags (temporary indicators), and
so on. If you disassemble your BASIC in ROM, you'll find the
words STOP, RUN, LIST, and so forth, gathered together in a
table. You can suspect a data table when your disassembler
starts giving lots of error messages. It cannot find groups of
meaningful opcodes within tables.

Figure 9-1. Typical ML Program Organization

DATA <+————— Bottom of Memory
INITIALIZATION | <——— Start of ML Program

MAIN
LOOP

SUBROUTINES
DATA

152

END

DIM

With its automatic string handling, array management, and er-
ror messages, BASIC makes life easy for the programmer.

The price you pay for this hand-holding is that it slows
down the program when it’s run. In ML, the DIMensioning of
space in memory for variables is not explicitly handled by the
computer. You must make a note that you are setting aside
memory from $6000 to $6500, or whatever, to hold variables.
It helps to make a simple map of this ““dimensioned”” memory
so that you know where permanent strings, constants, variable
strings, and variables, flags, and so on, are within the dimen-
sioned zone. Because this set-aside memory will not contain
meaningful ML instructions, it is generally placed at the end of
the actual ML program. With LADS, you can make Tables the
final file in your chain of files. That will automatically put the
tables at the end of your program proper. To define data
(string or numeric), you use the .BYTE instruction; .BYTE auto-
matically makes space, like DIM.

A particular chunk of memory (where, and how much, is
up to you) is set aside; that’s all. You don’t write any instruc-
tions in 6502 ML to set aside the memory; you just start using
the .BYTE pseudo-op and it fills in your tables.

END

There are several ways to make a graceful exit from ML pro-
grams. You can use the “warm start’” address in the map of its
BASIC locations and JMP to that address. Or you can go to
the “cold start”” address.

If you went into the ML from BASIC with a CALL, you
can return to BASIC with an RTS. Recall that every JSR
matches up with its own RTS. Every time you use a JSR, it
shoves its “return here”” address onto the top of the stack. If
the computer finds another JSR (before any RTS), it will shove
another return address on top of the first one. So, after two
JSRs, the stack contains two return addresses. When the first
RTS is encountered, the top return address is lifted from the
stack and put into the program counter so that the program
returns control to the current instruction following the most
recent JSR.

When the next RTS is encountered, it pulls its appropriate
return (waiting for it on the stack), and so on. The effect of a

153

END

CALL from BASIC is like a JSR from within ML. The return
address to the correct spot within BASIC is put on the stack.
In this way, if you are within ML and there is an RTS (with-
out any preceding JSR), what’s on the stack had better be a re-
turn-to-BASIC address left there by CALL when you first went
into ML.

Another way to END is to put a BRK in your ML code.
This drops you into the machine’s monitor. Normally, you use
BRKSs during program debugging. When the program is fin-
ished, though, you would not want this ungraceful exit any
more than you would want to end a BASIC program with
STOP.

In fact, many ML programs, if they stand alone and are
not part of a larger BASIC program, never END at all. They
are an endless loop. The main loop just keeps cycling over
and over. A game will not end until you turn off the power.
After each game, you see the score and are asked to press a
key when you are ready for the next game. Arcade games
which cost a quarter will ask for another quarter, but they
don’t end. They go into “attract mode.” The game graphics
are left running onscreen to interest new customers.

An ML word processor will cycle through its main loop,
waiting for keys to be pressed, words to be written, format or
disk instructions to be given. Here, too, it is common to find
that the word processor takes over the machine, and you can-
not stop it without turning the computer off. Among other
things, such an endless loop protects software from being pi-
rated. Since it takes control of the machine, how is someone
going to save it or examine it once it’s in RAM? Some such
programs are “‘auto-booting” in that they start themselves run-
ning as soon as they are loaded into the computer.

BASIC, itself an ML program, also loops endlessly until
you power down. When a program is running, all sorts of
things are happening. BASIC is an interpreter, which means
that it must look up each word (like INT) it comes across
during a RUN (interpreting, or translating, its meaning into
machine-understandable JSRs). Then, BASIC executes the cor-
rect sequence of ML actions from its collection of routines.

In contrast to BASIC RUNs, BASIC spends 99 percent of
its time waiting for you to program with it. This waiting for
you to press keys is its endless loop, a tight, small loop
indeed.

154

FOR-NEXT

It would look like our “which key is pressed?”” routine:
2000 LDA 49168; THIS SETS THE LEFTMOST BIT IN 49152 TO 0
2003 LOOP LDA 49152; THE APPLE’S “WHICH KEY IS BEING

PRESSED” LOCATION
2006 BMI LOOP; IF THE LEFTMOST BIT IS OFF, KEEP

LOOPING

If the BMI is triggered, this means that the LDA found the
leftmost bit off in address 49152 and, thus, no key has been
pressed. So, we keep looping until the value in address 49152
has the leftmost bit on. This setup is the same as GET in
BASIC because not only does it wait until a key is pressed, but
it also leaves the value of the key in the accumulator when it’s
finished.

FOR-NEXT

Everyone has had to use delay loops in BASIC (FOR T = 1
TO 1000: NEXT T) which are also tight loops, sometimes
called do-nothing loops because nothing happens between the
FOR and the NEXT except the passage of time. For example,
when you need to let the user read something on the screen,
it’s sometimes easier just to use a delay loop than to say,
“When finished reading, press any key.”

In any case, you'll need to use delay loops in ML just to
slow ML itself down. In a game, the ball can fly across the
screen. It can get so fast, in fact, that you can't see it. It just
““appears” when it bounces off a wall. And, of course, you'll
need to use loops in many other situations. Loops of all kinds
are fundamental programming techniques.

In ML, you don’t have that convenient little counter (T in
the BASIC FOR-NEXT example above) which decides when to
stop the loop. When T becomes 1000, go to the instructions
beyond the word NEXT. Again, you must set up and check
your counter variable by yourself.

If the loop is going to be smaller than 255 cycles, you can
use the X register as the counter (Y is saved for the very useful
indirect indexed addressing discussed in Chapter 4: LDA
(96),Y). Anyway, by using X, you can count to 200 by:

2000 LDX #200 (or $C8 hex)
2002 DEX
2003 BNE $2002

155

FOR-NEXT-STEP

For loops involving counters larger than 255, you'll need
to use two bytes to count down, one going from 255 to 0 and
then clicking (like a gear) the other (more significant) byte.

To count to 512:

2000 LDA #$2

2002 STA $0 (Put the 2 into address 0, our MSB, most signifi-
cant byte, counter.)

2004 LDX #$0 (Set X to 0 so that its first DEX will make it 255.
Further DEXs will count down again to 0, when it
will click the MSB down from 2 to 1 and then fi-
nally 0.)

2006 DEX

2007 BNE $2006

2009 DEC $0 (Click the number in address 0 down 1.)

200B BNE $2006

Here we used the X register as the LSB (least significant
byte) and address 0 as the MSB. Why use address 0? Why
not? Use any RAM byte you want that won't interfere with
other things going on in the computer.

We could use addresses 0 and 1 to hold the MSB/LSB if
we wanted. This is commonly useful because then address 0
(or some available, two-byte space in zero page) can be used
for LDA ($0),Y. You would print a message to the screen using
the combination of a zero page counter and LDA (zero page
address),Y.

FOR-NEXT-STEP

Here you would just increase your counter (usually X or Y)
more than once. To create FOR 1 = 100 TO 1 STEP —2 you
could use:

2000 LDX # 100
2002 DEX
2003 DEX
2004 BNE $2002

For larger numbers you create a counter which uses two
bytes, working together, to keep count of the events. Follow-
ing our example above for FOR-NEXT, we could translate FOR
I = 512 TO 0 SIEP —2!

2000 LDA #$2
2002 STA $0 (This is going to hold our MSB.)
2004 LDX #$0 (X is holding our LSB.)

156

GET

2006 DEX

2007 DEX (Here we click X down a second time, for —2.)
2008 BNE $2006

200ADEC $0

200c BNE $2006

To count up, use the CoMPare instruction. FOR 1 = 1 TO
50 STEP 3:

2000 LDX #$0
2002 INX

2003 INX

2004 INX

2005 CPX #$50
2007 BNE $2002

For larger STEP sizes, you can use a nested loop within
the larger one. This would avoid a whole slew of INXs. To
write the ML equivalent of FORI = 1 TO 50 STEP 10:

2000 LDX #$0
2002 LDY #$0
2004 INY

2005 CPY #$0A
2007 BNE $2004
2009 CPX #$32
200B BNE $2002

GET

Every computer must have that important “which key is being
pressed?” address, where it holds the value of a character
typed in from the keyboard. To GET, you create a very small
loop which just keeps testing this address. In the Apple:

2000 LDA $C000 (“Which key pressed?”’ Note: this is in hex.)

2003 BPL $2000 (If the seventh bit of $C000 is clear—meaning no
key was pressed—the BPL branch instruction is trig-
gered and we jump back to keep waiting until the
seventh bit in $C000 is set which, on the Apple,
means a key was struck on the keyboard.)

2005 STA $C010 (Clears the keyboard)

2008 AND #$7F (To give the correct character value)

This routine will wait until a key is pressed. For most
programming purposes, you want the computer to wait until a
key has actually been pressed. However, if your program is
supposed to fly around doing things until a key is pressed,

157

GOSUB

you might use the above routine without the loop structure.
Just use a CMP to test for the particular key that would stop
the routine and branch the program somewhere else when a
particular key is pressed. This flexibility would never be
permitted in BASIC, but that’s one of the signal advantages of
ML. How you utilize and construct a GET-type command in
ML is up to you, tailored to each application.

GOSUB

This is nearly identical to BASIC in ML. Use JSR $NNNN and
you will go to a subroutine at address NNNN instead of a line
number as in BASIC. (NNNN just means that you can sub-
stitute any hex number for the NNNN that you want to. This
is a form of math shorthand.) LADS allows you to give labels,
names to JSR to, instead of addresses. A simple assembler like
the one in the monitor does not allow labels. You are respon-
sible (as with DATA tables, variables, and so on) for keeping a
list of your subroutine addresses and the parameters involved if
you're not using LADS.

Parameters are the number or numbers handed to a sub-
routine to give it information it needs. Quite often, BASIC
subroutines work with the variables already established within
the BASIC program. In ML, though, managing variables is up
to you. Subroutines are useful because they can perform tasks
repeatedly without needing to be written into the body of the
program each time the task is to be carried out. Beyond this,
they can be generalized so that a single subroutine can act in a
variety of ways, depending upon the variable (the parameter)
which is passed to it.

