
-Apple
Machine

_ language
for

Beginners
Richard Mansfield

22~Yc~ei~ng~~[Esublications,lnc.e
Greensboro, North Carolina

Copyright 1985, COMPUTE! Publications, Inc. All rights reserved

Reproduction or translation of any part of this work beyond that permitted by
Sections 107 and 108 of the United States Copyright Act without the permission of
the copyright owner is unlawful.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-87455-002-5

COMPUTE! Publications, Inc. , Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is one of the ABC Publishing Companies and is not associated with any
manufacturer of personal computers. Apple II, II+ , lie, lie, Pro DOS, and DOS 3.3 are
trademarks of Apple Computer, Inc.

Contents
Preface . v

Introduction: Why Machine language? vii

1. How to Use This Book . 1
2. The Fundamentals . 7
3. The Monitor . 31
4. Addressing . 45
5. Arithmetic . 67
6. The Instruction Set . 83
7. Borrowing from BASIC . 121
8. Building a Program . 131
9. ML Equivalents of BASIC Commands 147

Appendices . 183
A. 6502 Instruction Set 185
B. How to Use LADS 219
C. Modifying LADS . 267
D. LADS Source Code 299

Defs 302
Defs, ProDOS Changes . 303
Eval -... 303
Eval, ProDOS Changes . 322
Equate 323
Array 326
Open1, 3.3 Version 330
Open1, ProDOS Version 340
Findmn 349
Getsa 350
Getsa, ProDOS Changes . 351
Valdec 351
lndisk 354
Math 368
Prin tops . 3 70
Pseudo 377
Pseudo, ProDOS Changes 386
Tables, 3.3 Version . 386
Tables, ProDOS Version . 390

E. Library of Subroutines . 395
F. Number Tables . 403
G. Machine Language Entry Program, MLX 413

Tim Victor

Index . 421
Disk Coupon . 425

Preface
Something amazing lies beneath BASIC.

Several years ago I decided to learn to program in ma
chine language, the computer's own language. I understood
BASIC fairly well and I realized that it was simply not pos
sible to accomplish all that I wanted to do with my computer
using BASIC alone. BASIC is sometimes just too slow.

I faced the daunting (and exhilarating) prospect of learn
ing to go below the surface of my computer, of finding out
how to talk directly to a computer in its language, not the
imitation-English of BASIC. I bought four books on 6502 ma
chine language programming and spent several months prac
ticing with them and puzzling out opcodes and hexadecimal
arithmetic, and putting together small machine language
programs.

Few events in learning to use a personal computer have
had mote impact on me than the moment that I could instantly
fill the TV screen with any picture I wanted because of a ma
chine language program I had written. I was amazed at its
speed, but more than that, I realized that anytime large amounts
of information were needed onscreen in the future-it could
be done via machine language. I had, in effect, created a new
BASIC "command" which could be added to any of my pro
grams. This command-using a CALL instruction to send the
computer to my custom-designed machine language routine
allowed me to have previously impossible control over the
computer.

BASIC might be compared to a reliable, comfortable car.
It will get you where you want to go. Machine language is like
a sleek racing car-you get there with lots of time to spare.
When programming involves large amounts of data, music,
graphics, or games, speed can become the single most im
portant factor.

After becoming accustomed to machine language, I de
cided to write an arcade game entirely without benefit of
BASIC. It was to be in machine language from start to finish. I
predicted that it would take about 20 to 30 hours. It was a
space invaders game with mother ships, rows of aliens, sound
. .. the works. It took closer to 80 hours, but I am probably
more proud of that program than of any other I've written.

v

After I'd finished it, I realized that the next games would
be easier and could be programmed more quickly. The mod
ules handling scoring, sound, screen framing, delay, and
playerjenemy shapes were all written. I only had to write
new sound effects, change details about the scoring, create
new shapes. The essential routines were, for the most part, al
ready written for a variety of new arcade-type games. When
creating machine language programs, you build up a collection
of reusable subroutines. For example, once you find out how
to make sounds on your machine, you change the details, but
not the underlying procedures, for any new songs.

The great majority of books about machine language as
sume a considerable familiarity with both the details of
microprocessor chips and with programming technique. This
book assumes only a working knowledge of BASIC. It was de
signed to speak directly to the amateur programmer, the part
time computerist. It should help you make the transition from
BASIC to machine language with relative ease.

This book is dedicated to Florence, Jim, and Larry. I
would also like to express my gratitude to Kevin Martin and
Tim Victor for their work in translating the various versions of
LADS.

vi

Why Machine
Language?
Sooner or later, many programmers find that they want to
learn machine language. BASIC is a fine general-purpose tool,
but it has its limitations. Machine language (often called
assembly language) performs much faster. BASIC is fairly easy
to learn, but most beginners do not realize that machine lan
guage can also be easy. And, just as learning Italian goes
faster if you already know Spanish, if a programmer already
knows BASIC, much of this knowledge will make learning
machine language easier. There are many similarities.

This book is designed to teach machine language to those
who have a working knowledge of BASIC. For example, Chapter
9 is a dictionary of BASIC commands. Following each BASIC
command is a machine language routine which accomplishes
the same task. In this way, if you know what you want to do
in BASIC, you can find out how to do it in machine language.

To make it easier to write programs in machine language
(called ML from here on), most programmers use a special
program called an assembler. This is where the term assembly
language comes from. ML and assembly language programs
are both essentially the same thing. Using an assembler to cre
ate ML programs is far easier than being forced to look up and
then POKE each byte into RAM memory. That's the way it
used to be done, when there was too little memory in
computers to hold languages (like BASIC or assemblers) at the
same time as programs created by those languages. The old
style hand-programming was very laborious.

There is an assembler at the end of this book which will
work on any Apple. It's called LADS, for Label Assembly
Development System. It will let you type in ML instructions
(like INC 2) and will translate them into the right numbers
and POKE them for you wherever in memory you decide you
want your ML program to be located. LADS will help you in a
variety of other ways as well. It was designed to offer you a
fast, convenient, and effective ML programming environment,
a way of writing programs which is both natural and familiar.

ML instructions are like BASIC commands; you build an
ML program by using the ML instruction set. A complete,
descriptive table of all the 6502 ML instructions can be found

vii

Introduction

in Appendix A. Whenever you see a three-letter abbreviation
(like INC) in this book that you don't recognize, it's an ML
instruction and you can look it up in Appendix A, where
you'll find its purposes, modes, and syntax fully described.

It's a little premature, but if you're curious, INC 2 will in
crease the number in your computer's second memory cell
(the second byte of RAM memory) by one. If 15 is the number
currently in cell 2, it will become a 16 after INC 2. Think of it
as "increment address two." Like BASIC, ML has a series of
commands which you use to communicate with the computer
when you write a program. ML commands are always three
letter abbreviations, like INC, and LADS will help you write
your ML programs using these commands and numbers that
you generally add to the commands as additional information,
like INC 2.

Throughout the book you'll be learning how to handle a
variety of ML instructions, and LADS will be of great help.
You might want to familiarize yourself with it. Knowing what
it does (and using it to enter the examples in this book), you
will gradually build your understanding of ML, hexadecimal
numbers, and the extraordinary range of new possibilities
open to the computerist who knows ML. Knowing ML, being
able to talk directly to your machine, changes things so much
that it's like getting a whole new computer, a much more
powerful computer.

Seeing It Work
Chapters 2-8 each examine a major aspect of ML where it dif
fers from the way BASIC works. In each chapter, examples
and exercises lead the programmer to a greater understanding
of the methods of ML programming. By the end of the book,
you should be able to write, in ML, most of the programs and
subroutines you will want or need.

Let's examine some advantages of ML, starting with the
main one-ML runs extremely fast.

Here are two programs which accomplish the same thing.
The first is in ML, and the second is in BASIC. They get re
sults at very different speeds indeed as you'll see:
Machine Language
169 193 160 0 153 0 4 200 208 250 153 0 5 200 208
250 153 0 6 200 208 250 153 0 7 200 208 250 96

viii

Introduction

BASIC
5 FOR I = 1 TO 1000: PRINT "A";: NEXT I

These two programs both print the letter A 1000 times on
the screen. The ML version takes up 29 bytes of RAM (Ran
dom Access Memory). The BASIC version takes up 45 bytes
and takes about 30 times as long to finish the job. If you want
to see how quickly the ML works, you can POKE those num
bers somewhere into RAM and run the ML program with a
CALL command to the little program.

In both BASIC and ML, many instructions are followed
by an argument. We mentioned the instruction INC 2. In that
example, the number 2 is the argument. In BASIC, the CALL
instruction must be given an argument which tells it where to
CALL, where the ML program it's going to run is located in
RAM. The CALL instruction will turn control of the computer
over to the address given as its argument. There would be an
ML program waiting there.

Just remember that an argument is the second item in a
pair and that an argument modifies (makes more specific) a
given instruction. In the pairs INC 2, CALL 151, and Send a
Letter, the 2, 151, and Letter are the arguments. The INC,
CALL, and Send are the instructions.

To make it easy to see the speed of our 1000 A's ML ex
ample program, we'll just load it into memory without yet
knowing much about it. We'll use a BASIC loader program (on
page x) that simply POKEs all the numbers of the ML program
into memory; then you CALL from BASIC to activate the ML
program.

A disassembly is like a BASIC program's LISTing. You can
give the starting address of an ML program to a disassembler,
and it will translate the numbers it finds in the computer's
memory into a readable series of ML instructions. The built-in
Apple monitor contains a disassembler that you e<in use to
examine and study ML programs. Note that you have to give
a start address whenever you write (with an assembler), list
(with a disassembler), or run (with CALL) an ML program.
That's because, unlike BASIC programs, ML programs can be
located anywhere in RAM memory.

Here's what our little example ML program looks like
when it has been translated by a disassembler:

ix

Introduction

0302- A9 C1 LOA t$C1
0304- AO 00 LOY t$00
0306- 99 00 04 STA $0400,Y
0309- C8 !NY
030A- DO FA BNE $0306
030C- 99 00 05 STA $0500,Y
030F- C8 INY
0310- DO FA BNE $030C
0312- 99 00 06 STA $0600,Y
0315- C8 INY
0316- DO FA BNE $0312
0318- 99 00 07 STA $0700,Y
0318- c8 !NY
031C- DO FA BNE $0318
031E- 60 RTS

The following BASIC program (called a loader) will POKE
the ML instructions (and their arguments) into memory for
you:

-
10 FOR I = 770 TO 798: READ A: POKE I,A: NEXT I
20 PRINT "CALL 770 TO ACTIVATE "
30 DATA 169,193,160,0,153,0,4,200,208,250,153,0,5,2

00,208,250,153,0,6,200,208,250,153,0,7,200,208,2
50,96

After running this program, type CALL 770 as instructed
and the screen will instantly fill.

BASIC stands for Beginner's All-purpose Symbolic
Instruction Code. Because it is all-purpose, it cannot be the
perfect code for any specific job. The fact that ML speaks di
rectly to the machine, in the machine's language, makes it far
the more efficient language. This is because however cleverly
a BASIC program is written, it will nevertheless always require
extra running time to finish a job. This same problem slows
down every other computer language as well: Logo, Forth,
Pascal, C, whatever. None of them is the machine's language
and, thus, none can run at maximum speed.

To see why this is, think of the common PRINT instruc
tion in BASIC. A PRINT statement drags BASIC into a series
of operations which ML avoids. BASIC must ask and answer a
series of questions. Where is the text located that is to be
PRINTed? Is it a variable? Where is the variable located?
What's its length? Where on the screen is the text to be
placed?

X

Introduction

ML is far more efficient. As we will discover, ML does not
need to hunt for a string variable. And screen addresses do
not require a complicated series of searches in an ML program.
Each of these tasks, and others, slows BASIC down because it
must serve so many general purposes. The screen fills slowly
because BASIC has to make so many more decisions about every
action it attempts than does ML.

Inserting ML for Speed
A second benefit which you derive from learning ML is that
your understanding of computing will be much greater. On
the abstract level, you will be far more aware of just how
computers work. On the practical level, you will be able to
choose between BASIC or ML, whichever is best for the pur
pose at hand. This choice between two languages permits far
more flexibility and allows a number of tasks to be pro
grammed which are clumsy or even impossible in BASIC.
Quite a few of your favorite BASIC programs would benefit
from a small ML routine, " inserted" into BASIC with a CALL,
to replace a heavily used, but slow, loop or subroutine. Large
sorting tasks, smooth animation, and many arcade games and
other kinds of programs must involve ML. And most programs
can benefit from ML patches. It's no accident that nearly all
commercial computer programs are written in machine
language.

BASIC vs. Machine Language
Because of the great efficiency and speed of ML, it's not
surprising that BASIC itself is written in ML. It's made up of
many ML subprograms stored in your Apple's Read Only
Memory (ROM). BASIC is a collection of special words such as
STOP and RUN, each of which stands for a cluster of ML
instructions. One such cluster might sit in ROM (unchanging
memory) just waiting for you to type LIST. If you do type in
that word, the computer turns control over to the ML routine
which accomplishes a program listing. The BASIC programmer
understands and uses these BASIC words to build a program.
You hand instructions over to the computer and then rely on
the convenience of referring to all those prepackaged ML
routines by their BASIC names. The computer always works
with ML instructions. That's why you cannot honestly say that

xi

Introduction

you truly understand computing until you understand the
computer's language: machine language.

Another reason to learn ML is that custom programming
is then possible. Computers come with a disk operating sys
tem (DOS) and BASIC (or other higher-level languages). After
awhile, you will likely find that you are limited by the rules or
the commands available in these languages. You will want to
add to them, to customize them. An understanding of ML is
necessary if you want to add new words to BASIC, to modify
a word processor (which was written in ML), to personalize
your computer-to make it behave precisely as you want it to.
This book will give you the knowledge and the tools to fully
understand and to speak directly to your Apple.

BASIC's Strong Points
Of course, BASIC has its advantages and in some cases is to
be preferred over ML. BASIC is usually simpler to debug (to
get all the problems ironed out so that it works as it should).
In Chapter 3 we'll examine some ML debugging techniques
which work quite well, but BASIC is the easier of the two lan
guages to correct. For one thing, BASIC often just comes out
and tells you your programming mistakes by printing error
messages on the screen. Nevertheless, if you use the LADS
assembler from this book, it too will print error messages and
identify the offending line number.

Contrary to popular opinion, ML is not necessarily a
memory-saving process. ML can use up about as much mem
ory as BASIC does when accomplishing the same task. Short
programs can be somewhat more compact in ML, but longer
programs generally use up bytes fast in both languages. How
ever, worrying about using up computer memory is quickly
becoming less and less important.

Soon programmers will probably have more memory
space available than they will ever need. In any event, a talent
for conserving bytes, like skill at trapping wild game, will
likely become a victim of technology. It will always be a skill,
but it seems as if it will not be an everyday necessity .

•

xii

Introduction

So, which language is best? They are both best-but for
different purposes. Many programmers, after learning ML, find
that they continue to construct some of their programs in
BASIC or some other language, but add ML modules where
speed is important. An all-ML program will, however, gen
erally be more efficient, more flexible, and far faster than any
alternative. Remember, it's no accident that the great majority
of professional and commercial programs are written in pure ML.

But perhaps the best reason of all for learning ML is that
it is fascinating and fun.

xiii

How to Use This Book
Throughout this book there are short example programs in
machine language for you to type in and experiment with.
They vary in length, but most are quite brief and are intended
to illustrate an ML concept or technique. The best way to
learn something new is often to just jump in and do it. Ma
chine language programming is no different. Machine language
programs are written using a program called an assembler, just
as BASIC programs are written using a program inside the
computer called Applesoft BASIC.

In an earlier, not Apple-specific, version of this book,
there was an assembler program written in BASIC. This book,
however, offers a far more powerful assembler, LADS, in
Appendix B. In addition to being versatile, LADS offers the
beginner a number of conveniences such as error detection
and a familiar environment. And the more sophisticated fea
tures of the assembler are there for you when you're ready to
use them.

The First Step: Assembling
It is probably a good idea to first type LADS into your com
puter (ProDos and 3.3 versions and typing instructions are in
Appendix B). Once you've got a working version, you're ready
to use the assembler with the practice examples throughout
the book. (If you prefer, you can order a 3.3/ProDos disk
which contains LADS and other programs from this book. See
the coupon in the back of this book for details.)

Frequently, the examples in the book are designed to do
something to the screen. The reason for this is that you can
then tell at once if things are working as planned. If you are
trying to send the message TEST STRING and it comes out
TEST STRI or TEST STRING@, you can go back andre
assemble with LADS until you get it right. More important,
you'll discover what you did wrong.

Normally, programs manipulate data within a database or
make calculations with some numbers somewhere in RAM,
but the action takes place offscreen. When learning ML, how
ever, it's often helpful to put your data manipulations right up
in front of your eyes on the screen so that you can see pre
cisely how things are going. When everything is working cor
rectly, you can redirect the data to some less visible place
elsewhere in RAM.

3

How to Use This Book

A Sample Program
The following little ML program will show you how to go
about entering and testing the practice examples in this book.
At this point, of course, you won't yet recognize the ML
instructions involved. This sample program is intended only to
serve as a guide to working with the examples you will come
upon later in the text.

After you've typed in and made a few backup copies of
LADS, you can use it to create runnable ML programs. De
tailed instructions on using all of LADS features are found in
Appendix B, but for now, we just want to know how to enter
a short, easy program.

Once you've booted up eithet DOS 3.3 or ProDOS, insert
a disk with LADS on it in your disk drive. If you're using the
ProDOS version of LADS, you must load and run the ProDOS
LADS Loader (Program B-1); if you are using DOS 3.3, simply
BRUN LADS.

You will now be in the LADS environment which is very
like BASIC. You start out by writing a program using line
numbers and colons separating statements. The first line, how
ever, must tell LADS where you want your ML program lo
cated in memory (since ML can be placed anywhere in RAM).
A safe place to have your programs put is address 768, so:

10 ·= 768
20 .s
30.0
40 LOA #193
50 STA 1024
60 RTS
70 .END TEST

After you've typed this in, save it to disk by typing
SAVE TEST

Now you're ready to call LADS into action, to have LADS
assemble the program for you. It will print out the results on
the screen while it works (the .S in line 20 tells LADS to show
you what's happening), and it will store the resulting finished
machine language program starting at address 768 in your
RAM memory (the .0 in line 30 tells LADS to store the bytes
it assembles).

4

How to Use This Book

To make LADS assemble this program (we're calling it
"TEST"), type
ASM TEST

and you'll see the assembler work through your program,
creating an actual machine language program. This program is
supposed to print the letter A in the upper left of your screen.
You activate it by typing
CALL 768

It will do its job and return the control back to your normal
environment. If you want to try making an adjustment,
change the number 193 in line 40 to some other number to
print a different character, then SAVE TEST, ASM TEST, and
CALL 768 again to try it out. Raising the number in line 50
will print the character further down the screen (unless you
fall into some of the reserved screen RAM bytes, but we'll get
into that later).

By the way, the word .END (with the period before it) in
line 70 isn't an ML instruction; it's a special command to
LADS which tells the assembler that it has reached the end of
your program. Such special commands are called pseudo-ops
and we'll get to them later, too. They make ML programming
much easier.

The main thing to learn here is how to type in, save, and
assemble using LADS. Primarily, you should remember four
things:
1. LADS always has to know where you want to store your

ML program, so the first line of any program you give
LADS must have "'= 768 and nothing else on that line.
We're generally going to start all our example programs at
768, so if an example doesn't have "'= 768 as the first line,
put it in.

2. LADS always has to know when your ML program is fin
ished. Thus, the last line in each program must have .END
NAME (and nothing else on the line), where you substitute
whatever name you want to use.

3. Also always use a .0 to send the finished ML program into
RAM so that you can test it. Using the .S is optional, but it
would probably be a good idea to see the actual assembly
process onscreen while you're learning.

5

How to Use This Book

4. You must be in the LADS environment when typing in and
saving programs that you plan to assemble with LADS. Al
though the LADS environment behaves just like BASIC for
you, the user, it is different as far as your Apple is
concerned.

And don't forget to SAVE NAME before trying to ASM.
LADS looks to the disk for your program and so you must
have saved it before assembling it. (There is another version of
LADS, called RAMLADS, described in Appendix C, which
doesn't use the disk, but for learning purposes, let's stick with
the basic LADS model. Later on, you can graduate to
RAMLADS after you're more comfortable with ML in general.
RAMLADS assembles more quickly than regular LADS, but
for beginners regular LADS is the best tool.)

6

••

..

The Fundamentals
The difficulty of learning ML has sometimes been exaggerated.
There are some new rules to learn and some new habits to ac
quire. But most ML programmers would probably agree that
ML is not inherently more difficult to understand than BASIC.
More of a challenge to debug in some cases, but it's not
worlds beyond BASIC in complexity. In fact, in the 1970s,
many of the first home computerists learned ML before they
learned BASIC. This is because an average version of the
BASIC language used in microcomputers takes up around
12,000 bytes of memory, and the early personal computers
(KIM, AIM, etc.) were severely restricted-they had only a
small amount of available memory. These early machines
were unable to offer BASIC; it took up more space than they
had, so everyone programmed in ML.

Interestingly, some of these pioneers reportedly found
BASIC to be just as difficult to grasp as ML. In both cases, the
problem seems to be that the rules of a new language simply
are "obscure" until you know them. In general, though, learn
ing either language probably requires roughly the same
amount of effort.

The first thing to learn about ML is that it reflects the
construction of computers. ML programmers often use anum
ber system (hexadecimal) which is not based on ten. You will
find a table in Appendix F which makes it easy to look up
hex, decimal, or binary numbers.

We count by tens because it is a familiar (though ar
bitrary) grouping for us . Humans have ten fingers. If we had
eleven fingers, the odds are that we would be counting by
elevens.

What's a Natural Number?
Computers count in groups of twos. It is a fact of electronics
that the easiest way to store and manipulate information is by
on/ off states. A light bulb is either on or off. This is a two
group; it's binary, and so the powers of two become the natu
ral groupings for electronic counters: 2, 4, 8, 16, 32, 64, 128,
256. Finger counters (us) have been using tens so long that we
have come to think of ten as natural, like thunder in April.
Tens isn't natural at all. What's more, twos is a more efficient
way to count.

9

The Fundamentals

To see how the powers of two relate to computers, we
can run a short BASIC program which will give us some of
these powers. Powers of a number is the number multiplied by
itself.

Two to the power of two (2A2) means 2 times 2 (in other
words, 4) . Two to the power of three (2A3) means 2 times 2
times 2 (8).
10 FOR I = 0 TO 16
20 PRINT 2 A I
30 NEXT I

ML programming can be done entirely in the familiar
decimal number system. For beginners, that's probably a wise
thing to do. The LADS assembler in this book allows you to
use either decimal or hex, as you wish. However, you'll prob
ably see hex used in magazine articles and books, and hex
does format on the screen or paper more neatly than decimal
numbers. Another advantage of hex is that it relates visually
to the binary numbers that the computer is using. The argu
ments for some advanced ML commands like ROL and EOR
are more easily visualized with hex than with decimal.

Why not just always program in the familiar decimal
numbers (as we do in BASIC)? Because hex is based on groups
of 16 digits, not decimal's groups of 10. And 16 is one of the
powers of two. Thus, 16 is a convenient grouping (or base) for
ML because it organizes numbers the way the computer looks
at numbers. For example, at the most elementary level all
computers work with bits. A bit is the smallest piece of infor
mation possible: Something is either on or off, yes or no, plus
or minus, true or false . This two-state condition (binary) can
be remembered by a computer's smallest single memory cell.
This single cell is called a bit. The computer can turn each bit
on or off as if it were a light bulb, or a flag raised or lowered.

It's interesting that the word bit is frequently explained as
a shortening of the phrase Binary digiT. In fact, the word bit
goes back several centuries. There was a coin which was soft
enough to be cut with a knife into eight pieces. Hence, pieces
of eight. A single piece of this coin was called a bit and, as
with computer memories, it meant that you couldn't slice it
any further. We still use the word bit today as in the phrase
two bits, meaning 25 cents.

10

The Fundamentals

Whatever it's called, the bit is a small, essential aspect of
computing. Imagine that we wanted to remember the result of
a subtraction. When two numbers are subtracted, they are ac
tually being compared with each other. The result of the
subtraction tells us which number is the larger or if they are
equal. ML has an instruction, like a command in BASIC,
which compares two numbers by subtraction. It is called CMP
(for compare). This instruction sets flags in the CPU (Central
Processing Unit) of the computer, and one of the flags always
shows whether or not the result of the most recent action
taken by the computer was a zero. We'll go into this again
later. What we need to realize now is simply that each flag
like the flag on a mailbox-has two possible conditions: up or
down. In other words, this information (that there's a zero re
sult or a nonzero result) is binary and can be stored within a
single bit. Each of the six flags within the 6502 chip is a bit.
Together, the flags are all held within a single byte. That byte
is called the status register.