A delay loop to slow up a program could be general in
the sense that the amount of delay is handed to the subroutine
each time. The delay can, in this way, be of differing dura-
tions, depending on what it gets as a parameter from the main
routine.

Let’s say that we've decided to use address 0 to pass
parameters to subroutines. We could pass a delay of five cy-
cles of the loop by:

158

GOTO

2000 LDA #8$5
The Main Program 2002 STA $0
2004 JSR $5000

5000 DEC $0

5002 BEQ $500C (If address 0 has counted all
the way down from five to
zero, RTS back to the Main
Program.)

5004 LDY #$0

5006 DEY

The Subroutine 5007 BNE $5006
5009 JMP $5000
500C RTS

A delay which lasted twice as long as the above would
merely require a single change to the calling routine: 2000
LDA #$0A.

GOTO

In ML, it’s JMP. JMP is like JSR, except the address you leap
away from is not saved anywhere. You jump, but cannot use
an RTS to find your way back. A conditional branch would be
CMP #0:BEQ 5000. The condition of equality is tested by
BEQ, Branch if EQual. BNE tests a condition of inequality,
Branch if Not Equal. Likewise, BCC (Branch if Carry is Clear)
and the rest of these branches are testing conditions within the
program.

GOTO and JMP do not depend on any conditions within
the program, so they are unconditional branches. The question
arises, when you use a GOTO: Why did you write a part of
your program that you must always (unconditionally) jump
over? GOTO and JMP are sometimes used to patch up a pro-
gram, but used without restraint, they can make your program
hard to understand later. On the other hand, JMP can many
times be the best solution to a programming problem. In fact,
it is hard to imagine ML programming without it.

One additional note about JMP: It makes a program
nonrelocatable. If you later need to move your whole ML pro-
gram to a different part of memory, all the JMPs (and JSRs)

159

GOTO

need to be checked to see if they are pointing to addresses
which are no longer correct. (JMP or JSR into your BASIC
ROMs will still be the same, but not those which are targeted
to addresses within the ML program.)

2000 JMP $2005

2003 LDY #8$3
2005 LDA #$5

If you moved this little program up to $5000, everything
would survive intact and work correctly except the JMP $2005.
It would still say to jump to $2005, but it should say to jump
to $5005, after the move. You have to go through with a dis-
assembly and check for all these incorrect JMPs. To make your
programs more “‘relocatable,” you can use a special trick with
unconditional branching which will move without needing to
be fixed:

2000 LDY #$0

2002 BEQ $2005 (Since we just loaded Y with a zero, this Branch if
EQual to zero instruction will always be true and
cause a pseudo-JMP.)

2004 NOP

2005 LDA #$5

Various monitors and assemblers include a “moveit” rou-
tine, which will take an ML program and relocate it some-
where else in memory for you. On the Apple, you can go into
the monitor and type *5000<2000.2006M (you give the mon-
itor these numbers in hex). The first number is the target ad-
dress. The second and third are the start and end of the
program you want to move.

The best solution to relocatability, however, is LADS.
With it, you never JMP to actual addresses; rather, you JMP or
JSR or branch to labels. This way, relocating your program
couldn’t be simpler. You just change the start address with *=
and reassemble. Everything is taken care of and the program
reassembles to the new location flawlessly. With LADS, the
example above is written like this:

100 JMP NEXTROUTINE
110 LDY #3
120 NEXTROUTINE LDA #5

(The numbers at the left are not addresses; they are line num-
bers for your convenience when writing the program, and they
have no effect on the resulting ML code after assembly.)

160

INPUT

GR(APHICS)
JSR $FB40 switches to the graphics screen.

HOME

JSR $FC58 clears the screen and puts the cursor in the upper-
left-hand corner, just like BASIC.

IF-THEN

This familiar and fundamental computing structure is accom-
plished in ML with the combination CMP-BNE or any other
conditional branch: BEQ, BCC, and so forth. Sometimes, the IF
half isn’t even necessary. Here’s how it would look:

2000 LDA $57 (What's in address $57?)

2002 CMP #$0F (Is it $0F, 15 decimal?)

2004 BEQ $200D (IF it is, branch up to $200D)

2006 LDA #$0A (or ELSE, put a $0A, 10 decimal, into address
$57)

2008 STA $57

200A JMP $2011 (and jump over the THEN part.)

200DLDA #8$14 (THEN, put a $14, 20 decimal, into address $57.)

200F STA $57

2011 (Continue with the program....)

Often, though, your flags are already set by an action,
making the CMP unnecessary. For example, if you want to
branch to $200D if the number in address $57 is zero, just
LDA $57:BEQ $200D. This works because the act of loading
the accumulator will affect the status register flags. You don’t
need to CMP #0 because the zero flag will be set if a zero was
just loaded into the accumulator. It won’t hurt anything to use
a CMP, but you'll find many cases in ML programming where
you can shorten and simplify your coding if you wish to. As
you gain experience, you will see these patterns and learn
how and what affects the status register flags.

INPUT

This is a series of GETs, echoed to the screen as they are
typed in, which end when the typist hits the RETURN key.
The reason for the echo (the symbol for each key typed is re-
produced on the screen) is that few people enjoy typing with-
out seeing what they’ve typed. This also allows for error

161

INPUT

correction using cursor control keys or DELETE and INSERT
keys.

To handle all of these actions, an INPUT routine must be
fairly complicated. We don’t want, for example, the DELETE
to become a character within the string. We want it to im-
mediately act on the string being entered during the INPUT,
to erase a mistake.

Our INPUT routine must also be smart enough to know
what to add to the string and what keys are intended only to
modify it. Here is the basis for constructing your own ML IN-
PUT. It simply receives a character from the keyboard, stores
it in the screen RAM cells, and ends when the RETURN key is
pressed. We'll write this INPUT as a subroutine. That simply
means that when the 141 (Apple ASCII for carriage return) is
encountered, we'll perform an RTS back to a point just follow-
ing the main program address which JSRed to our INPUT
routine:

5000 LDY #$0 (Y will act here as an offset for storing the
characters to the screen as they come in.)

5002 LDA $9E (This is the “number of keys in the keyboard
buffer” location. If it’s zero, nothing has been
typed yet.)

5004 BNE $5002 (So we go back to $5002.)

5006 LDA $26F (Get the character from the keyboard buffer.)

5009 CMP #$8D (Is it a carriage return?)

500B BNE $500F (If not, continue.)

500D RTS (Otherwise, return to the main program.)
500E STA $8000,Y (Echo it to the screen.)
500F INY

5010 LDA #$0
5012 STA $96 (Reset the “number of keys” counter to zero.)
5014 JMP $5002 (Continue looking for the next key.)

This INPUT could be much more complex. As it stands, it
will hold the string on the screen only. To save the string, you
would need to read it from screen RAM and store it elsewhere
where it will not be erased. Or, you could have it echo to the
screen, but (also using Y as the offset) store it into some safe
location where you are keeping string variables. The routine
above does not make provisions for DELETE or INSERT,
either. The great freedom you have with ML is that you can
redefine anything you want. You can softkey: define a key’s
meaning via software; have any key perform any task you
want. You might even decide to use the $ key to DELETE.

162

LET

Along with this freedom goes the responsibility for
organizing, writing, and debugging these routines.

LET

Although this word is still available on most BASICs, it is a
holdover from the early days of computing. It is supposed to
remind you that statements like LET NAME = NAME + 4 is
an assignment of a value to a variable, not an algebraic equa-
tion. The two numbers on either side of the equal sign, in
BASIC, are not intended to be equal in the algebraic sense.
Most people write NAME = NAME + 4 without using LET.
The function of LET applies though to ML as well as to
BASIC: We must assign values to variables.

In the Apple, for example, where the address of the
screen RAM can change depending on how much memory is
in the computer, and so on, there has to be a place where we
find out the starting address of screen RAM. Likewise, a pro-
gram will sometimes require that you assign meanings to
string variables, counters, and the like. This can be part of the
initialization process, the tasks performed before the real pro-
gram, your main routine, gets started. Or it can happen during
the execution of the main loop. In either case, there has to be
an ML way to establish, to assign, variables. This also means
that you must have zones of memory set aside to hold these
variables. Normally, you will store your variables as a group
at the end of an ML program.

For strings, you can think of LET as the establishment of
a location in memory. In our INPUT example above, we might
have included an instruction which would have sent the
characters from the keyboard to a table of strings as well as
echoing them to the screen. If so, there would have to be a
way of managing these strings. For a discussion on the two
most common ways of dealing with strings in ML, see Chapter
6 under the subhead “Dealing with Strings.”

In general, you will probably find that you program in
ML using somewhat fewer variables than in BASIC. There are
three reasons for this:

1. You will probably not write many programs in ML like
databases where you manipulate hundreds of names, ad-
dresses, and so forth. It might be somewhat inefficient to
create an entire database management program, an inventory

163

LET

program for example, in ML. Keeping track of the variables
would require careful programming. (For an example data-
base manager, see LADS’s Equate and Array subprograms.)

The value of ML is its speed of execution, but its
drawback is that it requires more precise programming and,
at least for beginners, can take more time to write. So, for
an inventory program, you could write the bulk of the pro-
gram in BASIC and simply attach ML routines for sorting
and searching tasks within the program.

2. The variables in ML are often handled within a series of
instructions (not held elsewhere as BASIC variables are).
FORI = 1 TO 10 : NEXT I becomes LDY #1:INY:CPY
#10:BNE.

Here, the BASIC variable is counted for you and
stored outside the body of the program. The ML “variable,”
though, is counted by the program itself. ML has no inter-
preter which handles such things. If you want a loop, you
must construct all of its components yourself.

3. In BASIC, it is tempting to assign values to variables at the
start of the program and then to refer to them later by their
variable names, as in 10 BALL = 79. Then, anytime you
want to PRINT the BALL to the screen, you could say,
PRINT CHR$(BALL). Alternatively, you might define it this
way in BASIC: 10 BALL$ = “O”. In either case, your pro-
gram will later refer to the word BALL. In this example we
are assuming that the number 207 will place a ball charac-
ter on your screen (the letter O).