Byte Assignments
Our computers group bits into units of eight, called bytes. This
relationship between bits and bytes is easy to remember if you
think of a bit as one of the "pieces of eight." Eight is a power
of two also (two to the third power). Eight is a convenient
number of bits to work with as a group since we can count
from 0 to 255 using only eight bits. We'll see how this is done
in a minute .

A byte-able to "hold" 256 different numbers-gives us
enough room to assign all 26 letters of the alphabet (and the
uppercase letters, punctuation marks, and so on) so that each
character we might want to print will have its own particular
number. The letter A (uppercase) has been assigned the num
ber 65 (in the standard ASCII code that computers use to
communicate). The letter B is 66, and so on. Most micro
computers, however, do not adhere strictly to the ASCII code,
except when they are communicating with other computers,
for example, through telephone links. The Apple code uses
193 for the ordinary letter A, whereas 65 is used for the flash
ing A. The Apple uses the following code for its internal
operations:

11

The Fundamentals

Table 2-1. The Apple Version of the ASCII Code
Normal Inverse Flash

--------------- ------------ _______..__
Character Decimal Hex Decimal Hex Decimal Hex

Space 160 AO 32 20 96 60
! 161 Al 33 21 97 61

162 A2 34 22 98 62
163 A3 35 23 99 63
$ 164 A4 36 24 100 64
% 165 AS 37 25 101 65
& 166 A6 38 26 102 66

167 A7 39 27 103 67
168 A8 40 28 104 68
169 A9 41 29 105 69

"' 170 AA 42 2A 106 6A
+ 171 AB 43 2B 107 6B

172 AC 44 2C 108 6C
173 AD 45 20 109 60
174 AE 46 2E 110 6E

I 175 AF 47 2F 111 6F
0 176 BO 48 30 112 70
1 177 B1 49 31 113 71
2 178 B2 50 32 114 72
3 179 B3 51 33 115 73
4 180 84 52 34 116 74
5 181 85 53 35 117 75
6 182 B6 54 36 118 76
7 183 B7 55 37 119 77
8 184 B8 56 38 120 78
9 185 B9 57 39 121 79

186 8A 58 3A 122 7A
187 88 59 38 123 7B

< 188 BC 60 3C 124 7C
189 BD 61 3D 125 70

> 190 BE 62 3E 126 7E
? 191 BF 63 3F 127 7F

@ 192 co 0 00 64 40
A 193 Cl 1 01 65 41
B 194 C2 2 02 66 42
c 195 C3 3 03 67 43
D 196 C4 4 04 68 44
E 197 cs 5 OS 69 45
F 198 C6 6 06 70 46
G 199 C7 7 07 71 47
H 200 C8 8 08 72 48

12

The Fundamentals

Normal Inverse Flash

------------ ------- ------------Character Decimal Hex Decimal Hex Decimal Hex
I 201 C9 9 09 73 49
J 202 CA 10 OA 74 4A
K 203 CB 11 OB 75 4B
L 204 cc 12 oc 76 4C
M 205 CD 13 OD 77 40
N 206 CE 14 OE 78 4E
0 207 CF 15 OF 79 4F
p 208 DO 16 10 80 50
Q 209 Dl 17 11 81 51
R 210 02 18 12 82 52
s 211 03 19 13 83 53
T 212 04 20 14 84 54
u 213 DS 21 15 85 55
v 214 06 22 16 86 56
w 215 07 23 17 87 57
X 216 08 24 18 88 58
y 217 09 25 19 89 59
z 218 DA 26 1A 90 SA
[219 DB 27 lB 91 SB

" 220 DC 28 lC 92 sc
1 221 DD 29 lD 93 50

222 DE 30 lE 94 SE
223 DF 31 lF 95 SF

13

The Fundamentals

Table 2-2. True ASCII
ASCII ASCII ASCII
Code Character Code Character Code Character

0 NUL 44 86 v
1 SOH 45 87 w
2 STX 46 88 X
3 ETX 47 I 89 y
4 EOT 48 0 90 z
5 ENQ 49 1 91 [
6 ACK 50 2 92 '\
7 BEL 51 3 93 1
8 BS 52 4 94 A

9 HT 53 5 95
10 LF 54 6 96
11 VT 55 7 97 a
12 FF 56 8 98 b
13 CR 57 9 99 c
14 so 58 100 d
15 51 59 101 e
16 DLE 60 < 102 f
17 DC1 61 103 g
18 DC2 62 > 104 h
19 DC3 63 ? 105
20 DC4 64 @ 106 j
21 NAK 65 A 107 k
22 SYN 66 B 108 I
23 ETB 67 c 109 m
24 CAN 68 D 110 n
25 EM 69 E 111 0

26 SUB 70 F 112 p
27 ESC 71 G 113 q
28 FS 72 H 114 r
29 GS 73 I 115 s
30 RS 74 J 116 t
31 us 75 K 117 u
32 (space) 76 L 118 v
33 ! 77 M 119 w
34 78 N 120 X

35 # 79 0 121 y
36 $ 80 p 122 z
37 % 81 Q 123 {
38 & 82 R 124 I
39 83 5 125 }
40 84 T 126 ~

41 85 u 127 DEL (appears
42 .. onscreen as a
43 + blank)

14

The Fundamentals

The ASCII code, an assignment of numbers to letters and
symbols, forms a convention by which computers worldwide
can communicate with each other. Text can be sent via
modems and telephone lines, and it will arrive meaning the
same thing to an alien computer. It's important to visualize
each byte, then, as being eight bits ganged together and that a
byte is able to represent 256 different things. As you might
have suspected, 256 is another power of two (two to the
power of eight).

So these groupings of eight, these bytes, are a major as
pect of computing; but we also want to simplify our counting
from 0 to 255. We want the numbers to line up in a column
on screen or on paper. Obviously, decimal numbers are erratic:
The number 5 takes up one space, the number 230 takes up
three spaces. Hex numbers between 0 and 255 will always,
predictably, take up two spaces (here's 0-255 expressed in the
hexadecimal format: $00-$FF).

In addition to being easier to format in printouts, hex is
also somewhat easier to visualize in terms of the binary num
ber system-the onjoff, single-bit way that the computer
manipulates numbers:

Decimal
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Hex
01
02
03
04
05
06
07
08
09

(note new digits) -oA
OB
oc
OD
OE
OF

(note new column-10
in the hex) 11

Binary
00000001
00000010
00000011 (1 + 2)
00000100
00000101 (4 + 1)
00000110 (4+2)
00000111 (4+2+1)
00001000
00001001 (8 + 1)
00001010 (8+2)
00001011 (8+2+1)
00001100 (8+4)
00001101 (8+4+1)
00001110 (8+4+2)
00001111 (8+4+2+1)
00010000
00010001 (16+ 1)

15

The Fundamentals

See how hex $10 (hex numbers are usually preceded by a
dollar sign to show that they are not decimal) looks like bi
nary? If you split a hex number into two parts, 1 and 0, and
the equivalent binary number into two parts, 0001 and 0000,
you can see the relationship.

The Rationale for Hex Numbers
Many ML programmers like to use hexadecimal numbers be
cause they are a superior visual analogue of the internal
manipulations inside the computer; hex is simply more like bi
nary because hex is a power of two and decimal (base ten) is
not a power of two. It's really up to you whether or when you
add hex to your bag of tricks. (In the early days of program
ming, another base, base eight, called octal was very popular.
It's still used today when programming some large comput
ers.) You will see that you can choose to use hex or decimal
when writing ML with the LADS assembler in this book. And
you can use them interchangeably, even on the same line of
program code. You can write LDA $0A or LDA 10, whichever
you prefer.

Here's what it looks like when you count up from zero in
both systems:
Decimal
0123456789

And now you start over by moving to a new column with the
number 10.
Hex
00 01 02 03 04 OS 06 07 08 09 OA OB OC OD OE OF

And then you start over with $10, $11, and so on.
See how we ran out of digits when trying to count up to

16 in hex? Hex substitutes the first few letters of the alphabet
to count past 09.

Program 2-1. Hex-Decimal Converter
HJ HE$ = "0123456789ABCDEF": HOME
15 PRINT "PLEASE CHOOSE:"
20 PRINT "INPUT HEX & GET DECIMAL BACK (1)"
25 PRINT "INPUT DECIMAL TO GET HEX BACK (2)"
30 GET K
35 ON K GOTO 200,400
100 H$ = "": FORM= 3 TO 0 STEP- l:N% =DE/ (16

A M):DE =DE-N%* 16 A M:H$ = H$ +MID$ (HE$,
N% + 1,1): NEXT M

16

The Fundamentals

101 RETURN
102 D = 0:Q = 3: FORM= 1 TO 4: FOR W = 0 TO 15: I

F MID$ (H$,M,1) =MID$ (HE$,W + 1,1) THEN 104
103 NEXT W
104 D1 = w * (16 A (Q)):D = D + D1:Q = Q- 1: NEXT

M
105 DE= INT (D): RETURN
200 INPUT "HEX ";H$: IF LEN (H$) < > 4 THEN PRINT

"NEED FOUR DIGITS": GOTO 200
205 GOSUB 102: PRINT DE
210 GOTO 200
400 INPUT "DECIMAL ";DE: GOSUB 100: PRINT H$
410 GOTO 400

The first thing to notice is that instead of the familiar
decimal symbol 10, hex uses the letter A because this is where
we run out of symbols and must start over again with a 1 and
a 0. Zero always reappears at the start of each new grouping
in any number system: 0, 10, 20, and so on. The same thing
happens with the groupin~s in hex: 0, 10, 20, 30, and so on.
The difference is that, in hex, the 1 in the "10's" column is ac
tually what we would call a 16 (in our normal decimal way of
counting).

The second column is now a 16's column; 11 (hex) means 17
(decimal), and 21 means 33 (2 times 16 plus 1). Learning hex
is probably the single biggest hurdle to overcome when get
ting to know ML.

Don't be discouraged if it's not immediately clear what's
going on. (It probably never will be totally clear-hex is, after
all, unnatural.) And remember that hex is an option, not a
requirement, when programming in ML.

It's just that much ML printed in magazines and books
uses hex. That's why you at least need to be able to make the
conversion (you can use Appendix F to convert between deci
mal and hex if you don't want to get deeply into hex). No
body really knows it that well. Most ML programmers use one
of the calculators sold by Sharp, TI, or Hewlett-Packard that
perform hex/ decimal conversions. Hex is one of those things,
like telephone books and dictionaries, that you have to know
how to use, but you don't have to memorize.

It's possible that someday hex will go the way of octal,
and we'll stick to the easy, obvious decimal mode entirely (ex
cept for excursions into binary numbers from time to time). If
you want more understanding, you might want to practice the

17

The Fundamentals

exercises at the end of this chapter. As you work with hex, it
will gradually seem less and less alien.

To figure out a hex number, multiply the second column
by 16 and add the other number to it. So, $2A would be 2
times 16 plus 10 (recall that A stands for 10).

Hex does seem impossibly confusing when you come
upon it for the first time. It will never become second nature,
but it should be at least generally understood. You need not
memorize hex beyond learning to count from 1 to 16; this
teaches you the symbols. Be able to count from 00 up to OF.
(By convention, even the smallest hex number is listed as two
digits as in 03 or OB. The other distinguishing characteristic is
the dollar sign that is usually placed in front of the digits: $05
or $0E.)

It's enough to know what they look like and be able to
find them when you need them.

The First 255
Another thing that makes all this easier is that if you do need
to work with hex, most ML programming involves working
with hex numbers only between 0 and 255. This is because a
single byte (eight bits) can hold no number larger than 255.
Manipulating numbers larger than 255 is of no real importance
in ML programming until you are ready to work with more
advanced ML programs. This comes later in the book. For ex
ample, all 6502 ML instructions are coded into one byte, all
the flags are held in one byte, and many addressing modes
use one byte.

To learn all we need to know about hex for now, we can
try some problems and look at some ML code to see how hex
is used in the majority of ML work. But first, let's take an
imaginary flight over computer memory. Let's get a visual
sense of what bits and bytes and the inner workings of the
computer's RAM look like.

The City of Bytes
Imagine a city with a single long row of houses. It's night.
Each house has a peculiar Christmas display: On the roof is a
row of eight lights. The houses represent bytes; each light is a
single bit. (See Figure 2-1.)

18

. ,...
I

N
QJ
a..
::;,
eo

u:::

The Fundamentals

If we fly over the City of Bytes, at first we see only dark
ness. Each byte contains nothing (zero), so all eight of its
bulbs are off. (On the horizon we can see a glow, however,
because the computer has memory up there, called ROM
memory, which is very active and contains built-in programs.)
But we are down in RAM, our free user-memory, and there
are no programs in RAM yet, so every house is dark. Let's ob
serve what happens to an individual byte when different num
bers are stored there; we can randomly choose byte 1504. We
hover over that house to see what information is "contained"
in the light display. (See Figure 2-2.)

Figure 2-2

Like everywhere else in the City of Bytes, this byte is
dark. Each bulb is off. Observing this, we know that the byte
here is "holding," or representing, a zero. If someone at the
computer types in POKE 1504,1, suddenly the rightmost light
bulb goes on and the byte holds a one instead of a zero:

Figure 2-3

This rightmost bulb is the one's column (so far, this is ex
actly the way things would work in our usual way of counting
by tens, our familiar decimal system). But the next bulb is in
the two's column, so POKE 1504, 2 would be:

Figure 2-4

20

The Fundamentals

And three would be one and two:

Figure 2-5
, I I I, ' I I,,. ' .,., ...

~-ftfh,
In this way-by checking which bits are turned on and

then adding them together-the computer can look at a byte
and know what number is there. Each light bulb, each bit, is
in its own special position in the row of eight and has a value
twice the value of the one just before it:

Figure 2-6

Eight bits together make a byte. A byte can hold a number
from 0 through 255 decimal. We can think of bytes, though, in
any number system we wish-in hex, decimal, or binary. Be
cause the computer uses binary, it's useful to be able to visual
ize it. Hex has its uses in ML programming. And decimal is
familiar. But a number is still a number, no matter what we
call it. After all, five pennies are always five pennies, whether
we symbolize them by 5 (decimal) or $05 (hex) or 00000101
(binary) or just call them a nickel.

A Binary Quiz
BASIC doesn't understand numbers expressed in hex or bi
nary. Binary, for humans, is very visual. It forms patterns out
of zeros and ones and lets you see an x-ray of the interior of a
byte. The following program will let you quiz yourself on
these patterns.

Here is a game which will show you a byte as it looks in
binary. You then try to give the number in decimal:

21

The Fundamentals

Program 2-2. Binary Quiz

100 REM BlNARY QUIZ
110 C1 = 177:C0 = 79
140 X= INT (256 * RND (1)):0 = X:P = 128
170 HOME
180 FOR I = 1 TO 8
190 IF INT (DIP) = 1 THEN PRINT CHR$ (C1);:D D

- P: GOTO 210
200 PRINT CHR$ (C0);
210 p = p I 2: NEXT I: PRINT
220 PRINT "WHAT IS THIS IN DECIMAL": PRINT
230 INPUT Q: IF Q =X THEN PRINT "CORRECT": GOTO 25

0
240 PRINT "SORRY, IT WAS ";X
250 FOR T = 1 TO 1000: NEXT T
260 GOTO 140

This next program will print out an entire table of binary
numbers from 0 to 255:

Program 2-3. Binary Table
100 REM COMPLETE BINARY TABLE
120 FOR X = 0 TO 255: PRINT X;
130 Z = X:L = 7
140 FOR Q 0 TO 7:T = INT (X I 2)
150 K$(L) CHR$ (48 + (X T * 2))
160 L = L - 1:X = T: NEXT Q

180 X = z
190 PRINT TAB(10);
200 FOR I 0 TO 7: PRINT K$(I);: NEXT I
205 PRINT
210 NEXT X

Examples and Practice
Here are several ordinary decimal numbers. Try to work out
the hex equivalent:

1. 10

2. 15

3. 5

4. 16

5. 17

6. 32

22

The Fundamentals

7. 128

8. 129

9. 255

10. 254

We are not making an issue of learning hex or binary. If
you needed to look up the answers in the table in Appendix F,
fine. As you work with ML, you will familiarize yourself with
some of the common hex numbers. And remember, you can
program in ML without needing to worry about hex numbers.
For now, we only want to be able to recognize what hex is.
The LADS assembler will do the translations for you anytime
you need them.

One other reason that we're not stressing hex too much is
that ML is generally not programmed without the help of an
assembler. The LADS assembler provided in this book will
handle your input automatically. It allows you to choose
whether you prefer to program in hex or decimal. With LADS,
just use the $ symbol when you intend a number to be inter
preted as hex.

This short BASIC program is good for practicing hex and
also shows you how a two-byte hex number relates to a one
byte hex number. It will take decimal in and give back the
correct hex.

Program 2-4. Hex Practice

10 H$ = "0123456789ABCDEF"
20 HOME
30 PRINT "ENTER DECIMAL NUMBER";: INPUT X
40 IF X > 255 THEN GOTO 30: REM NO NUMBERS BIGGER T

HAN 255 ALLOWED
50 FOR I = 1 TO 0 STEP - 1
60 N = INT (X I (16 A I)):X =X- N * 16 A I
70 HE$ =HE$ +MID$ (H$,N + 1,1)
80 NEXT I
90 PRINT HE$
100 HE$ = "": GOTO 30

For larger hex numbers (up to two bytes, $FFFF equals
65535), we can just make a simple change to the above pro
gram. Change line 40 to IF x>65535 THEN 30, and change
line 50 to FOR I = 3 TO 0 STEP - 1. This will give us four
place hex numbers. These larger hex numbers are used in ML

23

The Fundamentals

mainly for addresses, since the 6502 can directly address
65536 bytes (bytes with addresses from 0 to 65535). This is
the reason that many microcomputers max out at 64K. There
are special ways to get around this, but an eight-bit micro
processor like the 6502 is generally limited in the total amount
of RAM memory it can access directly.

The number 65535 is interesting because it represents the
limit of our computers' memories. In special cases, with addi
tional hardware, memory can be expanded beyond this. But
this is the normal upper limit because the 6502 chip is de
signed to be able to address (put bytes in or take them out of
memory cells) up to $FFFF.

Ganging Two Bytes Together to Form an Address
The 6502 often addresses by attaching two bytes together and
looking at them as if they formed a unit. It's like the way that
putting eight bits together forms the unit we call a byte. The
largest number that two bytes can represent is $FFFF (65535),
and the most that one byte can represent is $FF (255). Three
byte addressing is not possible for the 6502 chip. Machine lan
guage means programming instructions which are understood
directly by the 6502 chip itself. There are other CPU (Central
Processing Unit) chips, but the 6502 is the Apple's CPU. It's
the one covered in this book.

Reading a Machine Language Program
Before getting into an in-depth look at the monitor, that bridge
between you and your machine's language-we should first
learn how to read ML program listings. You've probably seen
them often enough in magazines.

These commented, labeled, but very strange-looking pro
grams are called source code (see Program 2-8 for an example).
Source code is what you write when you want to create an
ML program. It can be translated by an assembler program (like
LADS) into an ML program. When you have an assembler
program attack your source code, it looks at the keywords (the
instructions and their arguments, and their addresses) and
then POKEs a series of numbers into the computer. This series
of numbers is called the object code and is the runnable ML
program. You can CALL object code and it will do whatever
you've designed it to do.

Source code usually contains a great deal of information

24

The Fundamentals

in the form of comments which are of interest to the pro
grammer, but which the computer ignores. It's rather like the
way a BASIC program has REMarks to which the computer
pays no attention.

The computer needs only a list of numbers which it can
execute in order. That's what an ML program is. But for most
people, lists of numbers are only slightly more understandable
than Morse code. The solution is to let us use words which are
then translated into numbers for the computer. The primary
job of an assembler is to recognize an ML instruction. These
instructions are called mnemonics, which means "memory
aids. " They are like BASIC words, except that they are always
three letters long and are somewhat less like standard English.

If you type the mnemonic instruction JMP, the assembler
POKEs a 76 into RAM memory. It's easier for us to remember
something like JMP than the number 76. Seeing a 76, how
ever, the computer immediately knows that it's supposed to
perform a JMP. The number 76 is an operation code, or opcode,
to the computer.

We write the mnemonic instruction JMP, an assembler
translates this into the number 76, and the computer rec
ognizes 76 as the command JUMP. These three-letter words
we use in ML programming were designed to sound like what
they do. JMP does a JUMP (like a GOTO in BASIC). Deluxe
assemblers like LADS also let you use labels instead of num
bers. These labels can refer to individual memory locations,
special values like the score in a game, or entire subroutines.
(See the instructions for using LADS for more information
about using labels.)

Four Ways to List a Program
Labeled, commented source code listings are the most elabo
rate kind of ML program representation. There are also three
other kinds of ML listings. Let's see how these four styles of
representing an ML program would look by using a simple ex
ample program that just adds 2 + 5 and stores the result in
RAM memory location 848. The first two styles are simply
ways for you to type a program into the computer. The last
two styles show you what to type in, but also illustrate what
is going on in the ML program. First, let's look at the most
elementary kind of ML found in books and magazines: the
BASIC loader.

25

The Fundamentals

Program 2-5. BASIC Loader
10 FOR ADDRESS = 768 TO 776
20 READ BYTE
30 POKE ADDRESS, BYTE
40 NEXT ADDRESS
50 DATA 24,169,2,105,5,141,80,3,96

This is a series of decimal numbers in DATA statements
which are POKEd into memory beginning at decimal address
768. This is a BASIC program. When these numbers are
stashed into RAM, they form a little routine which clears the
carry (so there won't be any holdover from previous addi
tion-you always clear the carry before any addition in ML),
then puts the number 2 into the accumulator-a special loca
tion in the computer that we'll get to later-and then adds 5.
The result of the addition is then moved from the accumulator
to decimal address 848. If you try this program out, you can
CALL 768 to execute the ML program and then PRINT PEEK
(848) and you'll see the answer: 7. BASIC loaders are conven
ient for magazines to publish because the user doesn't need to
know anything at all about ML to enter and use these pro
grams. The BASIC loader POKEs the ML program into mem
ory, and then the only thing the user has to do is CALL the
right address and the ML transfers control back to BASIC
when its job is done. Many ML programs end with an RTS
(ReTurn from Subroutine) instruction which reverts to BASIC
mode.

Getting even closer to the machine level is the second
way you might see ML printed in books or magazines: the hex
dump. The Apple has a special monitor program in ROM
which lets you list memory addresses and their contents as
hex numbers.

More than that, you can type in new numbers and change
the program. That's what a hex dump listing is for. You copy
its numbers into your computer's RAM by using your computer's
monitor.

A hex dump, like a BASIC loader, tells you nothing about
the functions or strategies employed within an ML program.

Here's the hex dump version of the same 2 + 5 addition
program:

Program 2-6. Hex Dump
0300- 18 A9 02 69 05 8D 50 03
0308- 60 00 00 00 00 00 00 00

26

The Fundamentals

The third type of listing is called a disassembly. It's the op
posite of an assembly: A program called a disassembler takes
machine language (the series of numbers, the opcodes in the
computer's memory) and translates it into the words, the
mnemonics, which humans can read and understand. The
instruction (the mnemonic) you use when you want to put
something into the accumulator is called LDA, and you store
what's in the accumulator by using an STA. We'll get to them
later. In this version of our example addition routine, it's a bit
clearer what's going on and how the program works. Notice
that on the far left we have the memory addresses (in hex),
then hex numbers representing the actual bytes of the pro
gram and, on the right, the translation into ML instructions.
ADC means ADd with Carry and RTS means ReTurn from
Subroutine. A disassembly is to ML what LIST is to BASIC.
Your monitor has a disassembler built-in which will produce
these listings:

Program 2-7. Disassembly

• I 0300 18 CLC
' I 0301 A9 02 LDA #$02
• I 0303 69 05 ADC #$05
'I 0305 80 50 03 STA $035121
' I 0308 60 RTS

The Deluxe Version
Finally, we come to that full, luxurious, commented, labeled,
deluxe source code we spoke of earlier. It includes the hex
dump and the disassembly, but it also has labels and com
ments and line numbers added to further clarify the purposes
of things and to make it easier for programmers to enter and
edit their programs. This kind of listing can be produced with
the LADS assembler by invoking the .S or .P features to create
a full listing on screen or printer during the assembly process.