In ML we can use variable names precisely the same way
if we are programming with an advanced assembler like
LADS. However, with an elementary assembler like the one in
the monitor, you will just LDA #207, STA (screen position)
each time. Some people like to put the 207 into their zone of
variables (that arbitrary area of memory set up at the end of a
program to hold tables, counters, and important addresses).
They can pull it out of that zone whenever it's needed. That is
somewhat cumbersome, though, and slower. You would LDA
1015, STA (screen position), assuming you had put a 207 into
this “ball” address, 1015, earlier.

Obviously a value like BALL will always remain the same
throughout a program. The ball will look like a ball in your
game, whatever else happens. So, it’s not a true variable; it

164

LOAD

does not vary. It is constant. A true variable must be located in
your “‘zone of variables,” your variable table.

It cannot be part of the body of your program itself (as in
LDA #207) because it will change. You don’t know when writ-
ing your program what the variable will be. So you can’t use
immediate mode addressing because it might not be a #207.
You have to LDA 1015 from within your table of variables.

Elsewhere in the program you have one or more STA
1015 or INC 1015 or some other manipulation of this address
which keeps updating this variable. In effect, ML makes you
responsible for setting aside areas which are safe to hold vari-
ables if you are using the monitor assembler. What’s more,
you have to remember the addresses and update the variables
in those addresses whenever necessary. This is why it is so
useful to keep a piece of paper next to you when you are writ-
ing ML. The paper lists the start and end addresses of the
zone of variables, the table. You write down the specific ad-
dress of each variable as you write your program. LADS, of
course, makes variable zones and names automatic with the
.BYTE pseudo-op. See LADS’s Tables subprogram to see how
variables (and constants) can be handled efficiently.

LIST

This is done via a disassembler. It will not have line numbers
(though, again, advanced assembler-disassembler packages
like LADS do have line numbers). You will see the address of
each instruction in memory. You can look over your work and
plan debugging strategies, where to set BRKs into problem
areas, and so on.

The most common way to list and check your work, how-
ever, is to read over the source code. This does not require a
disassembler. You write LADS source code as if it were a
BASIC program and, thus, can LIST it and modify it as if it
were a BASIC program.

LOAD

The method of saving and loading an ML program varies from
computer to computer. Normally, you have several options
which can include loading from within the monitor, from
BASIC, or even from an assembler. When you finish working
on a program, or a piece of a program, on the mini-assembler

165

NEW

you will know the starting and ending addresses of your
work. Using these, you can save to tape using the W monitor
command (described in Chapter 3) or to disk using BSAVE in
the manner you would from BASIC. To LOAD, the simplest
way is just to BLOAD. (From tape, you use the monitor R
command.)

To see how to save and load from within your ML pro-
grams, to write ML which itself saves and loads files, please
refer to the Open1 subprogram of LADS in Appendix D.

NEW

In Microsoft BASIC, this has the effect of resetting some point-
ers which make the machine think that you are going to start
over again. The next program line you type in will be put at
the “start-of-a-BASIC-program” area of memory. Some
computers, the Atari for example, even wash memory by fill-
ing it with zeros. There is no special command in ML for
NEWing an area of memory, though the monitor has a “fill
memory”’ option which will fill an area of memory as large as
you want with whatever value you choose.

The reason that NEW is not found in ML is that you do
not always write your programs in the same area of memory
as you do in BASIC, building up from some predictable ad-
dress. You might have a subroutine floating up in high mem-
ory, another way down low, your table of variables at the end,
and your main program in the middle. Or you might not.
We've been using $2000 as our starting address for many of
the examples in this book and $5000 for subroutines, but this
is entirely arbitrary.

To “NEW” in ML, just start assembling over the old
program.

Alternatively, you could just turn the power off and then
back on again. This would, however, have the disadvantage of
wiping out LADS along with your program.

ON-GOSuUB

In BASIC, you are expecting to test values from among a
group of numbers: 1, 2, 3, 4, 5.... The value of X must fall
within this narrow range: ON X GOSUB 100, 200, 300 ... (X
must be 1 or 2 or 3 here). In other words, you could not
conveniently test for widely separated values of X (18, 55,

166

ON-GOTO

220). Some languages feature an improved form of ON-
GOSUB where you can test for any values. If your computer
were testing the temperature of your bath water:

CASE
80 OF GOSUB HOT ENDOF
100 OF GOSUB VERYHOT ENDOF
120 OF GOSUB INTOLERABLE ENDOF
ENDCASE

ML permits you the greater freedom of the CASE struc-
ture. Using CMP, you can perform a multiple branch test:

2000 LDA $96 (Get a value, perhaps input from the keyboard)

2002 CMP #$50 (Decimal 80)

2004 BNE $2009

2006 JSR $5000 (Where you would print “hot,” following our ex-
ample of CASE)

2009 CMP #$64 (Decimal 100)

200B BNE $2011

200D JSR $5020 (Print “very hot”)

2010 CMP #$78 (Decimal 120)

2012 BNE $2017

2014 JSR $5030 (Print “intolerable”)

This illustrates one way that bugs get into ML—by not
cleanly entering and leaving subroutines. The potential prob-
lem here is triggering the CMPs more than once. Since you
are JSRing and then will be RTSing back to within the mul-
tiple branch test above, you will have to be sure that the sub-
routines up at $5000 do not change the value of the
accumulator. If the accumulator started out with a value of
$50 and, somehow, the subroutine at $5000 left a $64 in the
accumulator, you would print “hot”” and then also print “very
hot.” One way around this would be to put a zero into the
accumulator before returning from each of the subroutines
(LDA #$0). This assumes that none of your tests, none of your
cases, responds to a zero.

ON-GOTO

This is more common in ML than the ON-GOSUB structure
above. It eliminates the need to worry about what is in the
accumulator when you return from the subroutines. Instead of
RTSing back, you jump back, following all the branch tests.

167

PILOT

2000 LDA $96

2002 CMP #$50

2004 BNE $2009

2006 JMP $5000 (Print “hot”)

2009 CMP #$64

200B BNE $2010

200D JMP $5020 (Print “very hot”)
2010 CMP #$78

2012 BNE $2017

2014 JMP $5030 (Print “intolerable”)
2017 (All the subroutines JMP $2017 when they finish.)

Instead of RTS, each of the subroutines will JMP back to
$2017, which lets the program continue without accidentally
“triggering”” one of the other tests with something left in the
accumulator during the execution of one of the subroutines.

PLOT

You can use the BASIC PLOT command by putting the row
into the accumulator, the column into the Y register, and then
JSR to $F800. However, Program 9-1, written by my associate
Tim Victor, illustrates how you can construct an arcade-style
game from within ML by using a flexible routine in BASIC
ROM which calculates the start address of any screen line. By
then using the Y register as an offset from the line (in other
words, Y holds the number of the column you're after), you
can print and erase a character as it flies around the screen.

A great variety of player/enemy action games can be con-
structed by using the techniques illustrated in Program 9-1, so
let’s look at the structure of this program.

Between lines 50 and 120, we define the labels of this
program. We're going to move a ball-like character around the
screen. The current position of the ball must be known at all
times, so we’ll keep its row (on which line on the screen it
currently resides) in $FF, labeled ROW, and the column num-
ber in the location called COL.

But we also need to erase the ball every time it moves to
a new location, so we create places that will hold the previous
position of the ball and we call these places OLDROW and
OLDCOL. Now we’re ready to move the ball around.

In lines 150-160 we set the row to zero which means
we'll start on the first screen line, and we set the column to
zero so that we’ll be in the leftmost space on that line.

168

T

PL

NOILISOd HAVS ‘MO¥ATO VIS:MO¥ VAT LHOIYION
1

JAOW TYDOILYIA --*

o~ on

70D VYIS:g# Va1

2503 IHOIY IV¥ ‘IHOIYLON IANH:6€# dWD
10D ONI

NOILISOd HJAVS ‘7T0Dd7T0 ¥IS:7T0D ¥AT dOOT

HAOW TVYINOZI¥YOH ‘dOOT NIVW--*

’
.

NIFIOS 40 LJIIT ¥IAdN IV IAVLS *TOD VIS:MOd VYIS

(MO¥ STHL NI ANY) *‘Jdd$§ = MOYQTIO

- (NWATOD STIHL NI ASVYYHI OL QIIAN IM) ‘FIS T0DdT10
(IYTH JIGWAN INTT INIWEND FHL FAVS IM) ‘Jd§ = MO¥
4§ = T0D

(4FILNIOd SLI SHEAVAT DTVOSYE FAYHHM HOVId) {82$ = dASVd
’

(# S,ENIT FHL NIAID NIHM) ¢

ANIT ¥ 40 SSHIAAVY IIYIS JHL SILVINDTIYD (10948 = DIVOSvd
:

*NIFA¥YOS FHL ANNOYY TIVE ¥ JAOW O INILAOYLENS ¢

rdo-11vd a-

89L ==«

1-6 weidoud

169

PLOT

T°6WYYD0Yd dNA*

dOoOT dWr
1dN1a 3INd:

XNI

2dNI1a IANg:ANI Zd4n1d
P# X471 14n71d

ooT#
AY'Tad

TIVd THIL THOLS ‘X’ (ISVE) VIS:L@Z# VAT:TOD
ONIMWVIA ¥Od4 INIT J0 I¥VLIS ANIJ {DTVOSVH dSL:MOY

TIVE MIN MWIA

X’ (FSVE) VIS:@9T1# VAT:7T0DdTO

Xat1

AdT

ISVYT ¥YOd FANIT A0 ILIVLS ANIZ ‘DTVOSYH ¥SL:MOYATO VAT LIOYLON
’

TI¥d dT0 dsvdd

MOY VYIS:0#
NITYOS J0 WOLLO®E IV ‘LIOHION IANd:€Z#
Mod

’

1

Ya1
dWD
ONI

2S€
oveE
gEE
"IA%
STE
PTE

€0€
(4743
20€
262
S8
v8¢
€8¢
@82
oLe
S9¢
1 4°14
£9¢
414
ove
€T

PLOT

To illustrate horizontal, vertical, and diagonal movement,
we’ll cause the ball to move down the screen from the upper
left to the lower right. We’ll have it move diagonally because
that’s simply a combination of horizontal and vertical move-
ment: one down, one to the right, one down, and so on.

The first thing we're going to do is save the current col-
umn and row locations for future reference. We'll need their
locations when we go to erase the ball character after printing
a new ball lower down on the screen. Since we're going to cal-
culate the new row and column (and place them into our
holding areas called ROW and COL), we need to have holding
places which remember the location we need to erase. Without
erasing the old balls, the illusion that a ball is moving would
be destroyed and the graphics on the screen would look like a
string of pearls. (Some games, however, make use of this. To
create a firing ray gun, you can print a line of characters and
then erase the line all the way from the end, all at once. This
looks like a whip shoots out and then recoils.)

In any case, after saving the column position, we then
raise it by one (INC) to move the ball one space to the right (if
we were simply moving the ball horizontally, we’d now be
ready to print the ball).

Next, we check to see if we’ve gone off the screen to the
right (a column number of 39 would cause us to reset our col-
umn number in line 200). Then, between lines 220 and 250,
we perform the same steps for the vertical move downward by
one line.

Now we are ready to call upon the built-in ROM routine
which, if we give it the screen line we're interested in (by
putting the line number in the accumulator), will give us back
the address in RAM of that line. BASE was defined in line 80
as the location where this ROM routine leaves the address of
the BASIC line.

We get our offset out of COL and put it into the Y reg-
ister, load the blank character into the accumulator, and store
the blank character at the proper line and offset the proper
number of columns from the start of that line (lines 270-280).

Then we repeat these steps to print the ball character in
the new location. Because ML is so fast, we have to delay
things before printing the next ball, so lines 310-330 simply
waste some time counting up the X and Y registers. It's here
that you would raise or lower the LDX and LDY values to

171

PRINT

adjust the speed of the game or to provide various “skill lev-
els” of play.

If your game involved several things bouncing around on
the screen, you would control each of them with their own
OLDCOL/COL, OLDROW /ROW pairs. If you needed to de-
tect whether or not a player had hit a missile or had run into a
wall or some other object, you could insert the following start-
ing at line 300:

300 LDY COL:LDA (BASE),Y:CMP #MISSILE:BEQ
HITSOMETHING

302 LDA #207:STA (BASE),Y:JMP DELAY

303 HITSOMETHING (Raise or lower the score or take other

action)
310 DELAY LDX #200

You would have defined the missile character as MISSILE
at the top of the program. The HITSOMETHING routine
could cause an explosion, could damage or transform the
player, or could simply affect the score—it depends on the
rules of the game.

PRINT

You could print out a message in the following way:

2000 LDY #$0

2002 LDA #$C8 (the letter H)
2004 STA $0400,Y (an address on the screen)
2007 INY

2008 LDA #$C5 (the letter E)
200A STA $0400,Y

200D INY

200E LDA #$CC (the letter L)
2010 STA $0400,Y

2013 INY

2014 LDA #$CC (the letter L)
2016 STA $0400,Y

2019 INY

201A LDA #$CF (the letter O)
201C STA $0400,Y

But this is clearly a cumbersome, memory-eating way to
go about it. In fact, it would be absurd to print out a long
message this way. The most common ML method involves
putting message strings into a data table and ending each mes-
sage with a zero. Zero is never a printing character in comput-

172

PRINT

ers; to print the number zero, you use 176: LDA #176, STA
$0400. So, zero itself can be used as a delimiter to let the
printing routine know that you've finished the message. In a
data table, we first put in the message “hello”:

1000 $C8 H

1001 $C5 E

1002 $CC L

1003 $CC L

1004 $CF O

1005 $0 (the delimiter)
1006 $C8 H

1007 $C9 I (another message)
1008 $0 (another delimiter)

Such a message table can be as long as you need; it holds
all your messages and they can be used again and again:

2000 LDY #$0

2002 LDA $1000,Y

2005 BEQ $200F (If the zero flag is set, it must mean that we've
reached the delimiter, so we branch out of this
printing routine.)

2007 STA $0400,Y (Put it on the screen.)

200A INY
200B JMP $2002 (Go back and get the next letter in the message.)
200F (Continue with the program.)

Had we wanted to print HI, the only change necessary
would have been to put $1006 into the LDA at address $2003.
To change the location on the screen that the message starts
printing, we could just put some other address into $2008. The
message table, then, is just a mass of words, separated by ze-
ros, in RAM memory.

The process of printing messages is even simpler using
the LADS label-based assembler and its .BYTE trick for storing
numbers or words:

10 SCREEN = $0400
100 LDY #0:MORE LDA MESSAGE,Y:BEQ FINISH
110 STA SCREEN, Y:INY:JMP MORE
with, at the end of your source code, the following line in-
cluded somewhere in your table of variables, your data:
400 MESSAGE .BYTE “HELLO":.BYTE 0
410 MESSAGE1 .BYTE “HI":.BYTE 0

The fastest way to print to the screen, especially if your
program will be doing a lot of printing, is to create a

178

PRINT

subroutine which will print any of your messages. It can use
some bytes in zero page (addresses 0-255) to hold the location
of the message within your table of data.

To put an address into zero page, you will need to put it
into two bytes. Addresses are too big to fit into one byte. With
LADS, you can use the #< and #> pseudo-ops to extract the
LSB and MSB of a label and thus store the address of your
message into a zero page pointer:

10 MSGADDRESS = 56
20 SCREEN = $0400
100 LDA #<MESSAGE:STA MSGADDRESS; set up pointer
110 LDA #>MESSAGE:STA MSGADDRESS +1
120 JSR PRINTMSG; go to universal print subroutine
500 PRINTMSG LDY #0:LOOP LDA (MSGADDRESS),Y:BEQ

END:STA SCREEN,Y
510 STA SCREEN,Y:INY:J]MP LOOP
520 END RTS

This same trick can be done with the simple assembler in the
monitor, but it is more cumbersome.

First, you split the hex number in two. The left two digits,
$10, are the MSB (most significant byte) and the right digits,
$00, make up the LSB (least significant byte). If you are going
to put this target address into zero page at 56 (decimal):

2000 LDA #$00 (LSB)

2002 STA $56

2004 LDA #$10 (MSB)

2006 STA $57

2008 JSR $5000 (Printout subroutine)

5000 LDY #$0

5002 LDA ($56)Y

5004 BEQ $5013 (If zero, return from subroutine)
5006 STA $0400,Y (to screen)

5009 INY

500A JMP $5002

500D RTS

One drawback to this PRINT subroutine we’ve con-
structed is that it will always print any messages to the same
place on the screen. That $0400 is frozen into your subroutine.
Solution? Use another zero page pair of bytes to hold the
screen address. Then, your calling routine sets up the message
address as above, but also goes on to specify a screen address
as well.

174

RANDOM

We are using the Apple II's low-resolution graphics screen
for the examples in this book, so you will want to put 0 and 4
into the LSB and MSB respectively for your screen pointer.

2000 LDA #$00 (LSB)

2002 STA $56 (Set up message address)
2004 LDA #$10 (MSB)

2006 STA $57

2008 LDA #$0 (LSB)

200A STA $58 (We'll just use the next two bytes in zero page
above our message address for the screen
address.)

200C LDA #$4 (MSB)

200E STA $59

2010 JSR $5000

5000 LDY #$0

5002 LDA ($56)Y

5004 BEQ $500D (If zero, return from subroutine)

5006 STA ($58),Y (to screen)

5009 INY

500A JMP $5002

500D RTS

The easiest way to print messages to particular places on
the screen, however, is to use the Apple’s built-in BASIC
PRINT routine to send the characters, one by one, each to the
next cursor position onscreen. The built-in routine updates
and keeps track of the current cursor position for you. So, you
can get around having to keep a screen pointer in zero page
this way. In the example immediately above, just replace line
5006 with JSR $FDED (the Apple PRINT routine) and remove
lines 2008-200E.

RANDOM

To pick off a random number, look in address $4E or $4F
which is erratically updated whenever input is requested from
the user. The reason this works so well is that these locations
are furiously cycled whenever the computer waits for user in-
put. Since the amount of time it takes you to type something
in after an INPUT prompt is thoroughly unpredictable in milli-
seconds, very high quality randomness is achieved. In other
words, nothing within the machine can achieve the high de-
gree of temporal randomness of the human nervous system

175

READ

organizing itself to put a finger to a particular key on a key-
board. If you are looking for a random number between cer-
tain limits, mask the bytes (described at the end of Chapter 6
under the subhead “Less Common Instructions”).

READ

There is no reason for a reading of data in ML. Variables are
not placed into “DATA statements.” They are entered into a
table when you are programming. The purpose of READ, in
BASIC, is to assign variable names to raw data, or to take a
group of data and move it somewhere, or to manipulate it into
an array of variables. These things are handled by you, not by
the computer, in ML programming.

If you need to access a piece of information, you set up
the addresses of the datum and the target address to which
you are moving it. (See the “PRINT"” routines above.) As al-
ways, in ML you are expected to keep track of the locations of
your variables. If you are using the simple assembler in the
monitor, you must keep a map of data locations, vectors, ta-
bles, and subroutine locations. This pad of paper is always
next to you as you program in ML. It would seem that you
would need many notes, but in practice an average program
of, say, 1000 bytes could be mapped out and commented on,
using only one sheet.

Alternatively, with more sophisticated assemblers like
LADS, the labels themselves within the program will keep
track of things for you, and embedded comments serve to re-
mind you of the use and function of all data.

REM

You do this on a pad of paper, too, when working with a
simple assembler. If you want to comment or make notes
about your program (and it can be a necessary, valuable
explanation of what’s going on), you can disassemble some
ML code like a BASIC LISTing. If you have a printer, you can
make notes on the printed disassembly. If you don’t use a
printer, make notes on your pad to explain the purpose of
each subroutine, the parameters it expects to get, and the re-
sults or changes it effects.

The more sophisticated assemblers like LADS will permit
comments within the source code. As you program, you can

176

RUN

include REMarks by typing a semicolon, which is a signal to
the assembler to ignore the REMarks when it is assembling
your program. In these assemblers, you are working much
closer to the way you work in BASIC. Your REMarks remain
part of the source program and can be listed out and studied.

RETURN

RTS works the same way that RETURN does in BASIC: It
takes you back to just after the JSR (GOSUB) that sent control
of the program away from the main program and into a sub-
routine. JSR pushes, onto the stack, the address which im-
mediately follows the JSR itself. That address, then, sits on the
stack, waiting until the next RTS is encountered. When an RTS
occurs, the address is pulled from the stack and placed into
the program counter. This has the effect of transferring program
control back to the instruction just after the JSR.