Note that in Program 2-8 all the numbers (except the line
numbers on the far left) are in hex. LADS makes this optional.
To make them decimal, use the .NH option and your listing
will be entirely in decimal.

On the far left are the line numbers for the convenience
of the programmer when writing the source code (the program
you write to feed into the assembler). The line numbers can be

27

The Fundamentals

used the way BASIC line numbers are used: deleted, inserted,
and so on. Next are the memory addresses where each in
dividual instruction in this routine is located in RAM. Then
come the hex numbers of the instructions. (So far, it resembles
the traditional hex dump.) Next are the disassembled transla
tions of the hex, but note that you can replace numbers with
labels as we'll see in Program 2-9. Last are the comments.
They are the same as REM statements in BASIC.

Program 2-9 is functionally the same as 2-8, but we've
defined some labels and used them instead of numbers. That
can be a good way to remember the purpose of various things,
just the way variable names in BASIC assist the programmer.

Where Programs 2-9 and 2-8 show you what LADS prints
out during an assembly if you request a listing, Program 2-10
illustrates just the source code part, what you would type into
your Apple and save to disk. Source code is the program you
write; it's what's fed to the assembler to produce object code
(the runnable ML program.) The object code has not yet been
generated from this source code. The code has not been assem
bled yet. Once LADS is activated, you can save or load source
code in the same way that you can save or load programs via
BASIC. Once 2-10 is saved on disk, you could use the LADS
AS:M command, and the assembler would translate the in
structions and print them on the screen andjor POKE them
into memory if so instructed.

Those few differences between Programs 2-9 and 2-10 are
conveniences for the programmer. The * = symbol tells the
assembler where you want the ML program located in mem
ory. The .P turns on the printer, and .S turns on listing to
screen during assembly. The semicolons announce that are
mark follows and the assembler should ignore the rest of the
line, just like REM in BASIC. Finally, the .END symbol tells
the assembler that there are no other files on the disk which
contain additional parts of this program. This is the total
program.

A simple assembler, like the one found in Apple's mon
itor, operates differently. It translates, prints, and POKEs as
soon as you hit RETURN on each line of code. You can save
and load the object, but not source code, with a simple
assembler.

Before we get into the heart of ML programming, a study
of the opcodes and ways of moving information around

28

N

\0

P
ro

gr
am

 2
-8

.
A

 F
ul

l
A

ss
em

bl
y

L
is

tin
g

L
in

e
M

em
o

ry

O
bj

ec
t

S
ou

rc
e
C

o
d

e
-
-
-
-
-
-
-
-
,

N
u

m
b

er
 A

d
d

re
ss

C

od
e

D
is

as
se

m
b

ly

112
112

1
121

312
112

1
1

8

C
L

C

1
1

0

12
13

01

A
9

12
12

L

D
A

#$

12
12

1

2
0

0

3
0

3

6
9

0

5

A
D

C

#
$

0
5

1

3
0

12

13
05

8D

5

0

0
3

S

T
A

$0

35
12

1
14

12
1

0
3

0
8

6

0

R
T

S

P
ro

gr
am

 2
-9

.
L

ab
el

ed
 A

ss
em

bl
y

1
0

0

3
0

0

2
0

0

3
0

0

3
0

0

3
0

0

4
0

1

0
0

0

3
0

0

1
8

1

1
0

0

3
0

1

A
9

0
2

1

2
0

0

3
0

3

6
9

0

5

1
3

0

0
3

0
5

8D

5

0

0
3

1

4
0

0

3
0

8

6
0

TW
O

=

 2

A
D

D
ER

=

 5

ST
O

R
A

G
E

=

 8
4

8

C
L

C

L
D

A

#T
W

O

A
D

C

#A
D

D
E

R

S
T

A

ST
O

R
A

G
E

R

T
S

C
o

m
m

en
ts

C
L

E
A

R

T
H

E

C
A

R
R

Y

FL
A

G

LO
A

D

A

W
IT

H

2
A

D
D

5

S
T

O
R

E

A
T

D
E

C
IM

A
L

L

O
C

A
T

IO
N

8

4
8

R

E
T

U
R

N

D
E

F
IN

E

L
A

B
E

L

"T
W

O
"

A
S

2
D

E
F

IN
E

"A

D
D

E
R

"
A

S

A

5
D

E
F

IN
E

ST

O
R

A
G

E

A
D

D
R

E
SS

C
L

E
A

R

T
H

E

C
A

R
R

Y

FL
A

G

LO
A

D

A

W
IT

H

2
A

D
D

5

S
T

O
R

E

A
T

D
E

C
IM

A
L

L

O
C

A
T

IO
N

8

4
8

R

E
T

U
R

N

-I

:::r

('!
) .,., c: ::::1

0.
.

PJ
 3 ('!

) ::::1
 -PJ V
i

The Fundamentals

(called addressing), we should look at a major ML program
ming aid: the monitor. It deserves its own chapter.

Program 2-10. The Source Code by Itself
5 *= 768
6 .P
7 .s
10 TWO = 2;
20 ADDER = 5;
30 STORAGE = 848:
40 :
100 CLC:
110 LOA #TWO;
120 ADC #ADDER;
130 STA STORAGE;
140 RTS;
150 .END ADDITION

Answers to quiz:

1. OA 6. 20
2. OF 7. 80
3. 05 8. 81
4. 10 9. FF
5. 11 10. FE

30

DEFINE LABEL "TWO" AS 2
DEFINE "ADDER" AS A 5
DEFINE STORAGE ADDRESS

CLEAR THE CARRY FLAG
LOAD A WITH 2
ADD 5
STORE AT DECIMAL LOCATION 848
RETURN

The Monitor
A monitor is a program which allows you to work directly
with your computer's memory cells. When you "fall below"
BASIC into the monitor mode, BASIC is no longer active. If
you type RUN, it will not execute anything. BASIC commands
are not recognized. The computer waits, as usual, for you to
type in some instructions. There are only a few instructions to
give to a monitor. When you're working with it, you're pretty
close to talking directly to the machine in machine language.

The Apple has a monitor in ROM. This means that you
do not need to load the monitor program into the computer;
it's always available to you.

Debugging is the main purpose of a monitor. You use it to
check your ML code, to find errors.

You enter the Apple monitor by typing CALL -151. You
will see the • monitor prompt and the cursor immediately
after it. Here are the monitor instructions:

1. Typing an address (in hex) will show you the number
contained in that memory cell; *2000 (hit RETURN) will
show 2000-FF, if, in fact, 255 decimal ($FF hex) is in that
location.

2. You can examine a larger amount of memory in hex (this
is called a memory dump or a hex dump). The Apple mon
itor remembers the address of the last number displayed.
This can be used as a starting address for the dump. If you
type the instruction in number 1, above, and then type
*.2010, you will see a dump of memory between 2001 and
2010. The only difference between this and instruction 1 is
the period (.) before the requested address .

3. You can directly cause a dump by putting the period be
tween two addresses: *2000.2010 combines the actions of
instructions 1 and 2 above.

4. Hitting RETURN will continue a dump, one line at a time.
5. The last displayed memory location can be changed by

using the colon (:). This is the equivalent of BASIC's
POKE.

If *2000 results in FF on the screen (or whatever),
you can change this FF to 0 by typing *:00. To see the
change, type *2000 again. Or you could type *2000:00 and
make the change directly.

33

The Monitor

The Apple II reference manual contains excellent de
scriptions of the monitor instructions. We will list the rest
of them only briefly here:

6. Change a series of locations at once: *2000: 00 69 15 65 12.
7. Move (transfer) a section of memory: *4000<2000.2010M

will copy what's between 2000 and 2010 up to address
4000. (All these addresses are hex.)

8. Compare two sections of memory: *4000<2000.2010V. This
looks like Move, but its job is to see if there are any dif
ferences between the numbers in the memory cells from
2000 to 2010 and those from 4000 to 4010. If differences
are found, the address where the difference occurs appears
onscreen. If the two memory ranges are identical, nothing
is printed onscreen.

9. Saving (writing) a section of ML to tape: *2000.2010W.
This is how you would save an ML program. You specify
the addresses of the start and end of your program. Note
that all your normal DOS functions are available as well,
while in the monitor mode.

10. Loading (reading) a section of memory (or an ML pro
gram) back into the computer from tape: *2000.2010R will
put the bytes saved, in instruction 9, above, back where
they were when you saved them. Disk users save and load
ML programs using the BSAVE and BLOAD commands,
just as in BASIC mode.

34

An interesting additional feature is that you could
send the bytes to any address in the computer. To put
them at 4000, you would just type *4000.4010R. This gives
you another way to relocate subroutines or entire ML pro
grams (in addition to the Move instruction, number 7,
above). If you move an ML program to reside at a different
address from the one it was originally intended during
assembly, any JMP or JSR (Jump to SubRoutine, like BA
SIC's GOSUB) instruction which points to within your pro
gram must be adjusted to point to the new addresses. If
your subroutine contained an instruction such as 2000 JSR
2005, and you loaded at 4000, it would still say 4000 JSR
2005. You would have to change it to read 4000 JSR 4005.
All the BNE, BPL, BEQ branching instructions, though, will
make the move without damage. They are relative ad
dresses (as opposed to the absolute addressing of JSR

The Monitor

2005). They will not need any adjusting. We'll go into this
in detail later.

11. Run (go): *2000G will start executing the ML program
which begins at address 2000 . There had better be a pro
gram there or the machine is likely to lock up, performing
some nonsense, an endless loop, until you turn off the
power or press a RESET key. The program or subroutine
will finish and return control of the computer to the mon
itor when it encounters an RTS.

This is like BASIC's SYS command, except the com
puter returns to the monitor mode.

12. Disassemble (list) : *20001 will list 20 lines of ML on the
screen. It will contain three fields (a field is a " zone" of
information). The first field will contain the address of an
instruction (in hex). The address field is somewhat com
parable to BASIC's line numbers. It defines the order in
which instructions will normally be carried out.

Here's a brief review of disassembly listings. The sec
ond field shows the hex numbers for the instruction, and
the third field is where a disassembly differs from a
" memory" or " hex" dump (see numbers 1 and 2, above) .
This third field translates the hex numbers of the second
field back into a mnemonic and its argument. Here's an
example of a disassembly:
2000 A9 41 LOA #$41
2002 80 23 32 STA $3223
2005 A4 99 LOY $99

Recall that a dollar sign ($) shows that a number is in
hexadecimal. The pound sign (#) means immediate
addressing (put the number itself into the A register at 2000
above).

Confusing these two symbols is a major source of er
rors for beginning ML programmers. You should pay care
ful attention to the distinction between LDA #$41 and
LDA $41. The second instruction (without the pound sign)
means to load A with whatever number is found in address
$41 hex. LDA #$41 means put the actual number 41 itself
into the accumulator. If you are debugging a routine, check
to see that you've got these two types of numbers straight,
that you've loaded from addresses where you meant to
(and, vice versa, that you've loaded immediately where you
intended).

35

The Monitor

13. Mini-assembler. This assembler program is part of the
Integer BASIC ROM, and must be placed in memory by
booting the DOS 3.3 System Master disk and loading Inte
ger BASIC into the Language card. Type INT from BASIC
and press RETURN. Your prompt symbol should change to
the > symbol for Integer BASIC. Then enter the monitor
program by typing CALL -151, and press RETURN.

From the monitor, type F666G to enter the assem
bler. The prompt symbol should change to the exclamation
point (!) to insure that you are in fact in the assembler.

Enter your starting address, followed by a colon (:),
the mnemonic, and the argument for your first instruction.
Press RETURN, and the assembler will erase your line and
display the assembled code, placing the ! prompt on the
next line. Type
!2000:LDA #15

The assembler program replaces your line with
2000- A9 15 LOA #$15

To enter the next instruction, type a space following the !
prompt and then the mnemonic and the argument. The
assembler will place the code in memory correctly.
! LOY #01

If you mistyped LDA as LDDA your Apple mini
assembler would sound a beep and put a caret(") near the
error. In any case, you are not going to get elaborate SYN
TAX ERROR messages. Unless you are using a very
sophisticated assembler like LADS, the only error that a
simple assembler can usually detect is an impossible
opcode.

To reenter the monitor program from the assembler,
type $FF69G and press RETURN. The dollar sign($) must
be typed before this hexadecimal address. Your prompt
will change to an asterisk indicating that you are in the
monitor program.

14. Changing registers. *(CONTROL) E, in the monitor, will
display the contents of the accumulator, the X and Y reg
isters, the status register (P), and the stack pointer (S). You
can then change the contents of these registers by typing
them in onscreen, following a colon. Note that to change

36

The Monitor

the Y register, you must type in the A and X registers as
well:
*(CONTROL) E (and hit RETURN)

You'll see A=01 X=05 Y=FF P=30 S=FE
(whatever's in the registers at the time).

To change theY register to 00, type in the A, X, and
then the new version of Y:
*:01 05 00 (and hit RETURN)

15. Going back to BASIC. You can use *(CONTROL) B to go
to BASIC (but it will wipe out any BASIC program that
might have been there). Or you can use *(CONTROL) C
to go back to BASIC, nondestructively.

Using the Monitor
You will make mistakes. Monitors are for checking and fixing
ML programs. ML is an exacting programming process, and
causing bugs is as unavoidable as mistyping when writing a
letter. It will happen, be sure, and the only thing for it is to go
back and try to locate and fix the slip-up. It is said that every
Persian rug is made with a deliberate mistake somewhere in
its pattern. The purpose of this is to show that only Allah is
perfect. This isn't our motivation when causing bugs in an ML
program, but we'll cause them nonetheless. The best you can
do is try to get rid of them when they appear.

Probably the most effective tactic, especially when you are
just starting out with ML, is to write very short subroutines.
Because they are short, you can more easily check and exam
ine them to make sure that they are functioning the way they
should. Let's assume that you want to write an ML subroutine
to ask a question on the screen. (This is often called a prompt
since it prompts the user to do something.)

The message can be PRESS ANY KEY. First, we'll have to
store the message in RAM somewhere. Let's put it at hex
$1500. That's as good a place as anywhere else.

ASCII
1500 208 p
1501 210 R
1502 197 E
1503 211 s
1504 211 s
1505 160

37

The Monitor

1506 193 A
1507 206 N
1508 217 y
1509 160
150A 203 K
150B 197 E
150C 217 Y
1500 0 (This is a special signal to the computer called the delimiter

which shows that the message is concluded.)

We'll put our "print-it-out" subroutine at address $1000.
So, we've got the data at address $1500 and the subroutine
that uses the data located at $1000. All this is entirely ar
bitrary. The ML programmer can put things wherever in RAM
he or she wishes.

We haven't got into actual programming yet, but this ex
ample is a good place to see if you can spot an error in ML
programming. This subroutine will not work as printed. There
are two errors in this program. See if you can spot them:
1000 LOY #$00; (Set up the Y register to count events.)
1002 LOA $1500, Y; (Get the first character from the data.)
1005 CMP $00; (Is it the delimiter?)
1007 BNE $100A; (If not, continue on.)
1009 RTS; (It was zero, so quit and return to whatever

100A STA $0400,Y;
1000 INY;
100E JMP $1000;

JSRed, or called, this subroutine.)
(Apple text display area)
(Raise the counter by one.)
(Always JMP back to address $1000.)

Since we haven't yet gone into addressing or opcodes
much, this is like learning to swim by the throw-them-in-the
water method. Nevertheless, see if you can make out how
these instructions interact. Here's some help, a BASIC version
(containing the same errors) of the same routine:

10 DATA 208,210,197,211,211,160,193,206,217,160,203,197,217,0
20 y = 0
30 READ X: IF X < PEEK(O) THEN 50
40 RETURN
50 POKE 1024 + Y,X
60Y=Y +1
70 GOTO 20

This subroutine won't work. In the ML version, you'll find
two of the most common bugs in ML programming. Unfortu
nately, they are not obvious bugs. An obvious bug would be

38

The Monitor

typing LDS when you meant LDA. Any assembler would alert
you to this error by printing an error message to let you know
that no such instruction as LDS exists in 6502 ML.

No, the bugs in this program are errors in logic, in the
flow or sense of the thing. If you disassemble it, it will also
look just fine to the disassembler program, and no error mes
sages will be printed out in this situation either.

But, the routine will not work the way you want it to.
Before reading on, see if you can spot the two errors. Also, see
if you can follow the events as the ML routine runs through
its loop, picking up the characters in the message and sup
posedly depositing them onscreen. Where does the computer
go after the first pass through the code? When and how does
it know that it's finished with its job?

Two Common Errors
A very common bug, perhaps the most common ML bug, is
caused by accidentally using zero page addressing when you
mean to use immediate addressing. We mentioned this distinc
tion before, but it is the cause of so much puzzlement to the
beginning ML programmer that we're going to pound away at
it several times in this book. Zero page addressing looks very
similar to immediate addressing. Zero page means that you are
dealing with one of the cells, or bytes, in the first 256 ad
dresses in RAM memory in the computer, the lowest locations
possible.

A page of memory is 256 bytes. Page 1 is from addresses
256 to 511 ($0100 to $01FF) and is special. It's called the stack,
and the computer has a special use for it. We'll get to it later,
but don't try storing anything in page 1 unless you're fond of
havoc. Addresses 512-767 ($0200-$02FF) comprise page 2.
The Apple text screen memory starts at address $0400 (1024
in decimal), and this is the start of page 4. And so on, in 256-
byte blocks, up memory to the very top, page 255.

By contrast to zero page addressing is immediate address
ing. Immediate addressing means that the number you're deal
ing with is right within the ML code (not somewhere else in
memory) . It means that you knew what number you were
dealing with and put it right into your program when you
wrote the program. Immediate addressing means that the
number directly follows an instruction; it's the argument, the
operand, of an instruction. LDY #$00 is immediate addressing.

39

The Monitor

It puts the number 0 into the Y register (see line 1000 in the
example routine).

LDY $0 is not immediate addressing, and you very well
might not get a 0 into the Y register. LDY $0 is zero page
addressing. LDY $34 is also zero page addressing. Using any
address lower than 256 would mean zero page addressing.
LDY $34 might put anything, any number, into the Y register
because whatever number is in address $34 will be placed into
the Y register. The key is that# symbol, the number symbol.
If you mean to load the number $34 into the Y register, use
LDY #$34. If you mean to fetch whatever is currently in ad
dress $34, use LDY $34. It's easy and very common to mix up
these two modes. So, look for this error first when debugging
a faulty program. Check to see that all your zero page
addressing is supposed to fetch from the zero page of RAM
and that all your immediate mode numbers are supposed to
come from within the ML code itself, immediately following
the instruction.

In our example ML program, LDY #$0 is correct-we do
want to set the Y register to 0 so that it can help us put the
characters in the proper places on the screen (STA $0400,Y
stores each character at address $0400, the screen, plus the
current value of Y). For this purpose, we want the immediate,
the actual, number 0.

Take a close look, however, at the instruction at location
$1005. Here, we are trying to see if we've picked out that zero
in the message that tells us the message is finished. We want
to CoMPare to the number 0. But, we left off the # symbol that
tells the computer to use the number 0. Instead, we're going to
cause a comparison against whatever might be in location 0,
address 0. To fix this bug, the instruction should be changed
to read CMP #$0 so that it will be immediate mode, not zero
page mode. (If this confuses you, take a look at line 30 in the
BASIC version to see the flaw. If it still confuses you, don't
worry, we'll be going over all this in much greater detail in
Chapters 4 and 6.)

The second bug in this example routine is also a very com
mon one. The subroutine, as written, can never leave itself, will
endlessly loop. Loop structures are usually preceded by a short
setup of some kind. You have to initialize counters before the
loop can begin because you have to tell it where to start and
how many times to loop. In BASIC, FOR I = 1 TO 10 tells the

40

The Monitor

computer to cycle ten times. In ML, we set the Y register to
zero and let it act as our counter. In this particular routine, we
don't use Y to tell us when to stop (that's the job of the
embedded zero at the end of the message itself) . Instead, Y
serves two other purposes. It kills two birds with one stone. It
is the offset (the pointer to the current position in a list or se
ries) to load the message in the data and is also the offset to
position the letters of the message on the screen. Without Y
going up one (INY) each time through this loop, we would al
ways print the first letter of the message and always print it in
the first position on the screen.

What's the problem? It's that JMP instruction at $100E.
We should be jumping back to address $1002, but the JMP
tells us to jump back to $1000. As things stand, theY register
will always be reset to zero, there will never be a chance to
read through the message and pick up that zero that ends
things, and we cannot therefore ever exit this loop. We will
endlessly cycle, printing P over and over again. Y will never
go up past zero because each loop puts a zero back into Y.
Look at the relationship between lines 70 and 20 in the BASIC
example.

Tracking Them Down
The monitor will let you locate these and other errors. You can
replace an instruction with a zero (the BReaK command)
which will stop a program run and let you see the condition of
your variables and what's going on in the registers at the
breakpoint. If this doesn't help, you can get more specific by
single-stepping through your program in order to discover, for
example, that you are using CMP $0 when you meant CMP
#$0.

It would also be easy, by stepping, to notice that your Y
register is being reset to zero every time through the loop. For
single-stepping, it's good to first make a printout of the sus
pect area of your program so that you can follow along during
the single-stepping. If the Y register keeps turning back into
zero, that clues you that this register isn't cooperating, it's not
counting up each time through the loop the way you intended
it to. These and other errors, if not always immediately ob
vious, are at least discoverable from within the monitor.

Also, the disassembler function of the monitor will per
mit you to study the program and look, deliberately, for the

41

The Monitor

correct use of #$00 and $00. Since that mixup between im
mediate and zero page addressing is so common an error, al
ways check for it first.

Programming Tools
The single most significant quality of monitors which contrib
utes to easing the ML programmer's job is that monitors, like
BASIC, are interactive. This means that you can make changes
and test them right away, right then. In BASIC you can find
an error in line 120, make the correction, and run a test
immediately.

It's not always that easy to locate and fix bugs in ML:
There are few error messages, so finding the location of a bug
can be difficult. But a monitor does allow interactivity: You
make changes and test them on the spot. This is one of the
drawbacks of complex assemblers, especially those which have
several steps between the writing of the source code and the
final assembly of executable object code (ML which can be
executed). LADS, however, was designed to maximize
interactivity, and you should find that its speed of assembly,
its open architecture (you can easily modify it, add your own
error messages and bug traps), and its BASIC-like environment
will all contribute to quick program adjustments and quick
testing.

Unfortunately, other sophisticated assemblers often re
quire several steps between writing an ML program and being
able to test it. These assemblers can require linkers, relocatable
loaders, mapping, globaljlocal variable definition, macros,
separate and clumsy source code editors, and other "features"
which contribute little to the actual assembly of a program or
to the comfort of the programmer. If you don't already know
the function of these "enhancements/' count it as a blessing.
They greatly retard program development except in pro
fessionat programming-by-committee situations. These func
tions make it easier to rearrange ML subroutines, put them
anywhere in memory without modification, and so forth. They
make ML more modular (composed of smalt self-sufficient
modules or subroutines), but they also make it far less inter
active . You cannot easily make a change and see the effects at
once.

However, using the monitor's mini-assembler, or the
LADS assembler from this book, you are right near the mon-

42

The Monitor

itor level, and fixes can easily and quickly be tested. In other
words, the assemblers which are best for individual pro
grammers trade efficiency for group-programming communica
tion flexibility. Personal assemblers, like personal computers,
should reflect the needs of the programmer, not the needs of
industrial, programming teams. Personal assemblers should in
volve little, if any, preplanning, less forethought, less abstract
analysis, and no rules for communicating between one pro
grammer and another. If something goes awry, you can just
try something else until it all works. Not only does this help
you learn, it's also significantly the fastest way to program.

Plan Ahead or Plunge In?
Some people find such trial and error programming un
comfortable, disgraceful even. Industrial assemblers (and many
assemblers currently sold for personal use) discourage
interactivity, requiring flowcharts, even expecting the pro
grammer to write out a program ahead of time on paper and
debug it before even sitting down at the computer.

In one sense, these large assemblers are a holdover from
the early years of computing, when computer time was ex
tremely expensive. There was a clear advantage to coming to
the terminal as prepared as possible. Interactivity was costly.
But, like the increasingly outdated advice urging programmers
to worry about saving computer memory space, it seems that
strategies designed to conserve computer time are also
anachronistic. You can spend all the time you want on your
personal computer.