RUN

There are several ways to start an ML program. If you are tak-
ing off into ML from BASIC, you just CALL it. This acts just
like JSR and will return control to BASIC, just like RETURN
would, when there is an unmatched RTS in the ML program.
By unmatched we mean the first RTS which is not part of a
JSR/RTS pair. CALL can take you into ML either in immediate
mode (directly from the keyboard) or from within a BASIC pro-
gram as one of the BASIC commands.

If you need to “pass” information from BASIC to ML, it is
easiest to use integer numbers and just POKE them into some
predetermined ML variable zone that you've set aside and
noted on your notepad. Then just CALL your ML routine,
which will look into the set-aside, POKEd area when it needs
the values from BASIC.

If you are not going between BASIC and ML, you can
start (RUN) your ML program from within the built-in mon-
itor. To enter the monitor on Apple II, type CALL —151 and
you will see an asterisk as your prompt. To run an ML pro-
gram from within the monitor, you type 2000G (that’s address
8192 in decimal).

The Apple expects to encounter an unmatched RTS or a
BRK instruction to end the run and return control to the
monitor.

177

SAVE

SAVE

When you save a BASIC program, the computer automatically
handles it. The starting address and the ending address of
your program are calculated for you. In ML, you must know
the start address and the length (size in bytes) of the program
if you are BSAVEing. For tape users, use the W function of the
monitor (described in Chapter 3). From the Apple II monitor,
you type the starting and ending address of what you want
saved, and then W for write:

2000.2010W (Note that these commands are in hex. These
addresses are 8192 and 8208, in decimal.)

For more information about BSAVE and BLOAD, please
see your User’s Guide.

Saving object code is automatic with LADS; you use the
.O pseudo-op. To see how to save and load from within your
ML programs—to write ML which itself saves and loads
files—please refer to the Openl subprogram of LADS in
Appendix D.

STOP

BRK (or an RTS with no preceding JSR) throws you back into
the monitor mode after running an ML program. BRK is most
often used for debugging programs because you can set
“breakpoints” in the same way that you would use STOP to
examine variables when debugging a BASIC program.

TEXT
JSR $FB39. Sets text mode, just like BASIC.

String Handling

ASC

In BASIC, this will give you the number of the ASCII code
which stands for the character you are testing. 2ASC(“A”’) will
result in a 193 being displayed. There is never any need for
this in ML. If you are manipulating the character A in ML, you
are using ASCII already. In other words, the letter A is 193 in
ML programming. The Apple ASCII isn’t standard ASCII; it
stores character symbols in nonstandard ways, so you will
need to write a special program to be able to translate to stan-

178

LEN

dard ASCII if you are using a modem or some other periph-
eral which uses true ASCII.

CHR$

This is most useful in BASIC to let you use characters which
cannot be represented within normal strings, will not show up
on your screen, or cannot be typed from the keyboard.

For example, if you have a printer attached to your com-
puter, you could send CHR$(13) to it, and it would perform a
carriage return. (The correct numbers which accomplish vari-
ous things sometimes differ, though decimal 13—an ASCII
code standard—is nearly universally recognized as carriage re-
turn, except that the Apple internal code for a carriage return
on the screen is 141.)

Or, you could send the combination CHR$(27) CHR$(8),
and the printer would backspace.

There is no real use for CHR$ within ML. If you want to
specify a carriage return, just LDA #141. In ML, you are not
limited to the character values which can appear onscreen or
within strings. Any value can be dealt with directly.

LEFT$

As usual in ML, you are in charge of manipulating data. Here’s
one way to extract a certain “substring’” from the left side of a
string as in the BASIC statement LEFT$(X$,5):

2000 LDY #$5

2002 LDX #$0 (Use X as the offset for buffer storage)

2004 LDA $1000,Y (The location of X$)

2007 STA $4000,X (The “buffer,” or temporary storage area, for the
substring)

200A INX

200B DEY

200C BNE $2004

LEN

In some cases, you will already know the length of a string in
ML. One of the ways to store and manipulate strings is to
know beforehand the length and address of a string. Then you
could use the subroutine given for LEFT$, above. More com-
monly, though, you will store your strings with delimiters (ze-
ros) at the end of each string. To find out the length of a
certain string:

179

MID$

2000 LDY #$0

2002 LDA $1000,Y (The address of the string you are testing)

2003 BEQ $2009 (Remember, if you LDA a zero, the zero flag is
set. So you don’t really need to use a CMP #0
here to test whether you've loaded the zero
delimiter.)

2005 INY

2006 BNE $2002 (We are not using a JMP here because we assume
that all your strings are less than 256 characters
long.

2008 BRK (If \%vg still haven’t found a zero after 256 INYs,
we avoid an endless loop by just BRKing out of
the subroutine.)

2009 DEY (The LENgth of the string is now in the Y
register.)

We had to DEY at the end because the final INY picked
up the zero delimiter. So, the true count of the LENgth of the
string is one less than Y shows, and we must DEY one time to
make this adjustment.

MID$

To extract a substring which starts at the fourth character from
within the string and is five characters long (MID$(X$,4,5)):

2000 LDY #8$5 (The size of the substring we're after)

2002 LDX #$0 (X is the offset for storing the substring.)

2004 LDA $1003,Y (To start at the fourth character from within the
X$ located at $1000, simply add three to that ad-
dress. Instead of starting our LDA,Y at $1000,
skip to $1003. This is because the first character
is not in position 1. Rather, it is at the zeroth po-
sition, at $1000.)

2007 STA $4000,X (The temporary buffer to hold the substring)

200A INX

200B DEY

200C BNE $2004

RIGHT$

This, too, is complicated because normally we do not know
the LENgth of a given string. To find RIGHT$(X$,5) if X$
starts at $1000, we should find the LEN first and then move
the substring to our holding zone (buffer) at $4000:

180

TAB

2000 LDY #$0

2002 LDX #$0

2004 LDA $1000,Y

2007 BEQ $200D (The delimiting zero is found.)

2009 INY

200A JMP $2004

200D TYA (Put LEN into A so that we can subtract the
substring size from it.)

200E SEC (Always set carry before any subtraction.)

200F SBC #$5 (Subtract the size of the substring you want to
extract.)

2011 TAY (Put the offset back into Y, now adjusted to

point to five characters from the end of X$.)
2012 LDA $1000,Y
2015 BEQ $201E (We found the delimiter, so end.)
2017 STA $4000,X
201A INX
201B DEY
201C BNE $2012
201E RTS

TAB

This formatting instruction moves you to a specified column
on a given line. TAB 10 moves you ten spaces from the left
side of the screen.

In ML, you have more direct control over what happens:
You would just add or subtract the amount you want to TAB
over to. If you were printing to the screen and wanted ten
spaces between A and B so it looked like this:

A B

you could write:

2000 LDA #$C1 (A)

2002 STA $0400 (Screen RAM address)

2005 LDA #$C2 (B)

2007 STA $040A (You've added ten to the target address.)

Alternatively, you could add ten to the Y offset (this is
LADS format):

10 SCREEN = $0400
100 LDY #0:LDA #"”A:STA SCREEN,Y:LDY #10:LDA #“B:STA
SCREEN,Y

181

TAB

An even simpler LADS method uses the + pseudo-op to
add whatever amount you wish to a label:

10 SCREEN = $0400
100 LDA #“A:STA SCREEN:STA SCREEN+10

As an example, we are writing to the screen here, but
messages that were longer than 40 characters would behave
strangely on the Apple screen because the RAM bytes which
map it are not contiguous across lines. In practice, you would
print to the screen using $FDED as described below. The
examples above, using Y as an offset, are more applicable to
storing, say, items in a database or printing hardcopy.

Nonetheless, if you are printing out many columns of
numbers and need a subroutine to correctly space your print-
out, you might want to use a subroutine which will add ten to
the Y offset each time you call the subroutine:

5000 TYA
5001 CLC
5002 ADC #10
5004 TAY
5005 RTS

This subroutine directly adds ten to the Y register when-
ever you JSR $5000. To accomplish TAB onscreen correctly,
however, and to take into account the entire screen, you
should use blanks (character 160) and feed them to the screen
via the built-in ROM routine which prints the number of
blanks you've requested in the X register: $F94A. So, LDX
#45:]SR $F94A will print 45 blanks. Then, send your actual
message via the PRINT subroutine in ROM: $FDED. The Ap-
ple screen is not orderly, and, thus, $F94A in combination
with $FDED will do all the hard work for you. Just stuff
blanks onto the screen whenever you need to SPC forward to
format text. To tab backward, use JSR $FC10 to print a back-
space character.

Related formatting routines in ROM are

JSR $FC1A; (Moves the cursor up one line)
JSR $FC66; (Moves the cursor down one line—not a carriage return
since the cursor remains in the same column)

182

Appendix A
6502 Instruction Set

6502 Instruction Set

Here are the 56 mnemonics, the 56 instructions you can give
the 6502 (or 6510) chip. Each of them is described in several
ways: what it does, what major uses it has in ML program-

ming, what addressing modes it can use, what flags it affects,
its opcode (hex/decimal), and the number of bytes it uses up.

ADC

What it does: Adds byte in memory to the byte in the
accumulator, plus the carry flag if set. Sets the carry flag if re-
sult exceeds 255. The result is left in the accumulator.

Major uses: Adds two numbers together. If the carry flag
is set prior to an ADC, the resulting number will be one
greater than the total of the two numbers being added (the
carry is added to the result). Thus, one always clears the carry
(CLC) before beginning any addition operation. Following an
ADC, a set (up) carry flag indicates that the result exceeded
one byte’s capacity (was greater than 255), so you can chain-
add bytes by subsequent ADCs without any further CLCs (see
“Multibyte Addition” in Appendix E).

Other flags affected by addition include the V (overflow)
flag. This flag is rarely of any interest to the programmer. It
merely indicates that a result became larger than could be held
within bits 0-6. In other words, the result “overflowed” into
bit 7, the highest bit in a byte. Of greater importance is the
fact that the Z is set if the result of an addition is zero. Also
the N flag is set if bit 7 is set. This N flag is called the “‘neg-
ative” flag because you can manipulate bytes thinking of the
seventh bit as a sign (+ or —) to accomplish “signed
arithmetic” if you want to. In this mode, each byte can hold a
maximum value of 127 (since the seventh bit is used to reveal
the number’s sign). The B branching instruction’s relative
addressing mode uses this kind of arithmetic.

ADC can be used following an SED which puts the 6502
into “decimal mode.” Here’s an example. Note that the num-
ber 75 is decimal after you SED:

SED

CLC

LDA #75

ADC #8$05 (this will result in 80)

CLD (always get rid of decimal mode as soon as you've

finished)
185

A: 6502 Instruction Set

Attractive as it sounds, the decimal mode isn’t of much real
value to the programmer. LADS will let you work in decimal
if you want to without requiring that you enter the 6502’s
mode. Just leave off the $ and LADS will handle the decimal
numbers fot you.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Immediate ADC #15 $69/105 2
Zero Page ADC 15 $65/101 2
Zero Page, X ADC 15X $75/117)
Absolute ADC 1500 $6D/109 3
Absolute, X ADC 1500,X $7D/125 3
Absolute,Y ADC 1500,Y $79/121 3
Indirect, X ADC (15,X) $61/97 2
Indirect,Y ADC (15),Y $71/113 2

Affected flags: N ZC V

AND

What it does: Logical ANDs the byte in memory with the
byte in the accumulator. The result is left in the accumulator.
All bits in both bytes are compared, and if both bits are 1, the
result is 1. If either or both bits are 0, the result is 0.

Major uses: Most of the time, AND is used to turn bits
off. Let’s say that you are pulling in numbers higher than 128
(10000000 and higher) and you want to ““unshift” them and
print them as lowercase letters. You can then put a zero into
the seventh bit of your “mask” and then AND the mask with
the number being unshifted:

LDA? (test number)

AND #$7F (01111111)

(If either bit is 0, the result will be 0. So the seventh bit of the
test number is turned off here and all the other bits in the test
number are unaffected.)

186

A: 6502 Instruction Set

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Immediate AND #15 $29/41 2
Zero Page AND 15 $25,/37 2
Zero Page, X AND 15,X $35/53 2
Absolute AND 1500 $2D/45 3
Absolute, X AND 1500,X $3D/61 3
Absolute,Y AND 1500,Y $39/57 3
Indirect,X AND (15,X) $21/33 2
Indirect,Y AND (15),Y $31/49 2

Affected flags: N Z

ASL

What it does: Shifts the bits in a byte to the left by 1.
This byte can be in the accumulator or in memory, depending
on the addressing mode. The shift moves the seventh bit into
the carry flag and shoves a 0 into the zeroth bit.

i 'Mﬂ{\ﬂ%ﬁ
Carry

Flag Bit Bit Bit Bit Bit Bit Bit Bit
7 6 5 4 3 2 1 0

Major uses: Allows you to multiply a number by 2. Num-
bers bigger than 255 can be manipulated using ASL with ROL
(see “Multiplication” in Appendix E).

A secondary use is to move the lower four bits in a byte
(a four-bit unit is often called a nybble) into the higher four
bits. The lower bits are replaced by zeros, since ASL stuffs ze-
ros into the zeroth bit of a byte. You move the lower to the
higher nybble of a byte by ASL ASL ASL ASL.

187

A: 6502 Instruction Set

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Accumulator ASL $0A /10 1
Zero Page ASL 15 $06/6 2
Zero Page X ASL 15,X $16/22 2
Absolute ASL 1500 $0E/14 3
Absolute, X ASL 1500,X $1E/30 3

Affected flags: N Z C

BCC

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the carry flag is clear.
In effect, it branches if the first item is lower than the second,
as in LDA #150: CMP #149 or LDA #22: SBC #15. These ac-
tions would clear the carry and, triggering BCC, a branch
would take place.

Major uses: For testing the results of CMP or ADC or
other operations which affect the carry flag. IF-THEN or ON-

GOTO type structures in ML can involve the BCC test. It is
similar to BASIC’s > instruction.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Relative BCC addr. $90/144 2

Affected flags: none

BCS

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the carry flag is set. In
effect, it branches if the first item is higher than the second, as
in LDA #150: CMP #249 or LDA #22: SBC #85. These actions
would set the carry and, triggering BCS, a branch would take
place.

Major uses: For testing the results of LDA or ADC or
other operations which affect the carry flag. IF-THEN or ON-
GOTO type structures in ML can involve the BCC test. It is
similar to BASIC’s < instruction.

188

A: 6502 Instruction Set

Addressing Modes:

Number of
Name Format Opcode Bytes Used

Relative BCS addr. $B0/176 2
Affected flags: none

BEQ

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the zero flag (Z) is set.
In other words, it branches if an action on two bytes results in
a 0, as in LDA #150: CMP #150 or LDA #22: SBC #22. These
actions would set the zero flag, so the branch would take
place.

Major uses: For testing the results of LDA or ADC or
other operations which affect the carry flag. [IF-THEN or ON-
GOTO type structures in ML can involve the BEQ test. It is
similar to BASIC’s = instruction.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Relative BEQ addr. $F0/240 2

Affected flags: none

BIT

What it does: Tests the bits in the byte in memory against
the bits in the byte held in the accumulator. The bytes (mem-
ory and accumulator) are unaffected. BIT merely sets flags.
The Z flag is set as if an accumulator AND memory had been
performed. The V flag and the N flag receive copies of the
sixth and seventh bits of the tested number.

Major uses: Although BIT has the advantage of not hav-
ing any effect on the tested numbers, it is infrequently used
because you cannot employ the immediate addressing mode
with it. Other tests (CMP and AND, for example) can be used
instead.

189

A: 6502 Instruction Set

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Zero Page BIT 15 $24 /36 2
Absolute BIT 1500 $2C/44 3

Affected flags: N Z V

BMI

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the negative (N) flag is
set. In effect, it branches if the seventh bit has been set by the
most recent event: LDA #150 or LDA #128 would set the sev-
enth bit. These actions would set the N flag, signifying that a
minus number is present if you are using signed arithmetic or
that there is a shifted character (or a BASIC keyword) if you
are thinking of a byte in terms of the ASCII code.

Major uses: Testing for BASIC keywords, shifted ASCII,
or graphics symbols. Testing for + or — in signed arithmetic.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Relative BMI addr. $30/48 2

Affected flags: none

BNE

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the zero flag is clear.
In other words, it branches if the result of the most recent
event is not zero, as in LDA #150: SBC #120 or LDA #128:
CMP #125. These actions would clear the Z flag, signifying
that a result was not 0.

Major uses: The reverse of BEQ. BNE means Branch if
Not Equal. Since a CMP subtracts one number from another
to perform its comparison, a 0 result means that they are
equal. Any other result will trigger a BNE (not equal). Like the
other B branch instructions, it has uses in IF-THEN, ON-

190

A: 6502 Instruction Set

GOTO type structures and is used as a way to exit loops (for
example, BNE will branch back to the start of a loop until a 0
delimiter is encountered at the end of a text message). BNE is
like BASIC’s <> instruction.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Relative BNE addr. $D0/208 2

Affected flags: none

BPL

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the N flag is clear. In
effect, it branches if the seventh bit is clear in the most recent
event, as in LDA #12 or LDA #127. These actions would clear
the N flag, signifying that a plus number (or zero) is present in
signed arithmetic mode.

Major uses: For testing the results of LDA or ADC or
other operations which affect the negative (N) flag. IF-THEN
or ON-GOTO type structures in ML can involve the BCC
test. It is the opposite of the BMI instruction. BPL can be used
for tests of “unshifted” ASCII characters and other bytes
which have the seventh bit off and so are lower than 128
(OXXXXXXX).

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Relative BPL addr. $10/16 2

Affected flags: none

BRK

What it does: Causes a forced interrupt. This interrupt
cannot be masked (prevented) by setting the I (interrupt) flag
within the status register. If there is a Break Interrupt Vector (a
vector is like a pointer) in the computer, it may point to a res-
ident monitor if the computer has one. The PC and the status

191

A: 6502 Instruction Set

register are saved on the stack. The PC points to the location
of the BRK + 2.

Major uses: Debugging an ML program can often start
with a sprinkling of BRKs into suspicious locations within the
code. The ML is executed, a BRK stops execution and drops
you into the monitor, you examine registers or tables or vari-
ables to see if they are as they should be at this point in the
execution, and then you restart execution from the breakpoint.
This instruction is essentially identical to the actions and uses
of the STOP command in BASIC.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied BRK $00/0 1

Affected flags: Break (B) flag is set.

BVC

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the V (overflow) flag
is clear.

Major uses: None. In practice, few programmers use
“signed” arithmetic where the seventh bit is devoted to in-
dicating a positive or negative number (a set seventh bit
means a negative number). The V flag has the job of notifying
you when you've added, say, 120 + 30, and have therefore
set the seventh bit via an “overflow” (a result greater than
127). The result of your addition of two positive numbers
should not be seen as a negative number, but the seventh bit
is set. The V flag can be tested and will then reveal that your
answer is still positive, but an overflow took place.

Addressing Modes:

-Number of
Name Format Opcode Bytes Used
Relative BVC addr. $50/80 2

Affected flags: none

192

A: 6502 Instruction Set

BVS

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the V (overflow) flag
is set).

Major uses: None. See BVC above.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Relative BVS addr. $70/112 2

Affected flags: none

CLC

What it does: Clears the carry flag. (Puts a 0 into it.)

Major uses: Always used before any addition (ADC). If
there are to be a series of additions (multiple-byte addition),
only the first ADC is preceded by CLC since the carry feature
is necessary. There might be a carry, and the result will be in-
correct if it is not taken into account.

The 6502 does not offer an addition instruction without
the carry feature. Thus, you must always clear it before the
first ADC so a carry won't be accidentally added.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied LG $18/24 1

Affected flags: Carry (C) flag is set to zero.

CLD

What it does: Clears the decimal mode flag. (Puts a 0
into it.)

Major uses: Commodore computers execute a CLD when
first turned on as well as upon entry to monitor modes
(PET/CBM models) and when the SYS command occurs. Apple
and Atari, however, can arrive in an ML environment with the
D flag in an indeterminant state. An attempt to execute ML

193

A: 6502 Instruction Set

with this flag set would cause disaster—all mathematics would
be performed in “decimal mode.” It is therefore suggested that
owners of Apple and Atari computers CLD during the early
phase, the initialization phase, of their programs. Though this
is an unlikely bug, it would be a difficult one to recognize
should it occur.