Complex assemblers tend to downgrade the importance of
a monitor, to reduce its function in the assembly process.
Some programmers who've worked on large IBM mainframe
computers for 20 years do not know what the word monitor
means in the sense we are using it. To them, monitors are
CRT screens. The machine language tools used for years by
mainframe programmers often have what we call a monitor,
but it will be seriously restrictive. It will often, for example,
have no single-step function and no provision for saving an
ML program to disk or tape from within the monitor.

Whether or not you prefer the interactive style of personal
programming, its greater reliance on the monitor, and on trial
and error programming is your decision. If you're used to
group programming, you might find it difficult to abandon the

43

The Monitor

preplanning, the flowcharts, and all the rest. The choice is ul
timately a matter of personal style.

Some programmers are uncomfortable unless they have a
fairly complete plan before they even get to the computer key
board. Others are quickly bored by elaborate flowcharting,
"dry computing" on paper, and can't wait to get on the com
puter and see-what-happens-if.

Perhaps a good analogy can be found in the various ways
that people make telephone calls. When long-distance calls
were extremely expensive, most people made lists of what
they wanted to say and carefully planned the call before dial
ing. They would also watch the clock during the call. (Some
still do this today.) As the costs of phoning came down, many
people found that spontaneous conversation was more satisfy
ing. It's up to you.

Computer time, though, is now extremely cheap. If your
computer uses 100 watts and your electric company charges 5
cents per kilowatt-hour, never turning your machine off would
cost only about 12 cents a day.

44

Addressing
The 6502 processor is an electronic brain. It performs a variety
of manipulations with numbers to allow us to write words,
draw pictures, control outside machines such as tape recorders,
calculate, and do many other things. It was designed to be
logical and fast, to work accurately and efficiently.

If you could peer down into the CPU (Central Processing
Unit), the heart of the processor, you would see numbers be
ing delivered and received from memory locations all over the
computer. Sometimes the numbers arrive and are sent out, un
changed, to some other address. Other times they are com
pared, added, or otherwise modified, before being sent back to
RAM or to a peripheral. Writing an ML program can be com
pared with planning the activities of this message center. This
can be illustrated by thinking of computer memory as a City
of Bytes with the CPU acting as the main post office (see Fig
ure 4-1). The CPU uses four tools to do its job: three registers,
a program counter, a stack pointer, and seven little one-bit
flags.

The monitor, if you type CONTROL-E, will display the
present status of these tools. It looks something like this:
A=Ol X=OS Y=FF P=30 S=FE

A, X, and Y are the registers, P is the processor status flags
(each bit in this byte is a flag), and S is the stack pointer. You
can more or less let the computer handle the stack pointer. It
keeps track of numbers, usually return-from-subroutine ad
dresses, which are kept together in a list called the stack.

The computer will automatically handle the stack pointer
for us. It will also handle the program counter (PC) which
keeps track of where you are located at any given time within
the computer. For example, each ML instruction can be either
one, two, or three bytes long. TYA has no argument and is the
instruction to transfer a number from the Y register to the
accumulator. Since it has no argument, the PC can locate the
next instruction to be carried out by adding one to itself. If the
PC held $4000, it would hold $4001 after execution of a TYA.

LDA #$01 is a two-byte instruction. It takes up two bytes
in memory, so the next instruction to be executed after LDA
#$01 will be two bytes beyond it. In this case, the PC will
raise itself from $4000 to $4002. But we can just let it work
merrily away without worrying about it.

47

ST
AT

US
 R

EG
15

n:K

FL
AG

S

+

F
ig

ur
e

4-
1.

 P
os

ta
l

E
xe

cu
tiv

es
 a

t
W

o
rk

 o
n

 a
n

In
st

ru
ct

io
n

:
21

25
4

S
TA

 $
33

00
,Y

uer
r. O

F

~
m

Addressing

The Accumulator: The Busiest Register
S, A, X, andY, however, are our business. They are all eight
bits, or one byte, in size. They are not located in memory
proper. You can't PEEK them since they have no address like
the rest of memory. They are zones of the CPU. The A reg
ister, most often called the accumulator, is the busiest place in
the computer. The great bulk of the mail comes to rest here, if
only briefly, before being sent to another destination.

Any logical transformations (EOR, AND, ORA) or
arithmetic operations leave their results in the accumulator.
Most of the bytes streaming through the computer come
through the accumulator. You can compare one byte against
another using the accumulator. And nearly everything that
happens which involves the accumulator will have an effect
on the status register (S, the flags). We won't need to actually
work directly with the status register, but the information it
holds will be important because several important instructions,
like Branch if EQual (BEQ) test to see if a flag is up or down
when deciding where to send the program for the next task.

The X and Y registers are similar to each other in that one
of their main purposes is to assist the accumulator. They are
used as addressing indexes. There are some methods of
addressing that we'll get to in a minute which add an index
value to another number. For example, if the X register is cur
rently holding a five, LDA $4000,X will load the byte in ad
dress $4005 into A. In other words, the real address when
you're using indexed addressing is the number plus the index
value. If X has a six, then we load from $4006. Why not just
LDA $4006? The reason is that it's far easier to raise or lower
an index inside a loop structure than it would be to write in
each specific address literally.

A second major use of X andY is in counting and looping.
We'll go into this more in the chapter on the instruction set.

We'll also have some things to learn later about S, the
status register, which holds some flags showing current con
ditions. Among other things, the S can tell a program or the
CPU if there has been a zero, a carry, or a negative number as
the result of some operation. Although it's not important to be
able to work directly with the status register, knowing about
carry and zero flags is especially significant in ML. The
branching instructions will check these flags for you, but you
should be aware of what some of the flags signify.

49

Addressing

But we can leave learning about the instructions until we
get to Chapter 6. For now, the task at hand is to explore the
various "classes" of mail delivery, the 6502 addressing modes.

The computer must have a logical way to pick up and
send information. Rather like a postal service in a dream
everything should be picked up and delivered rapidly, and
nothing should be lost, damaged, or delivered to the wrong
address.

The 6502 accomplishes its important function of getting
and sending bytes (GET and PRINT would be examples of the
same activity in BASIC) by using several addressing modes.
There are 13 different ways that a byte might be " mailed"
either to or from the central processor.

When programming, in addition to picking an instruction
(of the 56 available to you) to accomplish the job you are
working on, you must also make one other decision. You must
decide how you want to address the instruction-how, in other
words, you want the mail sent or delivered. There is some
room for maneuvering, however. It will rarely matter if you
should choose a slower delivery method than you could have.
Nevertheless, it is worth knowing about the various address
ing modes; most of them are designed to be helpful during
some particular programming activity.

Absolute and Zero
Let's picture a postman's dream city, a city so well planned
from a postal-delivery point of view that no byte is ever lost,
damaged, or sent to the wrong address. It's the City of Bytes
we first toured in Chapter 2. It has 65536 houses all lined up
on one side of a street (a long street) . Each house is clearly la
beled with its number, starting with house 0 and ending with
house 65535. When you want to get a byte from, or send a
byte to, a house (each house holds one byte), you must "ad
dress" the package. (See Figure 4-2.)

Let's look at the most elementary mode of addressing. It's
quite popular and could be thought of as " first class. " Called
absolute addressing it can send a number to, or receive one
from, any house in the city. It's what we normally think of
first when the idea of addressing something comes up. You just
put the number on the package and send it off. No indexing or
special instructions. If it says 2500, then it means house 2500.

50

Addressing

1000 STA $2500

or
1000 LDA $2500

These two, STore A and LoaD A, STA and LDA, are the
instructions which get a byte from, or send it to, the accu
mulator. The address, though, is those numbers following the
instruction. The item following an instruction is sometimes
called the instruction's argument. You could have written the
above addresses several ways. Writing $2500, however, tells
the computer to carry out the instruction with respect to ad
dress $2500, to store or load the byte from that location. This
kind of addressing uses just a simple $ (to show that this is a
hex, not decimal, number) and a four-digit number. You can
send the byte in the accumulator to anywhere in memory by
this method (or retrieve it from anywhere). Remember, too,
that if you send a byte from the accumulator, it also remains
in the accumulator. It's more a copying than a literal sending.

Heavy Traffic in Zero Page
A second addressing mode, called zero page, we've touched on
before. If you are sending a byte down to anywhere between
addresses 0 and 255 ($0000 and $00FF), the zero page, you can
just leave off the first two numbers: 1000 STA $07. (Remem
ber that the 1000 is the address, the location, of the instruc
tion, not the argument, or target, of the instruction.)

Zero page addressing, using only two hex digits or deci
mal numbers lower than 256, is pretty fast mail service: The
mail carrier has to worry about choosing between only 256 in
stead of 65536 possible houses. And, also, the computer is
specially wired to service these special addresses . Think of
them being close to the post office. Things get picked up and
delivered rapidly in zero page. That's precisely why your
BASIC and operating systems tend to use it so often.

Although zero page addressing works only with the first
256 locations in your computer, it gets more than its share of
the mail. Apple's BASIC language, its operating system, and
disk operating systems use up most of zero page to hold flags
and other temporary information they need. Why? Because
zero page addressing is the fastest of all the addressing modes.
It's nearly instantaneous. Since the Apple has appropriated
these first 256 houses for its own use, there's not much room

52

Addressing

left over down there for you to store your own ML pointers or
flags, not to mention entire subroutines. You will, however,
want to squeeze in some address pointers which we'll get to in
a minute. After all, your programs, too, will sometimes want
the fastest possible service.

These two addressing modes, absolute and zero page, are
very common ones. In your programming, however, you prob
ably won't get to use zero page as much as you might want to.
You will notice on a map of the Apple that zero page is
heavily trafficked. You could cause a problem by storing things
in zero page where the Apple expects to use it for its own pur
poses. You can find excellent maps of your machine in its Ref
erence Manual from Apple. Earlier Apples included these
reference manuals with the computer; the lie manual costs ex
tra, but it's well worth it for ML programming. (Maps not only
tell you what space must be avoided, but also where to access
the many built-in BASIC routines in your computer. More
about this later.)

There are, however, safe areas for you to use down there
in those exclusive locations in lower RAM memory. Buffers for
the cassette player or for BASIC activities like floating-point
arithmetic are safe when you're not using a tape drive or
BASIC. So, if you put your pointers and flags into these ad
dresses, things will be fine. In any case, zero page is a popu
lar, busy neighborhood. Don't put any of your actual ML
programs there. Your main use of zero page will be to hold
pointers for an especially useful addressing mode called zero Y
that we're going to look at in detail. But you've always got to
make sure that you aren't interfering with the Apple's own
requirements for space in zero page.

Here is a list of the places you can safely store things in
zero page without worrying that there will be a conflict with
your Apple's needs:

6-9 (You can use addresses 6, 7, 8, or 9.)
25-31
206-207
214-215
235-239
249-255

While we're on the subject of places to avoid, keep out of
page 1, too (decimal addresses 256-511). That's for the stack,

53

Addressing

about which more later. We'll get to the safe places in RAM
that you can use for your ML programs and their flags, vari
ables, tables, and so on. It's always okay to use ordinary
higher RAM as long as you keep BASIC programs from
putting their variables on top of the ML and keep the ML
from writing over BASIC (if you want them to coexist during a
program run).

The safest place of all for short ML routines is between
addresses 768 ($300) and 1023 ($3FF) since the Apple leaves
these RAM locations essentially undisturbed. So, when you
want to practice with the examples in this book, it's always
okay to give the LADS assembler a start address instruction of
"'= $300 or its decimal equivalent"'= 768.

Immediate
Another very common addressing mode is called immediate
addressing-it deals directly with a number. Instead of send
ing away for the number, we can just shove it directly into the
accumulator by putting the number right in the same place
where the other addressing modes have an address. Let's illus
trate this:
1000 LDA $2500 (Absolute mode, loading from address 2500)
1000 LDA #$9 (Immediate mode, put number 9 into the

accumulator)

The first example will load the accumulator with whatever
number is found in address $2500 . In the second example, we
simply wanted to put a $9 into the accumulator. We know
that we want the number $9. So, instead of sending off for the
$9, we just type in a $9 where we normally would put a
memory address. And we tack on the # symbol to show that
the $9 is the number we're after. Without that#, the computer
would load the accumulator with whatever it finds at address
$9 (as in LDA $9). Without the#, it would be zero page
addressing, not immediate addressing.

In any case, immediate addressing is very commonly
used, since you often know already what number you are after
and do not need to send away for it at all. One example
would be printing out a carriage return on the screen. You al
ready know what the code is for a carriage return, so you just
load it into the accumulator with #. This is similar to BASIC

54

Addressing

where you define a variable (10 VARIABLE = 9). In this case,
we have a variable being given a known value. LDA #9 is the
same idea. To repeat, immediate addressing is used when you
know what number you're dealing with; you're not sending
off for it. It's put right into the ML program code as a number,
not as an address. To illustrate immediate and absolute
addressing working together, imagine that you wanted to copy
the number 15 ($OF) into address $4000. (See Program 4-1.)

Implied
Here's an easy one. You don't use any address or argument
with this one. You just type the instruction; it sits alone, needs
no argument.

This is among the more obvious modes. It's called implied,
since the mnemonic, the instruction itself, implies what is be
ing sent where: TXA means Transfer the X register's contents
to the Accumulator. Implied addressing means that you do not
type anything following the instruction.

TYA and others are similar short-haul moves from one
register to another. Included in this implied group are the
SEC, CLC, SED, CLD instructions as well. They merely clear
or set the flags in the status register, thereby letting you and
the computer keep track of whether or not the most recent
arithmetic resulted in a zero, whether or not a carry occurred,
and so forth.

Also "implied" are such instructions as RTS (ReTurn from
Subroutine), BRK (BReaK which is the ML equivalent of BA
SIC's STOP command), PLP, PHP, PLA, PHA (which "push"
or " pull" the processor status register or accumulator onto or
off the stack).

Increasing by one (incrementing) the X or Y register's
number (INX, INY) or decreasing it (DEX, DEY) are also "im
plied." What all of these implied addressing modes have in
common is the fact that you do not need to actually give any
address. By comparison, an LDA $2500 (the absolute mode)
must have that $2500 address to know where to pick up the
package. TXA already says, in the instruction itself, that the
address, the destination, is the accumulator. Likewise, you do
not put an address after RTS since the computer always
memorizes its jump-off address when it does a JSR. NOP (NO
oPeration) is, of course, implied mode, too.

55

(.
Jl

0
'-

P
ro

g
ra

m
 4

-1
.

P
ut

tin
g

an
 I

m
m

ed
ia

te
 1

5
in

to
 A

b
so

lu
te

A

dd
re

ss
 $

4
0

0
0

2
0

3

0

M
L

PR
O

G
R

A
M

ST

A
R

T
S

A
T

$
2

0
0

0

(*
=

M

EA
N

S
ST

A
R

T

A
D

D
R

E
SS

)

4
0

2

0
0

0

A
9

0
F

LD

A

#
1

5

ST
A

$

4
0

0
0

LO

A
D

A

 W
IT

H

T
H

E

N
U

M
B

ER

(N
O

T
T

H
E

A

D
D

R
E

SS
)

ST
O

R
E

IT

IN

A

D
D

R
E

SS

$
4

0
0

0

5
0

2

0
0

2

8D

0
0

4

0

6
0

7

0

8
0

9

0

N
O

TE

TH
A

T
IN

SO

M
E

A
SS

E
M

B
L

E
R

S
Y

O
U

CA

N

SW
IT

C
H

B

ET
W

EE
N

H

EX

A
N

D

D
E

C
IM

A
L

A

T
W

IL
L

.
LA

D
S

A
LL

O
W

S
T

H
IS

.
TH

E
1

5

IS

D
E

C
IM

A
L

.
IN

H

EX

IT

W
O

U
LD

B

E
W

R
IT

T
E

N

#
$

0
F

)>

c..

c.
.

(i1

IJ
l

~ ::
l

()
Q

Addressing

Relative
One particular addressing mode, the relative mode, used to be
a real headache for programmers. Not so long ago, in the days
when ML programming was done "by hand," this was a fre
quent source of errors . Hand computing-entering each byte
by flipping eight switches up or down and then pressing an
ENTER key-meant that the programmer had to write a pro
gram out on paper, translate the mnemonics into their number
equivalents, and then "key" the whole thing into the machine
with that set of switches.

It was a big advance when hexadecimal numbers permit
ted entering $OF instead of eight switches: 00001111. This re
duced errors and fatigue.

An even greater advance was having enough free memory
so that an assembler program could be in the computer while
the ML program was being written. An assembler not only
takes care of translating LDA $2500 into its three (eight
switch) numbers-10101101 (the code for the instruction
LDA) and 00000000 00100101 (the number $2500)-but an
assembler also does relative addressing. So, for the same rea
son that you can program in ML without knowing how to deal
with binary numbers, you can also forget about relative
addressing. The assembler will do it for you. All you need to
remember about it is that you can't go very far away from the
current instruction when using relative addressing.

Relative addressing is used with eight instructions only:
BCC, BCS, BEQ, BMI, BNE, BPL, BVC, BVS. They are all
branching instructions. They force the control of the program
to branch (jump) when the overflow flag is set (or cleared);
when the carry flag is set (or cleared); or if the most recent
arithmetic resulted in equal, less than, not equal, or more than.

Branch if EQual (BEQ) would look like this in BASIC: IF X
= 0 THEN GOTO. It forces the computer to branch some
where else in a program if something is equal to zero.

All these B instructions can branch only as far as 128 ad
dresses forward or 127 backward from where the instruction is
located. If you were delivering the mail in the City of Bytes,
you would probably dislike relative addresses; it would mean
extra work. You would be going peacefully from house to
house up the road and then, suddenly, one of the letters has a
giant Bon it and a number like -5 or +47. You've then got

57

Addressing

to stop your orderly progress up the road and take this letter 5
houses back from the current house or 47 houses forward.

Remember that these branches, these jumps, can be a dis
tance of only 128 bytes from their own address, but they can
go in either direction. Thus, if a BNE instruction above is lo
cated in RAM at address $3500, you cannot specify $5600 as
its target. That would be much too big a branch. You specify
where the branch should go by giving an address within the
boundaries of 128 bytes in either direction. Here's an example:
1000 LOX #$00
1002 INX
1003 BNE $1002
1005 BRK

(The X register in this example will count up by ones until
it hits 255 decimal. At that point, it resets itself to zero. When
it does become zero, that will fail to trigger the Branch if Not
Equal to zero instruction, and we will "fall through" the
branch to the BRK at $1005.)

This is how you create an ML FOR-NEXT loop. You are
branching relative to address 1003, which means that the
assembler will calculate what address to place into the com
puter that will get you to address $1002. You might wonder
what's wrong with the computer just accepting the number
$1002 as the address to which you want to branch. Absolute
addressing does give the computer the actual address, but the
branching instructions all need addresses which are offsets of
the starting address. After assembling the example above, the
assembler puts the following into the computer:
1000 A2 00
1002 ES
1003 DO FD
1005 00

The odd thing about this piece of code is that FD at ad
dress $1004. How does $FD tell the computer to branch back
to $1002? The $FD is 253 decimal. Now it begins to be clear
why relative addressing is so messy. If you are curious, num
bers larger than 127, when used as arguments for the B
instructions, tell the computer to go back down to lower ad
dresses. What's worse, the larger the number, the less far
down it goes. In this case, the computer counts the address
$1005 as zero and counts backward thus:

58

Addressing

1005 = 0 = $00
1004 = 255 = $FF
1003 = 254 = $FE
1002 = 253 = $FI>

Not a very pretty counting method! It's easy for the com
puter to deal with this, but to us it's awkward and strange.
Fortunately, all that we assembler users need do is to assign a
label to the address we're branching to and use the label as
the address (as if it were an absolute address). The assembler
will do the hard part.

This strange counting method is the way that the com
puter handles negative numbers. It thinks of the leftmost bit in
a byte as the sign bit. Whether the bit is on or off signifies a
positive or negative number. For the beginning ML pro
grammer, however, it's just as well to forget all about negative
numbers. You won't find that you'll need to use them since
practically everything you'll want to do can be done with pos
itive integers.

Before leaving our discussion of branching, let's look at
one special problem that you will need to deal with if you use
a simple assembler. When you are using one of the branch
instructions, you sometimes branch forward. Let's say that you
want to have a different kind of FOR-NEXT loop:
1000 LI>X #$0
1002 INX
1003 BEQ $100A
1005 JMP $1002
1008 BRK
1009 BRK
100A BRK

When jumping forward, you often do not yet know the
precise address you want to branch to. In the example above,
we really wanted to go to $1008 when the loop was finished
(when X was equal to zero), but we just entered an approxi
mate address ($1 OOA) and made a note of the place where this
guess appeared ($1004). Then, using the direct memory
changing function in the monitor, we can change location
$1004 to the correct offset when we know what it should be.

Forward counting is easy. When we learned that we
wanted to go to $1008, we would change the number $5 in
address $1004 to $3.

59

Addressing

Remember that you start counting from zero from the ad
dress immediately following the branch instruction. For ex
ample, a jump to $1008 would be three because you count
$1005=0, $1006=1, $1007=2, $1008=3. All this confusion
disappears after writing a few programs and practicing with
estimated branch addresses. Luckily, the assembler does all
the backward branches. That's lucky because they are much
harder to calculate.

Unknown Forward Branches
If you are using LADS, all branches are given names rather
than addresses. These names are called labels, and they are
automatically calculated for you by the assembler. You would
write the above example with LADS in this way:
LOX #0
COUNTUPINX
BEQ MORETHINGS; (or any other label you want to give it)
JMP COUNTUP; (jumps also have labels as their targets)
MORETHINGS BRK

With LADS and other advanced assemblers, you'll often
use labels instead of actual addresses. This makes things pretty
easy on the programmer. LADS does much of the busywork
for you, particularly if you make good use of its pseudo-ops.

By the way, we'll get to pseudo-ops later. Essentially, they
are instructions directly to the assembler such as "please insert
the following as pure ASCII text," but which are not normal
6502 instructions that get translated into ML object code. In
stead, a pseudo-op is a request to the assembler program to
perform some extra service for the programmer.

Absolute,X and Absolute,Y
Another important mode provides you with an easy way to
manipulate lists or tables. This method looks like absolute
addressing, but it attaches an X or a Y to the address. The X
and Y stand for the X and Y registers, which are being used in
this technique as offsets. That is, if the X register contains the
number 3, then whatever address you type in will have 3
added to it. If X holds a 3 and you type LDA $1000,X, you
will LoaD Accumulator with the value (number) which is in
memory cell $1003. The register value is added to the absolute
address.

60

Addressing

Another addressing method called zero page,X works the
same way: LDA $05,X. (Load from cell 5 plus whatever's in
the X register.) These indexed addressing modes let you easily
transfer or search through messages, lists, or tables. Error mes
sages can be sent to the screen using such a method. Assume
that you set it up so that the words SYNTAX ERROR are held
in some part of memory because you sometimes need to send
them to the screen from your program. You might have a
whole table of such messages. But we'll say that the words
SYNTAX ERROR are stored at address $3000. Assuming that
your screen memory address is 1024 ($0400 hex), here's how
you would send the message:
1000 LOX #$00 (Set the counter register to zero.)
1002 LOA $3000,X (Get a letter at 3000 + X.)
1005 BEQ $100E (If the letter is a zero, we've reached the end of

the message, so we branch to the end of this
routine.)

1007 STA $0400,X (Send the letter to 0400 + X.)
100A CMP #$00 (If the accumulator picked up a zero, themes

sage is finished. Each message ends with a
zero-called a delimiter-to alert the computer
to stop sending.)

100A INX (Increment the counter so that the next letter in
the message, as well as the next screen position,
are pointed to.)

100B JMP $1002 (Jump to the load instruction to fetch the next
character.)

1010 BRK (Task completed, message transferred.)

This sort of indexed looping is an extremely common ML
programming device. It can be used to create delays (FORT =
1 TO 5000: NEXT T), to transfer any kind of memory to an
other place, to check the status of memory (to see, for ex
ample, if a particular word appeared somewhere on the
screen), and to perform many other tasks. It is a fundamental,
all-purpose machine language technique.

Here's a fast way to fill your screen or any other area of
memory. This is a full source code for the demonstration
screen-fill example we tried in Chapter 1. See if you can fol
low how this indexed addressing works. What bytes are filled
in, and when? At ML speeds, it isn't necessary to fill them in
order-nobody would see an irregular filling pattern because,
like magic, it all happens too fast for the eye to see. (See Pro
gram 4-2.)

61

0"
\

P
ro

gr
am

 4
-2

.
Fi

lli
ng

 t
he

 S
cr

ee
n

w
it

h
th

e
le

tt
er

 A

)>

N

0
.

0
.

2
9

.., (1

)

3
9

9

C
4

9

A
 =

 $
C

1
T

H
E

"A

"
C

H
A

R
A

C
T

E
R

!J

> !:!
!.

4
9

~

5&

9
C

4
9

A

S
0

9

LD
Y

#0

SE

T

C
O

U
N

T
E

R

TO

ZE
R

O

ac

6
9

9

C
4

2

A
9

C
1

LD
A

#A

7

9

9
C

4
4

9

9

9
9

9

4

LO
O

P
ST

A

$
0

4
9

9
,Y

8

9

9
C

4
7

9

9

9
9

9

5

ST
A

$

0
5

9
9

,Y

9
9

9C

4A

9
9

9

9

9
6

ST

A

$
0

6
0

9
,Y

1

9
9

9C

4D

9
9

9

9

9
7

ST

A

$
0

7
9

9
,Y

1

1
9

9

C
5

9

C
B

IN

Y

R
A

IS
E

C

O
U

N
TE

R

BY

1
1

2
9

9C

51

D
9

F
1

B
N

E
LO

O
P

IF

Y

IS

N
O

T
Y

ET

Z
E

R
O

,
K

E
E

P
G

O
IN

G

1
3

9

9
C

5
3

6

0

R
TS

Addressing

Compare this with the program on page x to see the ef
fects of using a different screen starting address and how
source code is a more elaborate version of what you get when
you run a disassembler to get an ML program listing.

Indirect Y
This addressing mode is a real workhorse; you'll use it often.
Several of the examples in this book refer to it and explain it
in context. The argument you use with this mode isn't so
much an address in itself as a method of creating an address. It
looks like this:
4000 STA ($80), Y

Seems innocent enough. That Y works like the other
kinds of index modes we've discussed before. Whatever is in
the Y register is added to the final address.

But watch out for those parentheses. They mean that $80
is not the real address here. We're not going to put the byte in
the accumulator into address $80. Instead, addresses $80 and
$81 are themselves holding the address we are sending our
byte to. We are not sending to $0080; hence, the name for this
mode is indirect Y.

Where does the byte in the accumulator end up? If $80
and $81 have these numbers in them:
$0080 01
$0081 20
and Y is holding a five, then the byte in A will end up in ad
dress $2006! How did we get $2006?

First, you've got to mentally swap the numbers in $80
and $81. The 6502 requires that address pointers be listed in
backward order: The pointer is holding $2001, not $0120.
Then, you've got to add the value in the Y register, 5, and you
get $2006.

This is a valuable tool, even if it's perplexing at first. You
should familiarize yourself with it. It lets you get easy access
to many memory locations very quickly by just changing theY
register (using INY or DEY) or by directly changing the ad
dress pointer itself (using INC or DEC, instructions that ra~~
or lower a byte in RAM memory by one). You can make rad
ical shifts with this pointer changing technique. You can shift
up a whole page (256 bytes) by simply INC $81: That will
change your target address from $2001 to $2101._ To go down

63

Addressing

four pages, subtract four from address $81. Combine this with
the indexing that the Y register is doing for you, and you've
got greater efficiency, greater reach to all the RAM you want
to manipulate.

Right now you're paying the only price you'll ever pay for
this valuable tool: It's not one of the more obvious things in
learning ML. You've got to try it a few times, scratch your
head, and get the concept.

Let's clear away some of the fog. How were those bytes at
$80 and $81 selected to be the ones holding our indirect ad
dress? The programmer decides where address pointers are
stashed (they must be in zero page). You figure out where the
safe places are in zero page and you use them for your point
ers. That's the main use that you'll have for zero page.

How did the numbers $20 and $01 get into the pointer?
The programmer put them there. As part of the initial activ
ities of an ML program, you stick byte-pairs (these address
pointers) into zero page. If you're using a simple assembler,
you'll need to keep a record of the pointers on paper. If you're
using LADS, you give the pointers labels like this:

TOSCREEN = $80

And you can also have a label for the actual screen address:
SCREEN = $0400

Then, to set up a pointer, you use some pseudo-cps in LADS
which break a two-byte address like $0400 into halves for
storage in pointers:
LOA #<SCREEN; loads the low byte
STA TOSCREEN
LOA #>SCREEN; loads the high byte
STA TOSCREEN +1; stores into address TOSCREEN plus 1 ($81)

When an address is set up in a pointer, it's split in half.
The address $0400 was split in the example above. When pro
gramming in ML, it's useful to distinguish between the two
halves by saying that one of the bytes is the LSB (least signifi
cant byte) and the other is the MSB (most significant). In our
example, the $00 is the LSB and the $04 is the MSB. That's
not because one number is smaller than the other; rather, it's
because they are in different positions in the two-byte address.
The position on the left is of far more significance than the
position on the right in $0400. It's the same for decimal num-

64

Addressing

bers: 5015 when chopped in half means that the left half stands
for fifty lOO's and the right half only stands for fifteen l's.

Note that every time you add one to the MSB of a double
byte hex number in ML, you are adding one page, 256. This is
how you can INC or DEC the MSB of your pointer and move
quickly through the "pages" of memory. And remember, you
store pointers in reverse order when you are setting up a
pointer, LSB, MSB:
0080 00
0081 04; a pointer to the screen memory of the Apple

Indirect X
This addressing mode is rarely used. It makes it possible to set
up a group of pointers, a cluster of them, in zero page. It's like
indirect Y except the X register value is not added to the ad
dress pointer to form the ultimate address target. Rather, X
points to the pointer you desire to use. Nothing is added to the
address held in the pointer. It looks like this:

5000 STA 9~ .

To see it in action, let's assume that you've already set up
a cluster of pointers in zero page. It's a table of pointers, not
just one:
0090 $00; Pointer 1
0091 $04; points to $0400
0092 $05; Pointer 2
0093 $70; points to $7005
0094 $EA; Pointer 3
0095 $81; points to $81EA

If X holds a two when we STA ($90,X), then the byte in
the accumulator will be sent to address If X ho!Q_~_g
our, t e byte will go to $81EA:

All things considered, this addressing mode has little to
recommend it. If you set up the same table, you could access
these pointers just as easily and have the flexibility of that Y
index into the bargain. Who knows why the designers of the
6502 chip included this mode?

Accumulator Mode
ASL, LSR, ROL, and ROR shift the bits in the byte held in the
accumulator. We'll touch on this shifting in Chapter 6 when
we discuss the instruction set. This mode doesn't really have

65

Addressing

much to do with addressing as such, but it's always listed as a
separate mode.

Zero Page,Y
This mode can be used with only two instructions: LDX and
STX. Otherwise, it operates just like zero page,X discussed
above.

What to Remember
There you have them, 13 addressing modes to choose from.
However, there are only 6 that you should focus on and prac
tice with until you understand their uses: immediate, absolute
(plus absolute,X and , Y), zero page, and indirect Y. The rest
are either unimportant when you're programming because
they are automatic (like the implied mode) or not really worth
bothering with . Now that we've surveyed the ways you can
move numbers around, it's time to see how to do arithmetic in
ML.

66

Arithmetic
There'll be many things that you'll want to do in ML, but
complicated math is not one of them. Mathematics beyond
simple addition, subtraction, multiplication, and division will
not be covered in this book. For games and most other ML for
personal computing, you won't need to use complex math. In
this chapter we'll cover what you are likely to use . BASIC is
well-suited to sophisticated mathematical programming and is
far easier to work with for such tasks . If you're planning a
program that's going to involve trigonometry or quadratic
equations, use BASIC.

But before we look at ML arithmetic, let's briefly review
an important concept: how the computer tells the difference
between addresses, numbers as such, and instructions. It is
valuable to be able to visualize what the computer is going to
do as it comes upon each byte in your ML routine.

Even when a computer appears to be working with
words, letters of the alphabet, graphics symbols, and the like,
it is still working with numbers . A computer works only with
numbers. The ASCII code is a convention by which a com
puter understands that when the context is alphabetic, the
number 193 means the letter A. At first this is confusing. How
does it know when 1 ~3 is A and when it is just 193? And
there's a third possibility: The 193 could represent the cell 193
in the computer's memory, the one hundred ninety-third ad
dress . (In the Apple character code, the letter A is 193, but
true ASCII would use the number 65 for A. We'll use the Apple
code in this discussion since it's important to become familiar
with it.)

It is worth remembering that, like us, the computer means
different things at different times when it uses a symbol (like
193). We can mean a street address by it, a temperature, or a
code. We could agree that whenever we used the symbol 193,
we were ready to leave the party. We would look meaning
fully at our companion and say, "We always cook our pork to
a temperature of one hundred ninety-three." Then hope they
got the hint.

The point is that symbols aren't anything in themselves .
They stand for other things, and what they stand for must be
agreed upon in advance. There must be rules . A code is an
agreement in advance that one thing symbolizes another.

69

Arithmetic

The Computer's Rules
Inside your machine, at the most basic level, there is a stream
of input. The stream flows continually past a "gate" like a
river through a canal. For 99 percent of the time, this input is
O's. (BASICs differ; some see continuous 255 's, but the idea is
the same.)

When you first turn it on, the computer just sits there.
What's it doing? It might be updating a clock, if you have

one, and it's holding things coherent on the TV screen-but it
mainly waits in an endless loop for you to press a key on your
keyboard to let it know what it's supposed to do.

There is a memory cell jnsjde yam Apple which the com
puter constantly checks. This byte in the Apple is.located.aL
.49152 ($COOO in hexadecimal) . While no key is pressed, the
leftmost bit (the "high bit") in this byte is off, is zero. When a
key is hit on the keyboard, however, the leftmost bit flips on,
and that's the signal that someone is trying to type something
in. If you press the RETURN key, a 141 will appear in location
49152. Finally, after centuries (the computer's sense of time
differs from ours) here is something to work with! Something
has come up to the gate at last.

By the way, it's interesting that 49152 is not a RAM mem
ory byte. You can't POKE something in there; you can only
look at it, PEEK it. Thus, when you need to test this byte, you
must set its seventh bit off (a seventh bit on in 49152 signals
that someone has pressed a key on the keyboard). But you
can't set the seventh bit off by LDA #O:STA $COOO because
you can't store something in this location. Instead, you can
only turn the seventh bit off by any reference to location
$COlO (LDA, STA, whatever). Anytime you mention $COlO,
that location appears on the computer's address bus, and this
act has the effect of clearing out the seventh bit in $COOO. This
is one of those things you memorize but don't question. It
works; use it.

But assume that someone hits the RETURN key and, thus,
a 141 appears in location 49152. You notice the effect at
once-everything on the screen moves up one line, because
141 (in the Apple code) stands for a carriage return. How did
the Apple know that you were not intending to type the num
ber 141 when it saw 141 in the keyboard sampling cell? Sim
ple. The number 141, and any other keyboard input, is always
read as an ASCII number. Besides, there's a difference be-

70

Arithmetic

tween the number 141 and the three characters required to in
dicate the characters 1, 4, 1.

In ASCII, the digits from 0 through 9 are the only number
symbols. There is no single symbol for the three characters in
1 4 1. So, when you type in a 1 followed immediately by a 4
and then another 1, the computer's input-from-keyboard rou
tine notices that you have not pressed one of the "instant ac
tion" keys (such as the ESC, TAB, cursor-control keys) .
Rather, you typed 1 and 4 and another 1-the keyboard sam
pling cell, the " which key pressed" location in zero page, re
ceived the ASCII value for 1, and then for 4, and finally
another 1.

The point is that hitting the key labeled 1 followed by the
key labeled 4 followed by another 1 is not storing those num
bers into that sampling cell at 49152. Instead, these things are
stored as characters. On the ML level, numbers are distinct
from characters. Characters like 3 have an ASCII code value
which differs from their numeric value. In other words, typing
1-4-1 will not result in the computer seeing a 1-3-1. If you
looked, you would find that the computer saw a $81, $B4, and
$B1 (177, 180, 177 decimal).

Incidentally, Apple ASCII code representations of the dig
its are easy to remember in hex: 0 is $BO, 1 is $81, up to $B9
for 9. In decimal, the digits would be 17 6 to 185.

The computer decides the "meaning" of the numbers
which flow into and through it by each number's context. If it
is in "alphabetic" mode, the computer will see the number
193 as A; or if it has just received an A, it might see a sub
sequent number 193 as an address to store the A. It all de
pends on the events that surround a given number. We can
illustrate this with a simple example:
2000 LDA #$C1 $A9 (169) $C1 (193)
2002 STA $C1 $85 (133) $C1 (193)

This short ML program (the numbers in parentheses are
the decimal values) shows how the computer can "expect" dif
ferent meanings from the number 193 ($C1 hex). When it re
ceives an instruction to perform an action, it is then prepared
to act upon a number. The instruction comes first and, since it
is the first thing the computer sees when it starts a job, it
knows that the number $A9 (169) is not a number.

It has to be one of the ML instructions from its set of
instructions (see Appendix A).

71

Arithmetic

Instructions and Their Arguments
The computer would no more think of this first 169 as the
number 169 than you would seal an envelope before the letter
was inside. If you are sending out a pile of Christmas cards,
you perform instruction-argument just the way the computer
does: You (1) fill the envelope (instruction) (2) with a card
(argument or operand). You don't get the envelopes confused
with the cards and try to stuff an envelope into a card.

All actions do something to something. A computer's ac
tion is called an instruction (or, in its numeric form as part of
an ML program inside the computer's memory, it's called an
opcode for operation code). The target of the action is called its
argument (operand) . In our program above, the computer
must LoaD Accumulator with 193. The # symbol means im
mediate; the target is right there in the next memory cell
following the LDA instruction, so it isn't supposed to be
fetched from a distant memory cell. That 193, however, is not
another instruction; it's the number 193.

Then, after this action has been completed, after the accu
mulator contains the number 193, the next number (the 133
which means STore Accumulator in zero page, the first 256
cells) must be an instruction, the start of another complete ac
tion. And, once again, the computer knows that the instruction
133 must be followed by an address of a cell in memory to
store to. So, in the example, we've got a total of four numbers:
169, 193, 133, and 193. If you PEEKed at this little ML rou
tine, you'd find these numbers in this order. But when this ML
program is run, is executed by the 6502, it will see 169 as an
instruction, 193 as a number, 133 as another instruction, and
the 193 following that instruction as an address in memory.
Instructions, numbers, addresses-they are all mixed in to
gether, but the chip can figure out which is which based upon
their context. It knows that LDA # will be followed by a sin
gle byte number because that's what LDA in the immediate
addressing mode demands. The computer would no more ex
pect an address to come after LDA # than you would expect
someone to say " 1700 Taylor Street" when you asked what
time it was.

Think of the computer as completing each action and then
looking for another instruction. It moves through your list of
instructions logically. Recall from the last chapter that the tar
get can be " implied" in the sense that INX simply increases

72

Arithmetic

the X register by one. The one is "implied" by the instruction
itself, so there is no target argument in these cases. The next
cell in this case must also contain an instruction for a new
instruction-argument cycle.

Some instructions call for a single-byte argument. LDA
#193 is of this type. You cannot LoaD Accumulator with any
thing greater than 255. The accumulator is only one byte
large, so anything that can be loaded into it can also be only a
single byte large. (Recall that 255, $FF, is the largest number
that can be represented by a single byte.)

STA $C1 also has a one-byte argument because the target
address for the STore Accumulator is, in this case, in zero
page.

Storing to zero page, or loading from it, will need only a
one-byte argument-the address. Zero page addressing is a
special case, but an assembler program will take care of it for
you. It will pick the correct opcode for this addressing mode
when you type LDA $Cl. Typing in LDA $00C1 would create
ML code that performs the same operation, though it would
use three bytes instead of two to do it.

But how does the chip know that a given instruction is
self-contained like the INY, implied addressing mode? Or an
other instruction uses up two bytes like zero page addressing
(STA $15 uses one byte for the STA command and one byte
for the $15)? Or the biggest addressing modes, like STA
$1500, absolute addressing, take three bytes before they can
look for the next instruction in a program?

Inside the chip is a program counter. It has a list of all the
ML instructions. And it knows how many bytes-one, two, or
three-that each instruction takes up. During an ML pro
gram's execution, the program counter acts like a finger that
keeps track of where the computer is located at any given time
in its trip up the series of ML instructions that comprise your
program. Each instruction takes up one, two, or three bytes,
depending on what type of addressing is going on. The pro
gram counter looks at its list and moves up the appropriate
number of bytes to show where the next instruction will be.

Context Defines Meaning
TXA uses only one byte, so the program counter (PC) moves
ahead one byte and stops and waits until the value in the X
register is moved over into the accumulator. TXA is supposed

73

Arithmetic

to transfer into the accumulator whatever number is in the X
register. Then the computer asks the PC, " Where are we?"
and the PC is pointing to the address of the next instruction.
The PC never points to an argument. It skips over them be
cause it knows how many bytes each addressing mode uses
up in a program.

Say that the next instruction after TXA is LDA $15 . This
is a two-byte-long, zero page addressing mode. The PC looks
on its list and moves up two bytes. The longest possible
instruction would use three bytes, such as LDA $5000 (ab
solute addressing). The PC counts up three and points. Your
assembler would translate LDA $15 into $AS and POKE it. It
would translate LDA $1500 into $AD and POKE that. Since
the opcodes that get POKEd are different, even though the
LDA mnemonics are identical, the computer can know how
many bytes a given instruction will use up. That's how it
knows where the next instruction must be in your program.

Having reviewed the way that your computer makes
contextual sense out of the mass of seemingly similar numbers
of which an ML program is composed, we can now move on
to see how elementary arithmetic is performed in ML.

Addition
Arithmetic is performed in the accumulator. The accumulator
holds the first number, the target address holds the second
number (but is not affected by the activities), and the result is
left in the accumulator. So

LOA #$40 (Remember, the# means immediate, the$ means hex.)
ADC #$01

will result in the number $41 being left in the accumulator.
We could then STA that number wherever we wanted. Simple
enough.

The ADC means ADd with Carry. If an addition results in
a number higher than 256 (if we added, say, 250 + 7), then
there would have to be a way to show that the number left
behind in the accumulator isn' t the correct result-that what's
in the accumulator isn' t the total, it's the carry.

After adding 250 + 7, you would find a 1 in the accu
mulator and the carry flag would be up. That means that you
must add 256 to whatever is in the accumulator to find the
real answer: 257.

To make sure that things never get confused, always CLC

74

Arithmetic

(CLear the Carry flag) before you do any addition. CLC will
push the carry flag down (in case it was up from some pre
vious event in your program). Then, if you find that it is up
after the addition (ADC), you'll know that you need to add
256 to whatever is in the accumulator. You'll know that the
accumulator is holding the carry, not the total result.

One other point about the status register: There is another
flag, the decimal flag. If you ever set this flag up (with the
SED, SEt Decimal instruction), all addition and subtraction is
performed in a decimal mode in which the carry flag is set
whenever an addition exceeds 99. In this book, we are not go
ing into the decimal mode at all, so it's a good precaution to
put a CLear Decimal mode (CLD) instruction as the first
instruction of any ML program you write. After you type CLD,
the flag will be put down and the assembler will move on to
ask for your next instruction, but the arithmetic from then on
will all be handled as we are describing it. Decimal mode has
little value in ML programming. It's another one of those
things that sounds good, but doesn't do much in practice.

Adding Numbers larger Than 255
We have already discussed the idea of setting aside some
memory cells as a table for data. To do this, we simply make a
note to ourselves that, say, addresses $D6 and $D7 are de
clared a zone for our personal use as a storage area. Using a
typical example, let's think of this two-byte zone as the place
that holds the address of a "moving finger" going through a
list of names we've stored in RAM. As long as the zone is not
in ROM or used by our program elsewhere or used by the
computer (see your computer's memory map in the Reference
Manual from Apple or use the safe areas we discussed earlier),
it's fine to declare an area a data zone. It is a good idea (es
pecially with longer programs) to make notes on a piece of pa
per to show where you intend to have your subroutines, your
main loop, your initialization, and your miscellaneous data
names, messages for the screen, input from the keyboard, and
so on. This is one of those things that BASIC does for you
automatically, but which you must do for yourself in ML.
However, you can set up data zones with the LADS assembler
by using the . BYTE, =, or * = pseudo-ops.

When BASIC creates a string variable, it sets aside an area
to store variables. This is what DIM does. In ML, you set aside

75

Arithmetic

your own areas by simply finding a clear memory space and
not writing a part of your program into it (or by staking out
some memory with .BYTE or*= in LADS). Part of your data
zone can be special registers you declare to hold the results of
addition or subtraction.

But back to our example: You might make a note to your
self that $D6 and $D7 will hold the current position within a
list of names in your database. This is a pointer, and we can
look at all the bytes within our database by adjusting this
pointer in $D6 and $D7. In this way we can efficiently search
through the database.

Since the "moving finger" searching through the database
is constantly in motion, this pointer will be changing all the
time as it looks for your target information. Notice that you
need two bytes for this pointer. That is because one byte could
hold only a number from 0 to 255. Two bytes together,
though, can hold a number up to 65535 (all the possible ad
dresses in the Apple).

To define the pointer location, you could do this in LADS:
FINGER= $07

If you needed another two-byte pointer to hold another
address, you could write this:
OTHER = $EB

and so on, using safe areas, for as many pointers as you
needed.

Since your Apple can address only a total of 65536 mem
ory cells at any moment, two-byte registers like these can ad
dress any addressable cell in your computer. So if your
"moving finger" is supposed to look up the name "Mitchell,
Nancy" in the database, you'll want to start off by looking for
the letter M. In setting up your list of names, you decided that
each entry, each "record," would be given 40 bytes of space.
Thus, you are going to be adding 40 to the FINGER if the first
character in the first record isn't an M. Let's say that the list of
records starts in memory at address $8000.

_Before a~cessing the list, we punch in the target address:
LOA #O:STA $06:LOA #SO:STA $07

Or you could accomplish the same thing with the LADS
assembler by usinK1labels and the#> and#< £seudo-ops
which extract the SB and LSB of a label's ad ress:
LOA #<OATA:STA FINGER:LOA #>OATA:STA FINGER+l

76

Arithmetic

The FINGER address register now looks like this in the
monitor: $00D6 00 80 (remember that the higher, most signifi
cant byte, comes after the LSB, the least significant byte). To
move to the next name in the list, we want FINGER to be
$00D6 28 80. (The 28 is hex for 40.) In other words, we're
going to move the finger up one record in the database list. To
do this, we need to add $28 (40 decimal) to the pointer, the
FINGER.

Remember the indirect Y addressing mode which lets us
use an address in zero page as a pointer to another address in
memory? The number in the Y register is added to whatever
address sits in D6, D7, so we don't STA to $D6 or $D7, but
rather to the address that they contain: STA ($D6),Y.

How to add $28 to the FINGER pointer? First of all, CLC,
CLear the Carry, to be sure that flag is down. This example
uses the mini-assembler in the monitor:
1000 CLC (1000 is the location of our "add 40 to FINGER"

subroutine)
1001 LOA $06 (We fetch the LSB of FINGER)
1003 AOC #$28 (Add 40)
1006 STA $06 (Put the new result into FINGER)
1008 LOA $07 (Get the MSB of FINGER)
100A AOC #$0 (Add with car:ry to the MSB of FINGER)
1010 STA $07 {Update FINGER'S MSB)

That's it. Any carry will automatically set the carry flag up
during the ADC action on the LSB and will be added into the
result when we ADC to the MSB. It's all quite similar to the
way that we add numbers, putting a carry onto the next col
umn when we get more than a ten in the first column. And
this carrying is why we always CLC (clear the carry flag; put it
down) just before additions. If the carry is set, we could get
the wrong answer if our problem did not result in a carry. Did
the addition above cause a carry? (Remember, we started with
a value of $8000 in FINGER.)

Note that we need not check for any carries during the
MSB+ MSB addition. Any carries resulting in a database ad
dress greater than $FFFF (65535) would be impossible on our
machines.

The 6502 is permitted to address $FFFF tops, under nor
mal conditions. However, it is possible to add numbers larger
than 65535 by simply using more than two bytes and continu
ing to add with carry across a multibyte chain.

77

Arithmetic

The example above would be somewhat easier with
LADS because you would substitute label names (FINGER and
DATA in this case) for the numbers. Also, you could define
another label to hold the size of a record (RECORD = 40),
and then line 1003 would read ADC #RECORD.