For further detail about the 6502’s decimal mode, see SED
below.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied CLD $D8/216 1

Affected flags: Decimal (D) flag is set to zero.

CLI

What it does: Clears the interrupt-disable flag. All inter-
rupts will therefore be serviced (including maskable ones).

Major uses: To restore normal interrupt routine process-
ing following a temporary suspension of interrupts for the

purpose of redirecting the interrupt vector. For more detail, see
SEI below.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied CLI $58/88 1

Affected flags: Interrupt (I) flag is set to zero.

CLv
What it does: Clears the overflow flag. (Puts a 0 into it.)
Major uses: None. (See BVC above.)

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied CLV $B8/184 1

Affected flags: Overflow (V) flag is set to zero.

194

A: 6502 Instruction Set

CMP

What it does: Compares the byte in memory to the byte
in the accumulator. Three flags are affected, but the bytes in
memory and in the accumulator are undisturbed. A CMP is
actually a subtraction of the byte in memory from the byte in
the accumulator. Therefore, if you LDA #15:CMP #15—the
result (of the subtraction) will be zero, and BEQ would be trig-
gered since the CMP would have set the Z flag.

Major uses: This is an important instruction in ML. It is
central to IF-THEN and ON-GOTO type structures. In
combination with the B branching instructions like BEQ, CMP
allows the 6502 chip to make decisions, to take alternative
pathways depending on comparisons. CMP throws the N, Z,
or C flag up or down. Then a B instruction can branch,
depending on the condition of a flag.

Often, an action will affect flags by itself, and a CMP will
not be necessary. For example, LDA #15 will put a 0 into the
N flag (seventh bit not set) and will put a 0 into the Z flag
(the result was not 0). LDA does not affect the C flag. In any
event, you could LDA #15: BPL TARGET, and the branch
would take effect. However, if you LDA $20 and need to
know if the byte loaded is precisely $0D, you must CMP
#$0D:BEQ TARGET. So, while CMP is sometimes not ab-
solutely necessary, it will never hurt to include it prior to
branching.

Another important branch decision is based on > or <
situations. In this case, you use BCC and BCS to test the C
(carry) flag. And you've got to keep in mind the order of the
numbers being compared. The memory byte is compared to
the byte sitting in the accumulator. The structure is memory is
less than or equal to the accumulator (BCC is triggered because
the carry flag was cleared). Or memory is more than accu-
mulator (BCS is triggered because the carry flag was set).
Here’s an example. If you want to find out if the number in
the accumulator is less than $40, just CMP #$41:BCC
LESSTHAN (be sure to remember that the carry flag is cleared
if a number is less than or equal; that’s why we test for less
than $40 by comparing with a $41):

LDA #75

CMP #$41; IS IT LESS THAN $40?
BCC LESSTHAN

195

A: 6502 Instruction Set

One final comment about the useful BCC/BCS tests
following CMP: It’s easy to remember that BCC means less
than or equal and BCS means more than if you notice that C is
less than S in the alphabet.

The other flag affected by CMPs is the N flag. Its uses are
limited since it merely reports the status of the seventh bit;
BPL triggers if that bit is clear, BMI triggers if it's set. How-
ever, that seventh bit does show whether the number is
greater than (or equal to) or less than 128, and you can apply
this information to the ASCII code or to look for BASIC
keywords or to search databases (BPL and BMI are used by
LADS’s database search routines in the Array subprogram).
Nevertheless, since LDA and many other instructions affect
the N flag, you can often directly BPL or BMI without any
need to CMP first.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Immediate CMP #15 $C9/201 2
Zero Page CMP 15 $C5/197 2
Zero Page X CMP 15,X $D5/213 2
Absolute CMP 1500 $CD/205 3
Absolute, X CMP 1500,X $DD/221 3
Absolute,Y CMP 1500,Y $D9/217 3
Indirect,X CMP (15,X) $C1/193 2
Indirect,Y CMP (15),Y $D1/209 2

Affected flags: N Z C

CPX

What it does: Compares the byte in memory to the byte
in the X register. Three flags are affected, but the bytes in
memory and in the X register are undisturbed. A CPX is ac-
tually a subtraction of the byte in memory from the byte in
the X register. Therefore, if you LDA #15:CPX #15—the result
(of the subtraction) will be zero and BEQ would be triggered
since the CPX would have set the Z flag.

Major uses: X is generally used as an index, a counter
within loops. Though the Y register is often preferred as an in-
dex since it can serve for the very useful indirect Y addressing

196

A: 6502 Instruction Set

mode (LDA (15),Y)—the X register is nevertheless pressed into
service when more than one index is necessary or when Y is
busy with other tasks.

In any case, the flags, conditions, and purposes of CPX
are quite similar to CMP (the equivalent comparison instruc-
tion for the accumulator). For further information on the vari-
ous possible comparisons (greater than, equal, less than, not
equal), see CMP above.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Immediate CPX #15 $E0/224 2
Zero Page CPX 15 $E4/228 2
Absolute CPX 1500 $EC/236 3

Affected flags: N Z C

CPY

What it does: Compares the byte in memory to the byte
in the Y register. Three flags are affected, but the bytes in
memory and in the Y register are undisturbed. A CPX is ac-
tually a subtraction of the byte in memory from the byte in
the Y register. Therefore, if you LDA #15: CPY #15—the re-
sult (of the subtraction) will be zero, and BEQ would be trig-
gered since the CPY would have set the Z flag.

Major uses: Y is the most popular index, the most heavily
used counter within loops since it can serve two purposes: It
permits the very useful indirect Y addressing mode (LDA
(15),Y) and can simultaneously maintain a count of loop
events.

See CMP above for a detailed discussion of the various
branch comparisons which CPY can implement.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Immediate CPY #15 $C0/192 2
Zero Page CPY 15 $C4/196 2
Absolute CPY 1500 $CC/204 3

Affected flags: N Z C

197

A: 6502 Instruction Set

DEC

What it does: Reduces the value of a byte in memory by
1. The N and Z flags are affected.

Major uses: A useful alternative to SBC when you are
reducing the value of a memory address. DEC is simpler and
shorter than SBC, and although DEC doesn't affect the C flag,
you can still decrement double-byte numbers (see ““Decrement
Double-Byte Numbers” in Appendix E).

The other main use for DEC is to control a memory index
when the X and Y registers are too busy to provide this ser-
vice. For example, you could define, say, address $505 as a
counter for a loop structure. Then: LOOP STA $8000:DEC
$505:BEQ END:JMP LOOP. This structure would continue
storing A into $8000 until address $505 was decremented
down to zero. This imitates DEX or DEY and allows you to set
up as many nested loop structures (loops within loops) as you
wish.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Zero Page DEC 15 $C6,/198 2
Zero Page, X DEC 15,X $D6/214 2
Absolute DEC 1500 $CE/206 3
Absolute, X DEC 1500,X $DE /222 3

Affected flags: N Z

DEX
What it does: Reduces the X register by 1.

Major uses: Used as a counter (an index) within loops.
Normally, you LDX with some number (the number of times
you want the loop executed) and then DEX:BEQ END as a
way of counting events and exiting the loop at the right time.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied DEX $CA/202 1

Affected flags: N Z

198

A: 6502 Instruction Set

DEY
What it does: Reduces the Y register by 1.

Major uses: Like DEX, DEY is often used as a counter for
loop structures. But DEY is the more common of the two since
the Y register can simultaneously serve two purposes within a
loop by permitting the very popular indirect Y addressing
mode. A common way to print a screen message (the ASCII
form of the message is at $5000 in this example, and the mes-
sage ends with 0): LDY #0:LOOP LDA $5000,Y:BEQ
END:STA SCREEN,Y:INY:IMP LOOP:END continue with the
program.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied DEY $88/136 1

Affected flags: N Z

EOR

What it does: Exclusive ORs a byte in memory with the
accumulator. Each bit in memory is compared with each bit in
the accumulator, and the bits are then set (given a 1) if one of
the compared bits is 1. However, bits are cleared if both are 0
or if both are 1. The bits in the byte held in the accumulator
are the only ones affected by this comparison.

Major uses: EOR doesn’t have too many uses. Its main
value is to toggle a bit. If a bit is clear (is a 0), it will be set (to
a 1); if a bit is set, it will be cleared. For example, if you want
to reverse the current state of the sixth bit in a given byte:
LDA BYTE:EOR #$40:STA BYTE. This will set bit 6 in BYTE if
it was 0 (and clear it if it was 1). This selective bit toggling
could be used to “shift”” an unshifted ASCII character via EOR
#$80 (1000000). Or if the character were shifted, EOR #$80
would make it lowercase. EOR toggles.

199

A: 6502 Instruction Set

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Immediate EOR #15 $49/73 2
Zero Page EOR 15 $45/69 2
Zero Page, X EOR 15,X $55/85 2
Absolute EOR 1500 $4D/77 8
Absolute, X EOR 1500,X $5D/93 3
Absolute,Y EOR 1500,Y $59/89 3
Indirect,X EOR (15,X) $41/65 3
Indirect,Y EOR (15),Y $51/81 2

Affected flags: N Z

INC

What it does: Increases the value of a byte in memory
by 1.

Major uses: Used exactly as DEC (see DEC above), except
it counts up instead of down. For raising address pointers or
supplementing the X and Y registers as loop indexes.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Zero Page INC 15 $E6,/230 2
Zero Page, X INC 15,X $F6/246 2
Absolute INC 1500 $EE /238 3
Absolute, X INC 1500,X $FE /254 3

Affected flags: N Z

INX
What it does: Increases the X register by 1.

Major uses: Used exactly as DEX (see DEX above), except
it counts up instead of down. For loop indexing.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied INX $E8/232 1

Affected flags: N Z

200

A: 6502 Instruction Set

INY
What it does: Increases the Y register by 1.

Major uses: Used exactly as DEY (see DEY above), except
it counts up instead of down. For loop indexing and working
with the indirect Y addressing mode (LDA (15),Y).

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied INY $C8/200 1

Affected flags: N Z

JMP

What it does: Jumps to any location in memory.

Major uses: Branching long range. It is the equivalent of
BASIC’s GOTO instruction. The bytes in the program counter
are replaced with the address (the argument) following the
JMP instruction and, therefore, program execution continues
from this new address.