Subtraction
As you might expect, subtracting single-byte numbers is a
snap:
LOA #$41
SBC #$01
results in a $40 being left in the accumulator. As before,
though, it is good to make it a habit to deal with the carry flag
before each calculation. When subtracting, however, you set
the carry flag: SEC. Why is unimportant. Just always SEC
before any subtractions, and your answers will be correct.
Here's double subtracting that will move the FINGER back
down one record in the data list:
$1020 SEC ($1020 is where we arbitrarily decided to locate

our "take 40 from FINGER" subroutine)
1021 LOA $06 (Get the LSB of FINGER)
1023 SBC #$28 (LSB of the size of a single record)
1026 STA $06 (Put the new result into FINGER)
1028 LOA $07 (Get FINGER's MSB)
102A SBC #$00 (Subtract the MSB of the size of a single record)
1020 STA $07 (Update FINGER's MSB)

Multiplication and Division
Multiplying could be done by repeated adding. To multiply 5
X 4, you could just add 4 + 4 + 4 + 4 + 4. One way would
be to set up two registers like the ones we've used before.
Both registers (or storage zones) could contain a 4, and then
you could loop through an add-these-two-registers subroutine
five times. For practical purposes, however, multiplying and
dividing are more easily accomplished in BASIC. They are
simply not worth the trouble of setting up in ML, especially if
you need to involve decimal-point fractions (floating-point
arithmetic). Perhaps surprisingly, for games and most personal
computing tasks where ML routines and programs are created,
there is little use either for negative numbers or arithmetic be
yond simple addition and subtraction. When we get into di
vision and multiplication, we've gone beyond the simple

78

Arithmetic

arithmetic that you'll need-unless you're writing an account
ing program or a spreadsheet program.

If you find that you do need complicated mathematical
structures, create the program in BASIC, adding ML where su
per speeds are desirable . Such hybrid programs are efficient
and, in their way, elegant.

One final note: An easy way to divide the number in the
accumulator by two is to LSR. Try it. Similarly, you can mul
tiply by two with ASL. We'll define LSR and ASL in the next
chapter. If you're interested in using these techniques, take a
look at the "Library of Subroutines" (Appendix E).

Double Comparison
One rather tricky technique is used fairly often in ML and
should be learned. It is tricky because there are two branch
instructions which seem to be worth using in this context, but
which are best avoided for this kind of comparing. If you're
trying to keep track of the location of a record within a data
base, this will be a two-byte address. If you need to compare
those two bytes against another two-byte address, you'll need
a "double-compare" subroutine. You might, for example, want
to check whether or not one record is located higher in the
database than another.

Double-compare is also useful in any other ML where you
need to manipulate numbers larger than can be held in one
byte (where the single CMP instruction would be able to com
pare them for you).

The problem is the BPL instruction (Branch on PLus) and
its companion, BMI (Branch on Minus) . Don't use them for
comparisons. In any comparisons, whether single- or double
byte, use BEQ to test if two numbers are equal; BNE for not
equal; BCS for equal or higher; and BCC for lower. You can
remember BCS because its S is higher and BCC because its C is
lower in the alphabet. To see how to perform a double-compare,
Program 5-1 shows one easy way to do it.

This is LADS at work. Recall that with assemblers like
LADS, you can use line numbers and labels, add numbers to
labels (see the TESTED + 1 in line 110), add comments, and
all the rest.

To try out this double comparison from the monitor, type
in the hex bytes on the left (starting at $0310 with the AD)
and put zeros (BRK instructions to stop the program) in

79

0
0

P

ro
gr

am
 5

-1
.

D
ou

bl
e-

C
om

pa
re

)>

0

.., :::+
"

2
0

0

3
1

0

T
E

ST
E

D

=
 $

0
3

8
0

L

O
C

A
T

IO
N

O

F
O

U
R

F

IR
S

T

N
U

M
B

ER

::
r 3

3
0

0

3
1

0

SE
C

O
N

D

=
 $

0
3

8
2

L

O
C

A
T

IO
N

O

F
O

U
R

SE

C
O

N
D

N

U
M

B
ER

(!

)
..

4
0

r=i

"
9

0

0
3

1
0

A

D

8
0

0

3

ST
A

R
T

LD

A

T
E

ST
E

D

C
O

M
PA

R
E

TH
E

LO
W

B

Y
T

E
S

1
0

B

0
3

1
3

CD

8

2

0
3

CM

P
SE

C
O

N
D

1

1
0

0

3
1

6

A
D

8

1

0
3

LO

A

T
E

S
T

E
D

+
1

C
O

M
PA

R
E

T
H

E

H
IG

H

B
Y

T
E

S
1

2
B

0

3
1

9

ED

8
3

0

3

SB
C

SE

C
O

N
D

+
!

1
3

0

0
3

1
C

F

0

0
5

B

EQ

EQ
U

A
L

T
E

ST
E

D

=

SE
C

O
N

D

1
4

0

0
3

1
E

B

0
0

4

B
C

S
H

IG
H

E
R

T

E
ST

E
D

>

SE

C
O

N
D

1

5
0

0

3
2

0

9
0

0

0

B
C

C

LO
W

ER

T
E

ST
E

D

<

SE
C

O
N

D

1
6

0

2
4

0

0
3

2
2

LO

W
ER

.B

Y
T

E

0
2

5
0

0

3
2

3

EQ
U

A
L

.B
Y

T
E

0

L
A

N
D

IN
G

PL

A
C

E
S

2
6

0

0
3

2
4

H

IG
H

E
R

.B

Y
T

E

0

Arithmetic

$0322-$0324 . Then try putting different numbers into $0380
and $0381 (this is the " tested" number) and $0382, $0383 (the
number it is being tested against, the second number in our la
bel scheme here) . As you can see, you've got to keep it
straight in your mind which number is being tested, or the re
sults won't make much sense.

Then, when you've set up two double-byte numbers in
the registers ($0380 to $0383), you can run this routine by
lOlOG, where it starts. All that will happen is that you will
land on a BRK instruction and halt further activity. Where you
land tells you the results of the comparison. If the numbers
are equal, you land at $323. If the tested number is less than
the second number, you'll end up in location $322, and so
forth . You could test using only a BNE if all you needed to
know is whether or not the two numbers are equal. You could
leave out some of these branch tests if you're not interested in
them. Play around with this until you've understood the ideas
involved.

In a real program, you would be branching to addresses
in your ML program which do something if the numbers under
comparison are equal or one is greater or whatever. This ex
ample sends the computer to $322, $323, or $324, where it
comes to an abrupt halt just to let you see the effects of a
double-compare subroutine. Above all, remember that you
should use BCC and BCS (not BPL or BMI) when comparing
in ML.

Some might wonder why we use CMP to test the low
bytes and then switch to SBC to test the high bytes. It's just a
convenience. CoMPare is a subtraction of one number from
another. The only difference between CMP and SBC, really, is
that subtraction replaces the number in the accumulator with
the result. LDA #S:SBC #2 will leave 3 in the accumulator.
Using LDA #S:CMP #2 leaves the 5 in the accumulator, and
all that happens is that flags are affected. Both SBC and CMP
have an effect on the zero, negative, and carry flags . In our
double-compare we don't care if there is a result left in the
accumulator or not. So, we can use either SBC or CMP. The
reason for starting off with CMP, however, is that we don't
have to SEC (set the carry flag) as we always need to do
before an SBC.

81

The Instruction Set
There are 56 instructions (commands) available in 6502 ma
chine language. Most versions of BASIC have about 50 com
mands. Some BASIC instructions are rarely used by the majority
of programmers, for example, END, SGN, TAN, USR. Some,
such as LET, contribute nothing to a program and seem to
have remained in the language for nostalgic reasons. Others,
like TAN, have uses that are highly specialized. There are sur
plus commands in computer languages just as there are sur
plus words in English. People don't often say culpability. They
usually just say guilt. The message gets across without using
the entire dictionary. The simple, common words can do the job.

Machine language is the same as any other language in
this respect. There are around 20 heavily used instructions.
The 36 remaining ones are used far less often. You can switch
into the Apple monitor with CALL -151 and look at part of
your computer's ROM. To look at BASIC ROM, once in the
monitor, enter at the "' prompt D36AL, and press RETURN. To
see more, just enter L, and press RETURN a few times. You
can now read the machine language routines which comprise
BASIC. You will quickly discover that the accumulator is
heavily trafficked (LDA and STA appear frequently in the dis
assembly), but you will have to hunt to find BVC CLV, ROR,
RTt or SED.

ML, like BASIC offers you many ways to accomplish the
same job. Some programming solutions, of course, are better
than others, but the main thing is to get the job done. An in
fluence still lingers from the early days of computing when
memory space was rare and expensive. This influence-that
you should try to write programs using up as little memory as
possible-can be safely ignored. Efficient memory use will
often be at the bottom of your list of objectives when
programming ML. It could hardly matter whether you use 25
instead of 15 bytes to print a message to the screen when your
computer has space for programming which exceeds 30,000
bytes.

Rather than memorize each ML instruction individually,
we will concentrate on the workhorses. Bizarre or arcane
instructions will get only passing mention. Unless you are
planning to use ML programs to interface to strange periph
erals or need to do complex mathematical calculations and

85

The Instruction Set

such, you will be able to write excellr nt machine language
programs for nearly any application rvith the instructions we'll
focus on in this book.

For each instruction group, we will describe three things
before getting down to the details about programming with
them: (1) what the instructions accomplish, (2) the addressing
modes you can use with them, and (3) what they do, if any
thing, to the flags in the status register. All of this information
is also found in Appendix A.

The Six Instruction Groups
The best way to approach the instrur tion set might be to break
it down into the following six categofies which group the
instructions according to their functi?ns:

1. Transporters
2. Arithmetic Group
3. Decision-Makers
4. Loop Group
5. Subroutine and Jump Group
6. Debuggers

We will deal with each group in order, pointing out
similarities to BASIC and describing the major uses for each.

As always, the best way to leam is by doing. Move bytes
around. Use each instruction, typing a BRK as the final
instruction to see the effects . If you LDA #65, look in the A
register to see what happened. Then, STA $12 and check to
see what was copied into address $12. If you send the byte in
the accumulator (STA), what is left behind in the accumulator?
Is it better to think of bytes being copied rather than being
sent?

Play with each instruction to get a feel for it. Discover the
effects, qualities, and limitations of ~hese ML commands.

86

The Instruction Set

1. The Transporters:
LDA, LDX, LDY
STA,STX, STY

TAX, TAY
TXA, TYA

These instructions move a byte from one place in memory
to another. To be more precise, they copy whatever value is in
a source location into a target location. The source location
still contains the byte, but after a "transporter" instruction, a
copy of the byte is also in the target location. This does replace
whatever was in the target.

All of them affect the N and Z flags, except STA, STX,
and STY which do nothing to any flag.

There are a variety of addressing modes available to dif
ferent instructions in this group. Check the chart in Appendix
A for specifics.

Remember that the computer does things one at a time.
Unlike the human brain which can carry out a thousand dif
ferent instructions simultaneously (walk, talk, and smile, all at
once), the computer goes from one tiny job to the next. It
works through a series of instructions, raising the program
counter (PC) each time it handles an instruction.

If you do a TYA, the PC goes up by one to the next ad
dress, and the computer looks at that next instruction. STA
$80 is a two-byte-long instruction; it's zero page addressing,
so the PC=PC+2. STA $8600 is a three-byte-long absolute
addressing mode and PC=PC+3.

Recall that there's nothing larger than a three-byte in
crement of the PC. However, in each case, the PC is cranked
up the right amount to make it point to the address for the
next instruction. Things would get quickly out of control if the
PC pointed to some argument (some address) thinking it was
an instruction. It would be incorrect (and soon disastrous) if
the PC pointed to the $15 in LDA $15 .

If you type CALL 15000, the program counter is loaded
with 15000 and the computer transfers control to the ML
instructions which are (we hope!) sitting at address 15000
(decimal) on up. It will then look at byte 15000 (decimal),
expecting it to be an instruction. Since the computer does all
this very fast, it can seem to be keeping score, bouncing the

87

The Instruction Set

ball, moving the paddle, and everything else-simultaneously.
It's not, though. It's flashing from one task to another and do
ing it so fast that it creates the illusion of simultaneity much
the way that 24 still pictures per second look like motion in
movies.

The Programmer's Time Warp
Movies are, of course, lots of still pictures flipping by in rapid
succession. Computer programs are composed of lots of in
dividual instructions performed in rapid succession.

Grasping this sequential, step-by-step activity makes our
programming job easier: We can think of large programs as
single steps, coordinated into meaningful, harmonious actions.
Now the computer will put a blank over the ball at the ball's
current address, then adjust the ball address to move it
slightly downward on the screen, then print the ball character
to the new address. The main single-step action is moving
information, as single-byte numbers, from here to there, in
memory. We are always creating, updating, modifying, mov
ing, and destroying single-byte variables. The moving is gen
erally done from one double-byte address to another. But it all
looks smooth to the player during a game.

Programming in ML can pull you into an eerie time warp.
You might spend several hours constructing a program which
executes in seconds. You are putting together instructions
which will later be read and acted upon by coordinated elec
trons, moving at electron speeds. It's as if you spent an after
noon slowly and carefully drawing up pathways and patterns
which would later be a single bolt of lightning.

Registers
In ML there are three primary places where variables rest
briefly on their way to memory cells: the X, the Y, and the A
registers. And the A register (the accumulator) is the most fre
quently used. X and Y are used for looping and indexing. Each
of these registers can grab a byte from anywhere in memory
or can grab the byte from the address right after its own
opcode (immediate mode addressing):
LOY $8000 (Puts the number at hex address 8000 into Y, without

destroying it at $8000)
LOY #65 (Puts the decimal number 65 into Y)
LOA and LOX work the same

88

The Instruction Set

Be sure you understand what is happening here. LDY
$1500 does not copy the byte in the Y register into address
$1500. It's just the opposite . The number (or value, as it's
sometimes called) in $1500 is copied into theY register.

To copy a byte from X, Y, or A, use STX, STY, or STA.
For these "store-bytes" instructions, however, there is no im
mediate addressing mode. No STA #$15. It would make no
sense to have STA #$15. That would be disruptive, for it
would modify the ML program itself. It would put the number 15
into the next cell beyond the STA instruction within the ML pro
gram itself.

Another type of transporter moves bytes between reg
isters-TAY, TAX, TYA, TXA. See the effect of writing the
following. Look at the registers after executing this:
1000 LDA #$65
1002 TAY
1003 TAX

The number $65 is placed into the accumulator, then
transferred to the Y register, then sent from the accumulator to
X. All the while, however, the A register (the accumulator) is
not being emptied. Sending bytes is not a transfer in the usual
sense of the term sending. It is more as if a photocopy were
made of the number, and then the copy was sent. The original
stays behind after the copy is sent.

LDA #$15 followed by TAY would leave the $15 in the
accumulator, sending a copy of $15 into the Y register.

Notice that you cannot directly move a byte from the X to
the Y register, or vice versa. There is no TXY or TYX.

Flags Up and Down
Another effect of moving bytes around is that it sometimes
throws a flag up or down in the status register. LDA (or LDX
or LDY) will affect the N and Z, negative and zero, flags.

We will ignore theN flag. It changes when you used
"signed numbers," a special technique to allow for negative
numbers. For our purposes, the N flag will fly up and down
all the time, and we won't care. We won't pay any attention to
it; we won't test to see where it is. If you're curious, signed
numbers are manipulated by allowing the seven bits on the
right to hold the number, the leftmost bit to stand for positive
or negative. We normally use a byte to hold values from 0

89

The Instruction Set

through 255. If we were working with "signed" numbers, any
thing higher than 127 would be considered a negative num
ber, since the leftmost bit would be "on"-and an LOA #255
would be thought of as -1.

This is another example of how the same thing (the num
ber 255 in this case) can signify several different conditions,
depending on the context in which it is being interpreted.

The Z flag, on the other hand, is quite important; we can't
ignore this flag. It shows whether or not some action during a
program run resulted in a zero. The branching instructions and
looping depend on this flag, and we'll deal with the important
zero-result effects below with the BNE and INX instructions,
and so on.

No flags are affected by the STA, SIX, or STY instruction.

The Stack Can Take Care of Itself
There are some instructions which move bytes to and from the
stack. These are for advanced ML programmers. PHA and
PLA copy a byte from A to the stack, and vice versa. PHP and
PLP move the status register to and from the stack. TSX and
TXS move the stack pointer to or from the X register. Forget
them. Unless you know precisely what you are doing, you can
cause havoc with your program by fooling with the stack. The
main job for the stack is to hold the return addresses pushed
into it when you JSR (Jump to SubRoutine). Then, when you
come back from a subroutine (RTS), the computer pulls the
addresses off the stack to find out where to go back to.

For most ML programming, avoid stack manipulation un
til you are an advanced programmer. If you manipulate the
stack without great care, you'll cause an RTS to the wrong re
turn address, and the computer will travel far, far beyond your
control. If you are lucky, it sometimes lands on a BRK instruc
tion and you fall into the monitor mode. The odds are that
you would get lucky roughly once every 256 times. Don't
count on it. Since BRK is rare in your BASIC ROM, the
chances are pretty low.

You could fill large amounts of RAM with "snow" by
putting zeros everywhere. This greatly improves the odds that
a crash will hit a BRK. But why bother? Play it safe when
you're writing a program.

As an aside, there is another use for snow, a blanket of

90

The Instruction Set

"zero page snow." Recall that you can safely use some loca
tions in zero page (addresses 0-255), but that your computer
and many commercial programs compete for space in zero
page because it's such a fast place to access. If you are plan
ning to modify, say, a commercial word processor and need to
make sure that it's not using a particular area of zero page for
its own purposes, fill zero page with 00 (snow), put the word
processor through its paces, and then take a look at the tracks,
the nonzeros, in the snow.

2. The Arithmetic Group:
ADC, SBC, SEC, CLC

Here are the commands which add, subtract, and set or
clear the carry flag. ADC and SBC trigger theN, Z, C, and V
(overflow) flags. CLC and SEC, needless to say, affect the C
flag, and their only addressing mode is implied.

ADC and SBC can be used in eight addressing modes: im
mediate, absolute, zero page, (indirect,X), (indirect),Y, zero
page,X, and absolute,X and ,Y.

Arithmetic was covered in the previous chapter. To re
view, before any addition, the carry flag must be cleared with
CLC. Before any subtraction, it must be set with SEC. The
decimal mode should be cleared at the start of any program
(the initialization) with CLD. You can multiply by two with
ASL and divide by two with LSR. You can divide by four with
LSR LSR or by eight with LSR LSR LSR. You could multiply a
number by eight with ASL ASL ASL. What would this do to a
number: ASL ASL ASL ASL? To multiply by numbers which
aren't powers of two, use addition plus multiplication. To mul
tiply by ten, for example, copy the original number temporar
ily to a vacant byte somewhere in memory. Then ASL ASL
ASL to multiply it by eight. Multiply the original number by
two with a single ASL. Then add them together.

If you're wondering about the V flag, it is rarely used for
anything. You can forget about the branch which depends on
it, BVC, too. Only five instructions affect it, and it relates to
twos complement arithmetic which we've not touched on in
this book. Like decimal mode or negative numbers, you will
be able to construct your ML programs very effectively if you
remain in complete ignorance of this mode. We have largely
avoided discussion of most of the flags in the status register: B,

91

The Instruction Set

D, I, N, and V. This avoidance has also removed several branch
instructions from our consideration: BMI, BPL, BVC, and BVS.
These flags and instructions are not usually found in ML pro
grams, and their use is confined to specialized mathematical or
interfacing applications. They will not be of use or interest to
the majority of ML programmers.

The two flags of interest to most ML programmers are the
carry flag and the zero flag. That is why, in the following sec
tion, we will examine only the four branch instructions which
test the C and Z flags. They are likely to be the only branch
ing instructions that you'll ever find occasion to use .

3. The Decision-Makers:
BCC, BCS, BEQ, BNE, CMP

The four "branchers" here- they all begin with a B-have
only one addressing mode. In fact, it's an interesting mode
unique to the B instructions and created especially for them:
relative addressing. They do not address a memory location as
an absolute thing; rather, they address a location which is just
a certain distance from their position in the ML code. Put an
other way, the argument of a B instruction is an offset which
is relative to the position of the instruction itself. You never
have to worry about relative instructions if you relocate an ML
program, if you locate the ML program in some other place in
RAM memory. The B instructions will work just as well no
matter where your ML program is moved.

That's because their argument just says "add 5 to the
present address" or " subtract 27" or whatever argument you
give them. You do give the branchers actual addresses as you
would in absolute addressing: BEQ $3560. However, your
assembler will translate that $3560 into a different, somewhat
strange, number that is used in relative addressing. (If you are
using an advanced assembler like LADS, you will give label
names as the argument of the branchers instead of actual nu
meric addresses.)

The branchers cannot branch further back than 127 or further
forward than 128 bytes.

None of the brancher instructions have any effect whatso
ever on any flags; instead, they are the instructions which look
at the flags. They are the only instructions which base their
activity on the condition of the status register and its flags.
They're why the flags exist at all.

92

The Instruction Set

CMP is an exception. Many times it is the instruction that
comes just before the branchers and sets flags for them to look
at and make decisions about. Lots of instructions-LDA is
one-will set or clear (put down) flags-but sometimes you
need to use CMP to find out what's going on with the flags.
CMP affects the N, Z, and C flags. CMP has many addressing
modes available to it: immediate, absolute, zero page,
(indirect,X), (indirect),Y, zero page,X, and absolute,X and ,Y.

The Foundations of Computer Power
This decision-maker group and the following group (loops) are
the basis of our computers' enormous strength. The decision
makers allow the computer to decide between two or more
possible courses of action. This decision is based on compari
sons. If the ball hits a wall, then reverse its direction. In
BASIC, we use IF-THEN and ON-GOTO structures to make
decisions and to make appropriate responses to conditions as
they arise during a program run.

Recall that the Apple uses memory-mapped video, which
means that you can treat the screen like an area of RAM
memory. You can PEEK and POKE into it to create animation,
text, or other visual events . In ML, you PEEK by LDA
SCREEN and examine what you've PEEKed with CMP. You
POKE via STA SCREEN.

CMP does comparisons. It tests the value at an address
against what is in the accumulator. Less common are CPX and
CPY.

Assume that we have just added 40 to a register we set
aside to hold the current address-location of FINGER which
points to records in our database. We want to POKE in a new
record, but we need to locate a vacant record. We don't want
to cover over a record that's in use.

In practical terms, you might have deleted several records
within your database and, each time one is deleted, you just
stick a zero into the first byte of the record's 40-byte space to
show that it's empty. Thus, we can bounce along the records,
looking at the first byte of each, to find an available empty
record.

Recall that the very useful indirect Y addressing mode al
lows us to use an address in zero page as a pointer to another
address in memory. The number in the Y register is added to
whatever address sits in $D6,$D7; so we don't LDA from $D6

93

The Instruction Set

or $07, but rather from the address that they contain, plus Y's
value.

To see what's in the first byte of a record, we can do the
following:

LDY #$0 (We want to fetch from the first byte, so we don't
want to add anything to it. Y is set to zero.)

LDA ($06), Y (Fetch whatever is sitting there. To review indirect, Y
addressing once more, say that the address we are
fetching from here is $1077. Address $06 would hold
the least significant byte, LSB [$77], and address $07
would hold the MSB [$10] . Notice that the argument
of an indirect,Y instruction only mentions the lower
address of the two-byte pointer, the $D6. The com
puter knows that it has to combine $06 and $D7 to
get the full address-and it does this automatically.)

At this point, there might be a $CD (Apple ASCII for the
letter M) or some other number which we would know in
dicated that this record was not deleted. Now that this
questionable number sits in the accumulator, we will CMP it
against a $0 which signals a deleted record. We could compare
it with other numbers, too, numbers which we-in setting up
the database-had decided would mean "old record" or
"duplicated record" or some other housekeeping information
which would help us in managing the data. It doesn't matter.
The main thing is to compare it and find out the condition of
this particular record:

2000 CMP #$0 (Is it a zero?)
2002 BNE $200A (Branch if Not Equal [if not zero] to address

$200A, which contains the first of a series of
comparisons to see if it's an "old" or "duplicated"
record, or the like. On the other hand, if the
comparison worked, if it was a zero, so we didn't
Branch Not Equal, then the next thing that hap
pens is the instruction in address $2004. We " fall
through" the BNE to an instruction which jumps
to the subroutine, JSR, which moves the new
record into the vacant record space, thus jumping
past the series of comparisons for old, duplicated,

2004 JSR $3000
2007 JMP $2020
200A CMP #$1
200C BNE $2014

94

and so forth .)
(Insert new record subroutine.)
(Jump over the rest of the comparisons.)
(Is it an old record?)
(If not, continue to next comparison.)

200E JSR $3050
2011 JMP $2020
2014 CMP #$2

The Instruction Set

(Perform the " old records" subroutine and ...
jump over the rest, as before in $2007.)
(Is it a duplicated record? .. . and so forth with as
many comparisons as needed.)

This structure is to ML what ON-GOTO or ON-GOSUB is
to BASIC. It allows you to take multiple actions based on a
single LDA. Doing the CMP only once would be like IF
THEN.

Other Branching Instructions
In addition to the BNE we just looked at, there are BCC, BCS,
BEQ, BMI, BPL, BVC, and BVS. Learn BCC, BCS, BEQ, and
BNE and you can safely ignore the others.

All of them are branching, if-then, instructions. They
work in the same way that BNE does. You would write BEQ
followed by the address you want to go to. If the result of the
comparison is "yes, equal-to-zero is true," then the ML pro
gram will jump (branch) to the address which is the argument
of the BEQ instruction. "True" here means that something
EQuals zero. One example that would send up the Z flag
(thereby triggering a branch with BEQ) is LDA #$00. The ac
tion of loading a zero into the accumulator sets the Z flag up.

You are allowed to branch either forward or backward
from the address that holds the B instruction. However, you
cannot branch any further than 128 bytes in either direction. If
you want to go further, you must JMP (JuMP) or JSR (Jump to
SubRoutine). For all practical purposes, you will usually be
branching to instructions located within 30 bytes of your B
instruction in either direction. You will be taking care of most
things right near where the CoMPare, or other flag-flipping
event, takes place.

If you need to use an elaborate, big subroutine which can
not reside within 128 bytes of a branch, simply JSR to it at the
target address of your branch:
2000 LDA $65
2002 CMP $85

2004 BNE $2009

2006 JSR $4000

2009

(Is what was in address 65 equal to what was in
address 85?)
(If Not Equal, branch over the next three bytes
which perform some elaborate job.)
(At $4000 sits the elaborate subroutine to take care
of cases where addresses $65 and $85 turn out to
be equal.)
(Continue with the program here.)

95

The Instruction Set

If you are branching backward, you've already written
that part of your program, so you know the address to type in
after a BNE or one of the other branches. But, if you are
branching forward, to an address in part of the program not
yet written-how do you know what to give as the address to
branch to? In sophisticated, two-pass assemblers like LADS,
you can just use a word like BRANCHTARGET, and the
assembler will pass twice through your program when it
assembles it. The first pass simply notes that your BNE is sup
posed to branch to BRANCHTARGET, but it doesn't yet know
where that is.

When it finally finds the actual address of BRANCH
TARGET, it makes a note of the correct address in a special la
bel table. Then, it makes a second pass through the program
and fills in (as the next byte after your BNE or whatever) the
correct address of BRANCHTARGET.

All of this is automatic, and the labels make the program
you write (called the source code) look almost like English. In
fact, LADS includes so many special features that it gets close
to higher-level languages, like BASIC:

2000 TESTBYTE = $80 (These initial definitions of labels
2002 NEWBYTE = $99 are sometimes called equates.)
2004 LDA TESTBYTE
2006 CMP NEWBYTE
2008 BNE BRANCHTARGET
200A JSR SUBROUTINE

BRANCHTARGET 2000 ... etc.

Instead of using lots of numbers (as you do when using
the built-in mini-assembler in the monitor) for the target/
argument of each instruction, LADS allows you to define
(equate) the meanings of words like testbyte and then use the
word instead of the number. And LADS does simplify the
problem of forward branching since you just give (as above)
address $200D a name, BRANCHTARGET, and the word at
address $2009 is later replaced with $200D when the assem
bler does its passes.

Program 6-1 shows how the example above looks as
source code to be fed into a deluxe, two-pass assembler like
LADS.

Actually, we should point out in passing that a $200D
will not be the number which finally appears at address $2009
to replace BRANCHTARGET. (Take a look at Program 6-1.)

96

P
ro

gr
am

 6
-1

2
0

2

0
0

4

T
E

ST
B

Y
T

E

=
 $

8
0

3

0

2
0

0
4

N

EW
B

Y
TE

=

 $
9

9

4
0

5

0

2
0

0
4

A

S
8

0

ST
A

R
T

LD

A

T
E

ST
B

Y
T

E

6
0

2

0
0

6

cs

 9
9

CM

P
N

EW
B

Y
TE

7

0

2
0

0
8

D

0
0

3

B
N

E
B

R
A

N
C

H
TA

R
G

ET

8
0

20

0A

2
0

1

0

2
0

JS

R

SU
B

R
O

U
T

IN
E

9

0

20
0D

A

D

0
0

0

4

B
R

A
N

C
H

TA
R

G
ET

LD

A

$
4

0
0

1

0
0

A

N
D

S

U
B

R
O

U
T

IN
E

S
.

A
L

SO
,

C
O

M
M

EN
TS

W

IL
L

B

E
1

1
0

BY

L

A
D

S
A

N
D

C

A
N

B

E
ST

U
C

K

A
N

Y
W

H
ER

E
W

IT
H

A

1

2
0

A

S
Y

O
U

S

E
E

.
1

3
0

1

4
0

2

0
1

0

A
S

2
1

SU

B
R

O
U

T
IN

E

LD
A

3

3

1
5

0

E
T

C
.

E
T

C
.

\0

'-
I

IM
M

E
D

IA
T

E

A
D

D
R

E
SS

IN
G

ZE

R
O

PA

G
E

A
D

D
R

E
SS

IN
G

R

E
L

A
T

IV
E

A

D
D

R
E

SS
IN

G

A
B

SO
L

U
T

E

A
D

D
R

E
SS

IN
G

Y

O
U

CA

N

FR
E

E
L

Y

M
IX

L

A
B

E
L

S
IG

N
O

R
E

D

SE
M

IC
O

L
O

N
,

....,

:::
r

ro :J
 ""
. ..., c::
 0 cr :J

I~

The Instruction Set

As we mentioned, all branches are relative, an offset from the
address of the branch. The number which will finally replace
BRANCHTARGET at $2009 is, as you can see, a three. This is
similar to the way that the value of the Y register is added to
an address in zero page during indirect Y addressing: The
number given as an argument of a branch instruction is added
to the address of the next instruction. So, $2008 + $3 =
$200B. If this seems confusing, forget about it. LADS, or even
the mini-assembler in the monitor, will take care of all this for
you. All you need to do is give $200D as the argument to the
mini-assembler, or a label name to LADS, and they will com
pute the three for you.

Forward Branch Solutions
There is one responsibility that you do have, though, if you
are using the mini-assembler. When you are writing 2008 BNE
$200D, how do you know to write in $200D? You can't yet
know to exactly which address up ahead you want to branch.
There are two ways to deal with this. Perhaps easiest is just to
put in BNE $2008 (have it branch to itself). This will result in
an $FE being temporarily left as the target of your BNE. Then,
you can make a note on paper to later change the byte at
$2009 to point to the correct address, $200B. You've got to
remember to "resolve" that $FE, to POKE in the correct offset
to the target address, or you will leave a little bomb in your
program-an endless loop.

The other, even simpler, way to deal with forward branch
addresses will come after you are familiar with which instruc
tions use one, two, or three bytes. The BNE-JSR-TARGET
construction is common and will always be three above the
current address, an offset of three. If your branch instruction is
at $2008, you just count off three: $200A,B,C and write BNE
200D.

Other, more complex branches such as ON-GOTO con
structions will also become easy to count off when you're
familiar with the instruction byte-lengths. In any case, it's
simple enough to make a note of any unsolved branches and
correct them before running the program.

Of course, LADS is the easiest assembler to use for for
ward branching: It allows you to branch to any address by just
giving the label name of that address.

98

The Instruction Set

Recall our previous warning about not using the infamous
BPL and BMI instructions? BPL (Branch on PLus) and BMI
(Branch on Minus) sound good, but should be avoided. To test
for less-than or more-than situations, use BCC and BCS
respectively. (Recall that BCC is alphabetically less-than BCS
an easy way to remember which to use.) The reasons for this
are exotic. We don't need to go into them. Just be warned that
BPL and BMI which sound so logical and useful are not. They
can fail you and neither one lives up to its name. Stick with
the always trustworthy BCC, BCS.

Also remember that BNE and the other three main B
group branching instructions often don't need to have a CMP
come in front of them to affect a flag that can be tested by a
following B instruction. Many actions of many opcodes will
automatically affect flags . For example, LDA $80 will affect
the Z flag so you can tell (using BNE or BEQ) if the number in
address $80 was or wasn't zero. LDA $80 followed by BNE
would branch away if there were anything besides a zero in
address $80. If in doubt about which flags are affected by
which instructions, check in Appendix A. You'll soon get to
know the common ones. If you are really in doubt, go ahead
and stick in a CMP. It can't do any harm.

4. The Loop Group:
DEY, DEX, INY, INX, INC, DEC

INY and INX raise the Y and X register values by one each
time they are used. If Y is a 17 and you INY, Y becomes an
18. Likewise, DEY and DEX decrease the values in these reg
isters by one. There is no such increment or decrement
instruction for the accumulator.

Similarly, INC and DEC will raise or lower a memory ad
dress by one. You can give arguments to these instructions in
four addressing modes: absolute, zero page, zero page,X, and
absolute,X. These instructions affect the N and Z flags .

The Loop Group are usually used to set up FOR-NEXT
structures. The X register is used most often as a counter to
allow a certain number of events to take place. In the structure
FOR I = 1 TO 10:NEXT I, the value of the variable I goes up
by one each time the loop cycles around. The same effect is
created by:

99

The Instruction Set

2000 LOX #$0A
2002 DEX
2003 BNE $2002

(Decimal 10)
("DEcrement" or "DEcrease X" by one)
(Branch if Not Equal [to zero] back up to address
$2002)

Notice that DEX is tested by BNE (which sees if the Z
flag, the zero flag, is up) . DEX sets the Z flag up when X fi
nally gets down to zero after ten cycles of this loop. The only
other flag affected by this loop group is the N (negative) flag
for signed arithmetic.

Why didn't we use INX, INcrease X by one? This would
parallel exactly the FOR I = 1 TO 10, but it would be clumsy
since our starting count which is #10 above would have to be
#245 . This is because X will not become a zero going up until
it hits 255. So, for clarity and simplicity, it is customary to set
the count of X and then DEX it downward to zero. The follow
ing program will accomplish the same thing as the one above,
and allow us to INX, but it too is somewhat clumsy:

2000 LOX #$0
2002 INX
2003 CPX #$0A
2005 BNE $2002

Here, we had to use zero to start the loop because, right
off the bat, the number in X is INXed to one by the instruction
at $2002. In any case, it is a good idea simply to memorize the
simple loop structure in the first example. It is easy and ob
vious and works very well.

Big Loops
How would you create a loop which has to be larger than 256
cycles? When we wanted to add large numbers, numbers too
big to be held in a single byte, we simply used two-byte units
instead of single-byte units to hold our information. Likewise,
to do large loops, you can count down using two bytes, rather
than one. In fact, this is quite similar to the idea of nested
loops (loops within loops) in BASIC.
2000 LOX #$0A (Start of first loop)
2002 LOY #$0 (Start of second loop)
2004 DEY
2005 BNE $2004 (If Y isn' t yet zero, loop back to DEcrease Y

again-this is the inner loop.)
2007 OEX (Reduce the outer loop by one.)

100

The Instruction Set

2008 BNE $2002 (If X isn't yet zero, go through the entire DEY loop
again.)

200A (Continue with the rest of the program)

One thing to watch out for: Be sure that a loop BNE's
back up to one address after the start of its loop. The start of
the loop sets a number into a register and, if you keep looping
up to it, you'll always be putting the same number into it. The
DEcrement (decrease by one) instruction would then never
bring it down to zero to end the looping. You'll have created
an endless loop.

The example above could be used for a timing loop in a
similar way to the method that BASIC creates delays with
fOR T = 1 TO 2000: NEXT T. Also, sometimes you do want
to create a pseudo endless loop (the BEGIN-UNTIL in struc
tured programming). A useful pseudo endless loop in BASIC
waits until the user hits any key: 10 GET K$: IF K$ = " "
THEN 10.

The simplest way to accomplish this in ML is to look on
the map of your computer to find which byte holds the last
keypressed number. On the Apple II, it's 49152. In any event,
when a key is pressed, it deposits its special numeric value
into this cell. If no key is pressed, the leftmost bit in this cell
remains off:
2000 LDA $COlO; THIS SETS THE LEFTMOST BIT IN $COOO

(49152) TO 0
2003 LOOP LDA $COOO
2006 BPL LOOP; IF THE LEFTMOST BIT IS OFF, KEEP

LOOPING

If the BPL is triggered, this means that the LDA found the
leftmost bit off in address $COOO (49152) and, thus, no key
has been pressed. So, we keep looping until the value in ad
Jress $COOO has the leftmost bit on. This setup is the same as
GET in BASIC, because not only does it wait until a key is
pressed, but it also leaves the value of the key in the accu
mulator when it's finished.

The BPL instruction is triggered when the LDA loads in
the byte from address $COOO, if the value loaded in has a zero
in the leftmost bit. Thus, 01111111 would cause a branch back
to the loop to keep looking for a legitimate keypress;
10000000 would "fall through" the BPL test because BPL is
not triggered when the leftmost bit is on-regardless of the

101

The Instruction Set

condition of the rest of the bits in the byte. The leftmost bit is
on, in effect, if the number in address $COOO is higher than
127. Although it's best to avoid BMI and BPL when dealing
with quantities like less-than or greater-than, here is one of
the legitimate uses of these instructions.

Dealing with Strings
You've probably been wondering how ML handles strings.

It's pretty straightforward. There are essentially two ways:
known-length and zero-delimit. If you know how many
characters there are in a message, you can store this number at
the very start of the text: SERROR. (The number 5 will fit into
one byte.) If this little message is stored in your "message
zone" -some arbitrary area of free memory set aside by you
at the beginning to hold all of your messages-you would
make a note of the particular address of the "ERROR" mes
sage. Say it's stored at address $0FE6 (4070).

To print out the message, you pluck off the length and
then repeatedly JSR to $FDED, the Apple character output
routine in ROM.

Alternatively, you could simply set up your own zero
page pointers to the screen and use the STA (NN),Y address
ing mode.

For Apple II, the screen memory starts at $0400 (1024).
You can set up a "cursor management" system for yourself.
To simplify, we'll send our message to the beginning of Apple's
screen and just use the simple absolute,Y addressing mode:
2000 LOX $0FE6 (Remember, we put the length of the message as

the first byte of the message, so we load our
counter with the length.)

2003 LOY #$0 (Y will be our message offset.)
2005 LOA $0FE7,Y (Gets the character at the address plus Y. Y is

zero the first time through the loop, so the "e"
from here lands in the accumulator. It also stays
in $0FE7 [4071]. It's just being copied into the
accumulator.)

2008 STA $0400,Y (We can make Y do double duty as the message
and the screen-printout offset. Y is still zero, so
the "e" goes to $0400 the first time through the
loop.)

200B INY (Prepare to add one to the message-storage loca
tion and to the screen-print location.)

200C OEX (Lower the counter.)

102

The Instruction Set

2000 BNE $2005 (If X isn't used up yet, go back and get-and
print the next character, the "r.")

If the Length Is Not Known
Yet another way to print to the screen-probably the most
common and the easiest, and doesn't require that you know
the length of the string. You just put a special character
(usually zero) at the end of each message to show its limit.
This is called a delimiter. A zero works well because, in ASCII,
the value 0 has no character or function (such as a carriage re
turn) coded to it. Consequently, any time the computer loads a
zero into the accumulator (which will flip up the Z flag), it
will then know that it is at the end of your message. At
$0FE6, we might have a couple of error messages: "Ball out of
rangeOTime nearly up!O". (These zeros are not ASCII zeros,
remember. ASCII zero, the zero character that can be printed,
has a value of 176.)

To print the time warning message to the top of the Apple
screen:
2000 LOY #$0
2002 LOA $0FF8,Y (Get the " T. ")
2005 BEQ $2005 (The LDA just above will flip the zero flag up if

it loads a zero, so we forward branch out of our

2007 STA $0400,Y
200A INY
200B JMP $2002

200E

message-printing loop.)
(We're using the Y as a double-duty offset again.)

(In this loop, we always jump back. Our exit
from the loop is not here, at the end. Rather, it
is the Branch if EQual which is within the loop.
This is similar to the BEGIN-UNTIL structure in
structured programming.)
(Continue with another part of the program.)

Now that we know the address which follows the loop
($2014), we can store that address into the "false forward
branch" we left in address $2006. What number do we store
into $2006? Just subtract $2007 from $200E which is 7.

Of these two ways of handling strings, the zero-delimit
method is the most popular and probably the easiest to use.
It's even easier if you use LADS. With LADS, you don't need
to remember the address of the stored string, you just give
each string a label. Also, you don't need to translate the mes
sage into ASCII, just use the .BYTE pseudo-op in LADS.

103

The Instruction Set

Here's how you would write the source code for LADS using
the zero-delimit technique example above:
100 SCREEN = 1024 (This variable is defined at the start of the

program, not in with the body of the ML. The
numbers on the left are not addresses. They
are line numbers that you use when writing
the source code. The assembler handles mem
ory addresses for you.)

500 LDY #0
510 MESSAGE LDA TIMEOUT,Y (Get the " T. ")
520 BEQ MORE
530 STA SCREEN,Y
540 INY
550 JMP MESSAGE
560 MORE (Continue with another part of the program.)

1000 TIMEOUT .BYTE "TIME NEARLY UP!": .BYTE 0
(Message stored with a true zero at the end. This is
stored at the very end of the ML program, not in with
the instructions themselves.)

The .BYTE pseudo-op in LADS is designed to work with
true ASCII. This means that your messages would be under
stood by other computers, over modems, by printers, and so
forth. However, the Apple's internal version of the ASCII code
(which prints messages to the screen) differs from true ASCII.
True ASCII characters appear in reverse field on the Apple
screen. For more information, see the discussion of the .BYTE
and #" pseudo-cps in Appendix B.

All the ways of handling messages discussed above are
effective, but you must keep a list on paper of the starting ad
dresses of each message if you are using the monitor assem
bler so that you can remember from where to pick off the
letters of the message. In ML, you have the responsibility for
some of the tasks that BASIC (at an expense of speed) does for
you. If you're using a more advanced assembler like LADS,
however, you can simply define the location of the message
with a label.

104

The Instruction Set

Also, when using these techniques, no message can be
larger than 255 characters because the offset and counter reg
isters (X and Y) can count only that high before starting over
at zero again. To print two strings back-to-back gives a longer,
but still less than 255-byte-long, message:

2000 LOY #$0
2002 LOX #$2 (In this example, we use X as a counter which

represents the number of messages we are
printing.)

2004 LOA $4000,Y (Get the " B" from " Ball out of ")
2007 BEQ $2011 (Go to increment Y, reduce [and check] the

value of X.)
2009 STA $1024,Y (We're using theY as a double-duty offset

again.)
2000 INY
200E JMP $2004
2011 INY

2012 OEX

(We need to raise Y since we skipped that step
when we branched out of the loop.)
(At the end of the first message, X will be a one;
at the end of the second message, it will be
zero.)

2013 BNE $2004 (If X isn't down to zero yet, reenter the loop to
print out the second message.)

This example, too, could not deliver a message longer
than 255 characters. To fill your screen with instructions in
stantly (say, at the start of a game), you can use the following
mass-move. We'll assume that the instructions go from $5000
to $6024 in memory and you want to transfer them to the
screen (at $0400):
2000 LOY #$0
2002 LOA $5000,Y
2005 STA $0400,Y
2008 LOA $5100,Y
200B STA $0500,Y
200E LOA $5200,Y
2011 STA $0600, Y
2014 LOA $5300,Y
2017 STA $0700,Y
201A INY
201B BNE $2002 (If Y hasn't counted up to 0-which comes just

above 255-go back and load-store the next
character in each quarter of the large message.)

105

The Instruction Set

This technique is fast and easy anytime you want to
mass-move one area of memory to another. It makes a copy
and does not disturb the original memory. To mass-clear a
memory zone (to clear the screen, for example), you can use a
similar loop, but instead of loading the accumulator each time
with a different character, you load it at the start with $AO
(160 decimal), the Apple ASCII code for the character that the
Apple uses to print a space:
2000 LOA #$AO
2002 LOY #$0
2004 STA $0400, Y
2007 STA $0500,Y
200A STA $0600,Y
2000 STA $0700,Y
2011 INY
2012 BNE $2004

Of course, you could simply JSR to the routine which al
ready exists in BASIC to clear the screen (JSR $FC58 or ISR
64600). In Chapter 7 we will explore the techniques of using
BASIC as examples to learn from and also as a collection of
ready-made ML subroutines. Now, though, we can look at
how subroutines are handled in ML.

5. The Subroutine and Jump Group:
JMP, JSR, RTS

JMP has only one useful addressing mode: absolute. You
give it a firm, two-byte argument and it goes there. The com
puter puts the argument into the program counter, and control
is transferred to this new address where an instruction located
there is acted upon. (There is a second addressing mode, JMP
indirect which has a bug and is best left unused.)

JSR can use only absolute addressing.
RTS's addressing mode is implied. The address is on the

stack, put there during the }SR.
JSR (Jump to SubRoutine) is the same as GOSUB in

BASIC, but instead of giving a line number, you give an ad
dress in memory where the subroutine sits (or, with LADS,
you give a label name). BASIC's CALL is a kind of JSR, too. It
acts like GOSUB except the destination is an ML routine
rather than a BASIC subroutine.

RTS (ReTurn from Subroutine) is the same as RETURN in

106

The Instruction Set

BASIC, but instead of returning to the next BASIC command,
you return to the address following the JSR instruction (it's a
three-byte-long instruction containing JSR and the two-byte
target address). JMP (JuMP) is GOTO. Again, you JMP to an
address or label name, not a line number. As in BASIC, there
is no RETURN from a JMP.

Some Further Cautions About the Stack
The stack is like a pile of coins. The last one you put on top of
the pile is the first one you'll pull off later. The main reason
that the 6502 chip sets aside an entire page of memory for the
stack is that it has to know where to go back to after GOSUBs
and JSRs.

A JSR instruction "pushes" the address held in the pro
gram counter plus two onto the stack and, later, the next RTS
"pulls" the top two numbers off the stack, increments the re
sult, and uses this number as its argument (target address) for
the return. Some programmers, as we noted before, like to
play with the stack and use it as a temporary register to PHA
(PusH Accumulator onto stack). This sort of thing is best
avoided until you are an advanced ML programmer. Stack
manipulations often result in a very confusing program. Han
dling the stack is one of the few things that the computer does
for you in ML. Let it.

The main function of the stack (as far as we're concerned)
is to hold return addresses. It's done automatically for us by
" pushes" with the JSR and, later, " pulls" (sometimes called
pops) with the RTS instruction. If we don't bother the stack, it
will serve us well. There are thousands upon thousands of
cells where you could temporarily leave the accumulator-or
any other value-without fouling up the orderly arrangement
of your return addresses.

Subroutines are extremely important to ML programming.
ML programs are designed around them, as we'll see.

There are times when you'll be several subroutines deep (one
will call another which calls another); this is not as confusing
as it sounds. Your main Player-input routine might call a
Print-message subroutine which itself calls a Wait-until-key-is
pressed subroutine. If any of these routines PHA (PusH the
Accumulator onto the stack), they then disturb the addresses
on the stack. If the extra number on top of the stack isn't
PLAed off (PulL Accumulator), the next RTS will pull off the

107

The Instruction Set

number that was PHAed along with half the correct address . It
will then merrily return to what it thinks is the correct ad
dress: It might land somewhere in the RAM, it might go to an
address somewhere in the outer reaches of your operating sys
tem-but it certainly won't go where it should.

Some programmers like to change a GOSUB into a GOTO
(in the middle of the action of a program) by PLA PLA. Pull
ing the two top stack values off with PLA PLA has the effect
of eliminating the most recently stored RTS address. It does
leave a clean stack, but why bother to JSR in the first place if
you later want to change it to a GOTO? Why not use JMP in
the first place. (There is some use for this technique, but it's
for advanced ML programming where you want to speed up a
program by returning directly to some routine elsewhere in
the calling subprogram. LADS uses this method in places.)

There are cases, too, when the stack has been used to
hold the current condition of the flags (the status register
byte) .

This is pushed/pulled from the stack with PHP and PLP.
You probably never will, but if you should need to "remem
ber" the condition of the status flags, why not just PHP PLA
STA $NN (NN means the address is your choice)? Set aside a
byte somewhere that can hold the flags (they are always
changing inside the status register during a program run) for
later and keep the stack clean. Leave stack acrobatics to Forth
programmers. The stack, except for advanced ML, should be
inviolate.