Indirect jumping—]JMP (1500)—is not recommended, al-
though some programmers find it useful. It allows you to set
up a table of jump targets and bounce off them indirectly. For
example, if you had placed the numbers $00 $04 in addresses
$88 and $89, a JMP ($0088) instruction would send the pro-
gram to whatever ML routine was located in address $0400.
Unfortunately, if you should locate one of your pointers on
the edge of a page (for example, $00FF or $17FF), this indirect
JMP addressing mode reveals its great weakness. There is a
bug which causes the jump to travel to the wrong place—JMP
($00FF) picks up the first byte of the pointer from $00FF, but
the second byte of the pointer will be incorrectly taken from
$0000. With JMP ($17FF), the second byte of the pointer
would come from what'’s in address $1700.

Since there is this bug, and since there are no compelling
reasons to set up JMP tables, you might want to forget you
ever heard of indirect jumping.

201

A: 6502 Instruction Set

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Absolute JMP 1500 $4C/76 3
Indirect JMP (1500) $6C/108 3

Affected flags: none

JSR

What it does: Jumps to a subroutine anywhere in mem-
ory. Saves the PC (Program Counter) address, plus three, of
the JSR instruction by pushing it onto the stack. The next RTS
in the program will then pull that address off the stack and re-
turn to the instruction following the JSR.

Major uses: As the direct equivalent of BASIC’s GOSUB
command, JSR is heavily used in ML programming to send
control to a subroutine and then (via RTS) to return and pick
up where you left off. The larger and more sophisticated a
program becomes, the more often JSR will be invoked. In
LADS, whenever something is printed to screen or printer,
you'll often see a chain of JSRs performing necessary tasks:
JSR PRNTCR: JSR PRNTSA:JSR PRNTSPACE:JSR
PRNTNUM:JSR PRNTSPACE. This JSR chain prints a carriage
return, the current assembly address, a space, a number, and
another space.

Another thing you might notice in LADS and other ML
programs is a PLA:PLA pair. Since JSR stuffs the correct return
address onto the stack before leaving for a subroutine, you
need to do something about that return address if you later
decide not to RTS back to the position of the JSR in the pro-
gram. This might be the case if you usually want to RTS, but
in some particular cases, you don’t. For those cases, you can
take control of program flow by removing the return address
from the stack (PLA:PLA will clean off the two-byte address)
and then performing a direct JMP to wherever you want to go.

If you JMP out of a subroutine without PLA:PLA, you
could easily overflow the stack and crash the program.

202

A: 6502 Instruction Set

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Absolute JSR 1500 $20/32 3

Affected flags: none

LDA

What it does: Loads the accumulator with a byte from
memory. Copy might be a better word than load, since the byte
in memory is unaffected by the transfer.

Major uses: The busiest place in the computer. Bytes
coming in from disk, tape, or keyboard all flow through the
accumulator, as do bytes on their way to screen or peripherals.
Also, because the accumulator differs in some important ways
from the X and Y registers, the accumulator is used by ML
programmers in a different way from the other registers.

Since INY/DEY and INX/DEX make those registers useful
as counters for loops (the accumulator couldn’t be conve-
niently employed as an index; there is no INA instruction), the
accumulator is the main temporary storage register for bytes
during their manipulation in an ML program. ML program-
ming, in fact, can be defined as essentially the rapid, or-
ganized maneuvering of single bytes in memory. And it is the
accumulator where these bytes often briefly rest before being
sent elsewhere.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Immediate LDA #15 $A9/169 2
Zero Page LDA 15 $A5/165 2
Zero Page X LDA 15,X $B5/181 2
Absolute LDA 1500 $AD/173 3
Absolute, X LDA 1500,X $BD /189 3
Absolute,Y LDA 1500,Y * $B9/185 3
Indirect, X LDA (15,X) $A1/161 3
Indirect,Y LDA (15),Y $B1/177 2

Affected flags: N Z

203

A: 6502 Instruction Set

LDX

What it does: Loads the X register with a byte from
memory.

Major uses: The X register can perform many of the tasks
that the accumulator performs, but it is generally used as an
index for loops. In preparation for its role as an index, LDX
puts a value into the register.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Immediate LDX #15 $A2/162 2
Zero Page LDX 15 $A6/166 2
Zero Page,Y LDX 15,Y $B6,/182 2
Absolute LDX 1500 $AE/174 3
Absolute,Y LDX 1500,Y $BE /190 3

Affected flags: N Z

LDY

What it does: Loads the Y register with a byte from
memory.

Major uses: The Y register can perform many of the tasks
that the accumulator performs, but it is generally used as an
index for loops. In preparation for its role as an index, LDY
puts a value into the register.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Immediate LDY #15 $A0/160 2
Zero Page LDY 15 $A4/164 2
Zero Page X LDY 15X $B4/180 2
Absolute LDY 1500 $AC/172 3
Absolute, X LDY 1500,X $BC/188 3

Affected flags: N Z

204

A: 6502 Instruction Set

LSR

What it does: Shifts the bits in the accumulator or in a
byte in memory to the right, by one bit. A zero is stuffed into
bit 7, and bit 0 is put into the carry flag.

Or('/\ SEMLMEMEMEME V‘E
Carry

Bit Bit Bit Bit Bit Bit Bit Bit Flag
7 6 5 4 3 2 1 0

Major uses: To divide a byte by 2. In combination with
the ROR instruction, LSR can divide a two-byte or larger num-
ber (see Appendix E).

LSR:LSR:LSR:LSR will put the high four bits (the high
nybble) into the low nybble (with the high nybble replaced by
the zeros being stuffed into the seventh bit and then shifted to
the right).

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Accumulator LSR $4A /74 2
Zero Page LSR 15 $46/70 2
Zero Page, X LSR 15,X $56/86 2
Absolute LSR 1500 $4E/78 3
Absolute, X LSR 1500,X $5E /94 3

Affected flags: N Z C

NOP
What it does: Nothing. No operation.

Major uses: Debugging. When setting breakpoints with
BRK, you will often discover that a breakpoint, when exam-
ined, passes the test. That is, there is nothing wrong at that
place in the program. So, to allow the program to execute to
the next breakpoint, you cover the BRK with a NOP. Then,
when you run the program, the computer will slide over the
NOP with no effect on the program. Three NOPs could cover
a JSR XXXX, and you could see the effect on the program
when that particular JSR is eliminated.

205

A: 6502 Instruction Set

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied NOP $EA /234 1

Affected flags: none

ORA

What it does: Logically ORs a byte in memory with the
byte in the accumulator. The result is in the accumulator. An
OR results in a 1 if either the bit in memory or the bit in the
accumulator is 1.

Major uses: Like an AND mask which turns bits off, ORA
masks can be used to turn bits on. For example, if you wanted
to “shift” an ASCII character by setting the seventh bit, you
could LDA CHARACTER:ORA #$80. The number $80 in bi-
nary is 10000000, so all the bits in CHARACTER which are
ORed with zeros here will be left unchanged. (If a bit in
CHARACTER is a 1, it stays a 1. If it is a 0, it stays 0.) But the
1 in the seventh bit of $80 will cause a 0 in the CHARACTER
to turn into a 1. (If CHARACTER already has a 1 in its sev-
enth bit, it will remain a 1.)

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Immediate ORA #15 $09/9 2
Zero Page ORA 15 $05/5 2
Zero Page, X ORA 15,X $15/21 2
Absolute ORA 1500 $0D/13 3
Absolute, X ORA 1500,X $1D/29 3
Absolute,Y ORA 1500,Y $19/25 3
Indirect,X ORA (15,X) $01/1 2
Indirect,Y ORA (15),Y $11/17 2

Affected flags: N Z

206

A: 6502 Instruction Set

PHA
What it does: Pushes the accumulator onto the stack.

Major uses: To temporarily (very temporarily) save the
byte in the accumulator. If you are within a particular sub-
routine and you need to save a value for a brief time, you can
PHA it. But beware that you must PLA it back into the accu-
mulator before any RTS so that it won’t misdirect the computer
to the wrong RTS address. All RTS addresses are saved on the
stack. Probably a safer way to temporarily save a value (a
number) would be to STA TEMP or put it in some other tem-
porary variable that you've set aside to hold things. Also, the
values of A, X, and Y need to be temporarily saved, and the
programmer will combine TYA and TXA with several PHAs to
stuff all three registers onto the stack. But, again, matching
PLAs must restore the stack as soon as possible and certainly
prior to any RTS.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied PHA $48/72 1

Affected flags: none

PHP

What it does: Pushes the “processor status” onto the top
of the stack. This byte is the status register, the byte which
holds all the flags: N ZCID V.

Major uses: To temporarily (very temporarily) save the
state of the flags. If you need to preserve all the current con-
ditions for a minute (see description of PHA above), you may
also want to preserve the status register as well. You must,
however, restore the status register byte and clean up the
stack by using a PLP before the next RTS.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied PHP $08/8 1

Affected flags: none

207

A: 6502 Instruction Set

PLA

What it does: Pulls the top byte off the stack and puts it
into the accumulator.

Major uses: To restore a number which was temporarily
stored on top of the stack (with the PHA instruction). It is the
opposite action of PHA (see above). Note that PLA does affect
the N and Z flags. Each PHA must be matched by a
corresponding PLA if the stack is to correctly maintain RTS
addresses, which is the main purpose of the stack.

Addressing Modes:

Number of
Name Format Opcode Bytes Used
Implied PLA $68/104 1

Affected flags: N Z

PLP

What it does: Pulls the top byte off the stack and puts it
into the status register (where the flags are). PLP is a mne-
monic for PuLl Processor status.

Major uses: To restore the condition of the flags after the
status register has been temporarily stored on top of the stack
(with the PHP instruction). It is the opposite action of PHP
(see above). PLP, of course, affects all the flags. Any PHP
must be matched by a corresponding PLP if the stack is to cor-
rectly maintain RTS addresses, which is the main purpose of
the stack.

Addressing Modes:

Number of
Name Format Opcode Bytes Used

Implied PLP $28/40 1
Affected flags: all

ROL

What it does: Rotates the bits in the accumulator or in a
byte in memory to the left, by one bit. A rotate left (as op-
posed to an ASL, Arithmetic Shift Left) moves bit 7 to the

208

A: 6502 Instruction Set

carry, moves the carry into bit 0, and every other bit moves one
position to its left. (ASL operates quite similar