Forth, an interesting language, requires frequent stack
manipulations. But in the Forth environment, the reasons for
this and its protocol make excellent sense. In ML, though,
stack manipulations are a sticky business.

Saving the Current Environment
There are two exceptions to our leave-the-stack-alone rule.
Sometimes (especially when you are "borrowing" a routine
from BASIC by JSRing into the ROM) you will want to take
up with your own program from where it left off. That is, you
might not want to write a "clear the screen" subroutine be
cause you find the address of such a routine on your map (in
your computer's Reference Guide) of BASIC. (The HOME sub
routine is located at address $FC58, 64600 decimal.)

However, when you JSR into one of these ready-made

108

The Instruction Set

subroutines, you don't know what sorts of things the sub
routine will do to your accumulator or X and Y registers. In
other words, you just want to clear the screen, but you might
well need to retain the status of the registers because your
program is going to need them. You sometimes cannot afford
to have unpredictable things happen to your X, Y, A, and sta
tus registers. If you know you don't need to preserve the state
of the accumulator or the X or Y registers, then JSR blithely
away. The JSR into ROM will probably change the registers,
but you don't care.

However, sometimes you are using, let's say, Y to hold
the offset of a line of information or a screen line. You can't
allow it to suffer from some unknown event in the ROM sub
routine. In such cases, you can use the following "save the
state of things" routine:

2000 PHP (Push the status register onto the stack.)
2001 PHA
2002 TXA
2003 PHA .
2004 TYA
2005 PHA
2006 JSR $FC58

2009 PLA
200A TAY
200B PLA
200C TAX

(To the dear-the-screen routine in BASIC. When
the BASIC routine is finished, it will end with an
RTS. This RTS will remove the return address
($2009), and you'll have a mirror image of the
things you had pushed onto the stack. They are
pulled out in reverse order, as you can see below.
This is because the first pull from the stack will
get the most recently pushed number. If you make a
little stack of coins, the first one you pull off will
be the last one you put onto the stack.)
(Now we reverse the order to get them back.)

2000 PLA (This one stays in A.)
200E PLP (The status register)

This little routine will enter your JSR while preserving
everything as it was before you JSRed. Use it when you're un
sure. Nearly every ROM routine mentioned in this book will
mess with one or more of the registers . The only truly safe
one is JSR $FDED, the output-a-character routine. You can use
this one with impunity.

109

The Instruction Set

Saving the current state of things before visiting an un
charted, unpredictable subroutine is probably the only valid
excuse for playing with the stack as a beginner in ML. The
routine above is constructed to leave the stack intact. Every
thing that was pushed on has been pulled back off.

If you dare, you can also use the stack as a temporary
storage place when you need to save something briefly. You
could save the accumulator (while JSRing to the HOME rou
tine in BASIC) by PHA:JSR $FC58:PLA. That would temporar
ily push the accumulator onto the stack, hold it there beneath
the two-byte return address pushed onto the stack by the JSR,
and then pull it off again after the RTS had fetched the return
address (leaving your accumulator on top of the stack). This
pushing is sometimes considered a dangerous practice be
cause, if you forget to match every push with a subsequent
pull, the stack will overflow and you might not realize why.
Use this trick at your own risk. For simple register saves, it's
pretty easy to define register "holding bytes" using LADS and
then stuff things there whenever you need temporary storage:

10 HOME = $FC58
100 STY Y:STA A:JSR HOME:LDA A:LDY Y

While, somewhere after the end of your program proper,
down with the messages and other things that are data, not
program, you have:
5000 A .BYTE 0
5010 Y .BYTE 0
5020 X .BYTE 0

A third alternative is to use the built-in "save registers"
and "restore registers" routines in ROM:
10 SAVER = $FF4A
20 RESTORE = $FF3F

which would be used thus:
30 HOME = $FC58

100 JSR SAVER:JSR HOME:JSR RESTORE

The Significance of Subroutines
Possibly the best way to approach ML program writing-es
pecially a large program-is to think of it as a collection of
subroutines. Each of these subroutines should be small. It
should be listed on a piece of paper followed by a note on

110

The Instruction Set

what it needs as input and what it gives back as parameters.
"Parameter passing" simply means that a subroutine needs to
know things from the main program (parameters) which are
handed to it (passed) in some way. Alternatively, if you are
using LADS, you can insert parameter information into the
body of the source code of the program using the ";" remark
pseudo-op.

The current position of the record in a database is a
parameter which has its own " register" (we would have set
aside a register for it at the start when we were assigning
memory space either on paper for simple assemblers or by
using the equate pseudo-op for LADS). So, the "look at the
next record in the database" subroutine is a double-adder
which adds 40 or whatever to the "current position register."
This value always sits in the register to be used anytime any
subroutine needs this information. In other words, the register
(we called it FINGER in a previous example) is always point
ing to our current position within the database. This is why
such registers are called pointers.

The "look at the next register" subroutine sends the cur
rent-position parameter by passing it to the current-position
register.

This is one example of a way that parameters are passed.
Another example might be when you are telling a delay loop
how long to delay. Ideally, your delay subroutine will be
multipurpose. That is, it can delay for anywhere from 1/2 sec
ond to 60 seconds or something. This means that the sub
routine itself isn't locked into a particular length of delay.

The main program will " pass" the amount of delay to the
subroutine.
3000 LOY #$0
3002 INY
3003 BNE $3002
3005 OEX
3006 BNE $3000
3008 RTS

Notice that X never is initialized (set up) here with any
particular value. This is because the value of X is passed to
this subroutine from the main program. If you want a short
delay, you would:
2000 LOX #$5
2002 JSR $3000

111

The Instruction Set

And for a delay which is twice as long as that:
2000 LOX #$0A (10 decimal)
2002 JSR $3000

In some ways, the less a subroutine does, the better. If it's
not entirely self-sufficient, and the shorter and simpler it is,
the more versatile it will be. For example, our delay above
could function to time responses, to hold sounds for specific
durations, and so on. When you make remarks about a gen
eral-purpose routine, write something like this: 3000 ; DELAY
LOOP (expects duration in X; returns zero in X) .

The longest duration delay would be set up with LDX #0.
This is because the first thing that happens to X in the delay
subroutine is DEX. If you DEX a zero, you get 255. If you
need longer delays than the maximum value of X, simply:
2000 LOX #$0
2002 JSR $3000
2005 JSR $3000 (Notice that we don't need to set X to zero this

second time. It returns from the subroutine with a
zeroed X.)

You could even make a loop out of the JSRs above for ex
tremely long delays. The point to notice here is that it helps to
document each subroutine in your library: what parameters it
expects; what registers, flags, and so on, it changes; and what
it leaves behind as a result. This documentation-on a single
sheet of paper or within LADS source-helps you remember
each routine's address and lets you know what effects and
preconditions are involved.

JMP
Like BASIC's GOTO, JMP is easy to understand. It goes to an
address: JMP $5000 leaps from wherever it is to start carrying
out the instructions which start at $5000. It doesn't affect any
flags. It doesn't do anything to the stack. It's clean and simple.
Yet some advocates of structured programming suggest avoid
ing JMP (and GOTO). Their reasoning is that JMP is a shortcut
and a poor programming habit.

For one thing, they argue, using GOTO makes programs
confusing. If you drew lines to show a program's "flow" (the
order in which instructions are carried out), a program with
lots of GOTOs would look like boiled spaghetti. Many pro
grammers feel, however, that JMP has its uses . Clearly, you

112

The Instruction Set

should not overdo it and lean heavily on JMP. In fact, you
might see if there isn't a better way to accomplish something
if you find yourself using it all the time and your programs are
becoming impossibly awkward. But JMP is convenient, often
necessary, in ML.

A 6502 Chip Bug
On the other hand, there is another, rather peculiar JMP
addressing mode which is hardly, if ever, used in ML: JMP
($5000). This is an indirect jump which works like the indirect
addressing we've seen before. Remember that with the
indirect,Y addressing mode, LOA ($81),Y, the number in Y is
added to the address found in $81 and $82. This address is the
real place we are LOAing from, sometimes called the effective
address. If $81 holds a 00, $82 holds a $40, and Y holds a 2,
the address we LOA from is going to be $4002. Similarly (but
without adding Y), the effective address found at the two
bytes within the parentheses becomes the place we JMP to in
JMP ($5000).

There are no necessary uses for this instruction. Best
avoid it the same way you avoid playing around with the
stack until you're an ML expert. If you find it in your comput
er's BASIC code, it will probably be involved in an "indirect
jump table," a series of registers which are dynamic. That is,
they can be changed as the program progresses. Such a tech
nique is very close to a self-altering program and would have
few applications in ML. But worse than than, there is a bug in
the 6502 chip itself which causes the indirect JMP instruction
to malfunction under certain circumstances. Just put JMP
($NNNN) into the same category as BPL and BMI. Avoid them.

If you decide that for some reason you must use indirect
JMP, be sure to avoid the edge of pages, such as JMP
($NNFF). (The NN means "any number.") Whenever the low
byte is right on the edge of a page ($FF is on the edge, it's
ready to reset to $00), an indirect JMP will correctly use the
low byte (LSB) from the pointer at $NNFF, but it will not pick
up the high byte (MSB) from $NNFF + 1 as it should. Instead,
it gets the high byte from $NNOO!

Here's how this error would work if you had set up a
pointer to address $5043 with the pointer located at $40FF:
$40FF43
$4100 50

113

The Instruction Set

Your intention would be to JMP to $5043 by bouncing off
this pointer. You would write JMP ($40FF) and expect that the
next instruction the computer would follow would be the
instruction located at $5043. Unfortunately, your pointer
would malfunction in this example. You would land at $0043
(if address $4000 held a zero). The indirect JMP would get its
MSB from $4000.

This bug does not apply to any other addressing modes,
just JMP (indirect). So, unless you want to take a chance with
an addressing mode that's strictly for advanced programmers,
contains a bug, and has no compelling uses, avoid JMP
(indirect).

6. Debuggers:
BRK and NOP

BRK and NOP have no arguments and are therefore
members of that class of instructions which use only the im
plied addressing mode. They also affect no flags in any way
with which we would be concerned. BRK does affect the I and
B flags, but since it is a rare situation which would require
testing those flags, we can ignore this flag activity altogether.

After you've assembled your program and it doesn't work
as expected (few do), you start debugging. Some studies have
shown that debugging takes up more than 50 percent of
programming time. Such surveys can be misleading, however,
because "making improvements and adding options" fre
quently take place after the program is allegedly finished, and
would be thereby categorized as part of the debugging process.

Another factor is that these surveys reflect the sometimes
inefficient programming styles adopted by professional or aca
demic programming teams. Some assemblers and compilers
used by professionals are extraordinarily cumbersome, requir
ing heroic efforts with linkers, maps, variable definition, and
so forth, before a piece of program can be tested. LADS, by
contrast, is virtually instantaneous. It will make the process of
debugging very efficient.

In ML, debugging is facilitated by setting breakpoints with
BRK and then seeing what's happening in the registers or
memory. If you insert a BRK, it has the effect of halting the
program and throwing you into the monitor where you can
examine, say, the Y register to see if it contains what you

114

The Instruction Set

would expect it to at this point in the program. It's similar to
BASIC's STOP instruction:
2000 LOA #$15
2002 TAY
2003 BRK

At this point, you could use the monitor to examine any
areas of memory just as you would examine variables after
having your BASIC program STOP.

Debugging Methods
In practice, you debug whenever your program runs merrily
along and then does something unexpected. It might crash and
lock you out. You look for a likely place where you think it is
failing and just insert a BRK right over some other instruction.

Remember that when you're in the monitor mode, you
can directly change bytes, you can insert $00 (BRK) where you
want.

In the example above, imagine that we put the BRK over
a STY $8000. Make a note of the instruction you covered over
with the BRK so that you can restore it later. After checking
the registers and memory, you might find something wrong,
some variable or register isn't behaving as it should or you
somehow never even arrive at the break (some branch or JMP
is being incorrectly activated). Now you have narrowed things
down. Now you can locate and fix the error.

Sometimes it helps to have a printed listing of the suspect
area in a program. You can turn your printer on and off with
the .P and .NP options in LADS, printing out only the suspect
zone of the program and use that to help you locate errors
while working with the monitor. Alternatively, you can check
the program with the built-in disassembler.

If nothing seems wrong at this point, restore the original
STY over the BRK, and put BRK in somewhere further on. By
this process, you can isolate the cause of the oddity in your
program. Setting breakpoints (like putting STOP into BASIC
programs) is an effective way to run part of a program and
then examine the variables .

If your monitor or assembler allows single-stepping, this
can be an excellent, though more time-consuming, way to de
bug. Your computer performs each instruction in your pro
gram one step at a time. This is like having BRK between each

115

The Instruction Set

instruction in the program. You can control the speed of the
stepping from the keyboard. Single-stepping automates break
point checking. It is like the TRACE command sometimes
used to debug BASIC programs.

Like BRK ($00), the hex number of NOP ($EA) is worth
memorizing. If you're working within your monitor, you will
need to use hex numbers, and these two are particularly worth
knowing.

NOP means NO oPeration. The computer slides over
NOPs without taking any action other than increasing the pro
gram counter. There are two ways in which NOP can be effec
tively used.

First, it can be an eraser. If you suspect that JSR $8000 is
causing all the trouble, try running your program with every
thing else the same, but with JSR $8000 erased. Simply put
three $EAs over the instruction and argument. (Make a note,
though, of what was under the $EAs so that you can restore
it.) Then, the program will run without this instruction, with
out going to that subroutine at $8000, and you can watch the
effects.

Second, it is sometimes useful to use $EA to temporarily
hold open some space. If you don't know something (an ad
dress, a graphics value) during assembly, $EA can mark that
this space needs to be filled in later before the program is run.
As an instruction, it will let the program slide by. $EA could
become your " fill this in" alert within programs in the way
that we use self-branching (leaving a zero) to show that we
need to put in a forward branch's address when using a mini
assembler.

Less Common Instructions
The following instructions are not often necessary for begin
ning applications, but we can briefly touch on their main uses.
There are several logical instructions which can manipulate or
test individual bits within each byte. This is most often nec
essary when interfacing. If you need to test what's coming in
from a disk drive, or translate on a bit-by-bit level for 1/0
(inputjoutput), you might work with the logical group.

In general, I/0 is handled for you by your machine's
operating system and is well beyond beginning ML program
ming. I/0 is perhaps the most difficult, or at least the most
complicated, aspect of ML programming. When putting things

116

The Instruction Set

on the screen, programming is fairly straightforward, but han
dling the data stream into and out of a disk is pretty involved.
Timing must be precise, and the preconditions which need to
be established are complex.

For example, if you need to mask a byte by changing
some of its bits to zero, you can use the AND instruction.
After an AND, both numbers must have contained a one in
any particular bit position for it to result in a one in the an
swer. This lets you set up a mask: 00001111 will zero any bits
within the left four positions. So, 00001111 and 11001100 re
sult in 00001100.

The unmasked bits remained unchanged, but the four
high bits were all masked and, thus, zeroed.

There is a minor use for AND when you want to change
a character to a reverse (black on white) or flashing character.
The letter A, for example, has a value of $C1 which looks like
this in binary (all the bits within the byte showing): 11000001.
Notice that the left two bits are "on." To change this to a
flashing A character, we need to turn the leftmost bit off so
that we end up with 01000001, which is $41. You can turn off
the leftmost bit by 11000001 AND 01111111, which will leave
01000001. Expressed in hex numbers you take the ordinary A
($C1) and AND it with 01111111 ($7F) to get the flasher, $41.
Likewise, B ($C2) AND $7F results in a flashing B ($42). To
change A into a reverse character, $C1 AND $3F.

Going the other way, you can change a flashing A back
into a stable ordinary A by $41 ORA $80 (10000000). The
ORA instruction is the same as AND, except it lets you mask
to set bits (make them a one). Thus, 11110000 ORA 11001100
results in 11111100. The accumulator will hold the results
when these instructions are used.

EOR (Exclusive OR) permits you to toggle bits. If a bit is
1, it will go to 0. If it's 0, it will flip to 1. EOR is sometimes
useful in games. If you are heading in one direction and you
want to go back when bouncing a ball off a wall, you could
toggle. Let's say that you use a register to show direction:
When the ball's going up, the byte contains the number 1
(00000001), but down is 0 (00000000). To toggle this least
significant bit, you would EOR with 00000001. This would flip
1 to 0, and 0 to 1. This action results in the complement of a
number. Thus, 11111111 EOR 11001100 results in 00110011.

117

The Instruction Set

To know the effects of these logical operators, we can
look them up in truth tables which give the results of all pos
sible combinations of zeros and ones:

AND
0 AND 0 = 0
0 AND 1 = 0
1 AND 0 = 0
1 AND 1 = 1

OR
0 OR 0 = 0
0 OR 1 = 1
1 OR 0 = 1
1 OR 1 = 1

EOR
0 EOR 0 = 0
0 EOR 1 = 1
1 EOR 0 = 1
1 EOR 1 = 0

Another instruction, BIT, also tests (it does an AND), but,
like the BNE and so forth, branch instructions, it does not af
fect the number in the accumulator-its sole purpose is to set
flags in the status register. The N flag is set (has a one) if bit
7 has a one (and vice versa). The V flag responds similarly to
whatever value is in the sixth bit of the tested byte. The Z flag
shows whether or not the result of the AND resulted in a
zero. Instructions, like BIT, which do not affect the numbers
being tested are called nondestructive.

We discussed LSR and ASL in the chapter on arithmetic:
They can conveniently divide and multiply by two. ROL and
ROR rotate the bits left or right in a byte, but, unlike with the
Logical Shift Right or Arithmetic Shift Left, no bits are lost off
one end during the shift. ROL will leave the seventh (most
significant) bit in the carry flag, leave the carry flag in the
zeroth bit (least significant bit), and move every other bit one
space to the left:

ROL 11001100 (with the carry flag set results in:)
10011001 (carry is still set, it got the leftmost one)

If you disassemble your computer's BASIC, you may well
look in vain for an example of ROL, but it and ROR are avail
able in the 6502 instruction set if you should ever find a use
for them.

Should you go into advanced ML arithmetic, they can be
used for multiplication and division routines. Please see
Appendix A for more details on some of these obscure instruc
tions if you're interested.

Three other instructions remain to be discussed: SEI (SEt
Interrupt), RTI (ReTurn from Interrupt), and CLI (CLear Inter
rupt). These operations are also beyond the scope of a book on
beginning ML programming, but we'll briefly note their ef
fects . Your computer gets busy as soon as the power goes on.
Things are always happening: Timing registers are being up-

118

The Instruction Set

dated; the keyboard, the video, and the peripheral connectors
are being refreshed or examined for signals. To interrupt all
this activity, you can SEI, perform some task, and then CLI to
let things pick up where they left off. This description applies
to a degree to the lie, but the Apple II does not use the inter
rupt option. The following is simply for your information
should you later decide to try some sophisticated ML interrupt
programming on the Ilc or another computer.

SEI sets the interrupt flag . Following this, all maskable
interruptions (things which can be blocked from interrupting
when the interrupt status flag is up) are no longer possible.

There are also nonmaskable interrupts which, as you might
guess, will jump in anytime, ignoring the status register.

The RTI instruction (ReTurn from Interrupt) restores the
program counter and status register (takes them from the
stack), but the X and Y registers, and so on, might have been
changed during the interrupt. Recall that our discussion of the
BRK instruction involved the above actions. The key difference
is that BRK stores the program counter plus two on the stack
and sets the B flag on the status register. CLI puts the inter
rupt flag down and lets all interrupts take place.

If these last instructions are confusing to you, it doesn't
matter. They are essentially hardware and interface related.
' You can do nearly everything you will want to do in ML

without them. How often have you used WAIT in BASIC?

A Newer Chip
The venerable 6502 chip, which has been the brains of most
of the popular home computers for years, is being replaced in
newer Apples with a slightly different younger sibling, the
65C02 chip. The C version is identical to the 6502, but has a
few additional instructions. These new instructions offer noth
ing which cannot be done by the 6502, but in a couple of
cases, they simplify things. For example, the STZ (STore Zero)
instruction would simplify putting a zero into a memory loca
tion. Now, we have to LDA #$0:STA $5000. With the new
instruction, we could STZ $5000. Not much of an advantage,
but useful.

There is a new branching instruction, BRA, which means
BRanch Always and is like the rest of the branchers, but
doesn't check the flags. It always branches.

DEA and INA decrement or increment the accumulator.

119

The Instruction Set

That, too, is something you want to do once in awhile and
would be easier with these new instructions. Normally,
though, you use the X and Y registers as counters and they
can be INY/DEY in the 6502.

There are PHX, PHY, PLX, and PLY which directly push
or pull the X or Y registers to or from the stack. Now, if you
want to put the X register on the stack, you have to TXA:PHA,
because X and Y can't directly address the stack in the 6502
instruction set.

Finally, TRB and TSB will test and turn on (or off) bits
within a given byte, somewhat simplifying the job.

There is also a new addressing mode, called zero page in
direct addressing, which can operate much like the useful
indirect,Y mode, but without adding the Y offset.

In general, it would be best to ignore these additional
instructions. While they do offer, in some cases, minor conve
niences, any program you write with them will not work on
the majority of Apples. The 65C02 is inside all lie's and any
lie's sold after March 1984. Using the extra instructions in the
65C02 will limit your programs to these recent models. Using
the 6502 instruction set, however, will permit your programs
to run on any Apple, including the new models .

LADS does not support the 65C02's new instructions, but
LADS can be customized. (You could even make up com
mands for LADS which added clusters of frequently used
instructions which were inserted into your ML program auto
matically.) Customizing LADS is for programmers who are rel
atively conversant in ML, but approaches and examples are
described in Appendix C.

120

Borrowing from BASIC
BASIC is a collection of ML subroutines. It is a large web of
hundreds of short ML programs. Why not use some of them
by JSRing to them? At times, this is in fact the best solution to
a problem.

How would this differ from BASIC itself? Doesn't BASIC
just create a series of JSRs when it runs? Wouldn't using BA
SIC's ML routines in this way be just as slow as BASIC is?

In practice, you will not be borrowing from BASIC all that
much. One reason is that such JSRing makes your program far
less portable, less easily run on other computers or other mod
els of your computer. When you JSR to an address within your
ROM set to save yourself the trouble of reinventing the wheel,
you are, unfortunately, making your program applicable only
to machines which are the same model as yours.

While Apple has been better than many computer compa
nies at keeping important ROM addresses like $FDED in the
same place in new Apple models, there are no guarantees that
this will always be the case.

However, if you want your program to work on many dif
ferent computer brands, you'll need to limit the degree to
which you make it ROM-specific. Stick to the few essential
ones (inputjoutput, clear screen, and so on, listed in this book
and in your Reference Guide). If you try to get too tricky
using your BASIC's or operating system's ROM to the maxi
mum-your programs will be pretty hard to translate to other
Apple models, not to mention other computer brands. For ex
ample, the subroutine to allocate space for a string in memory
is found at $0302 in the earliest Commodore PET model. A
later version of PET BASIC (Upgrade) used $03CE, and the
current models use $C610. Although Microsoft BASIC is
nearly universally used in personal computers (Atari is the
exception), each computer's version differs in both the order
and the addresses of key subroutines.

Jump Tables and Other Menus
To help overcome this lack of portability, some computer
manufacturers set aside a group of frequently used subroutines
and create a "Jump Table," or "Kernal, " for them. The idea is
that future, upgraded BASIC versions will still retain this table.
It would look something like this :

123

Borrowing from BASIC

FFCF 4C 15 F2 (INPUT one byte)
FFD2 4C 66 F2 (OUTPUT one byte)
FFDS 4C 01 F4 (LOAD something)
FFD8 4C DD F6 (SAVE something)

This example is part of the Commodore Kernal and is in
tended to apply to all future versions of BASIC on Com
modore machines.

The interesting thing about this table of jumps for Apple
users is that there is a trick to the way this sort of table works,
and you might want to use it yourself sometime. Notice that
each member of the table begins with 4C. That's the JMP
instruction and, if you land on it, the computer bounces right
off to the address which follows.

Now, at that address following the 4C, there is going to
be a subroutine (so it will end in RTS). So when we JSR to
one of the JMPs inside this table, to, say, FFD2, we're going to
land on a JMP and rebound, just bounce right off the JMP ta
ble to the correct subroutine. When that subroutine finally fin
ishes its work and ends in RTS, we will be returned to our
starting place. That's how a JMP table works and it can be a
useful technique.

By the way, the PRINT subroutine is a fundamental one
in any computer because it offers you so much value. For
one thing, it keeps track of the cursor position which is in
cremented each time you access PRINT. It works semi
automatically, and you don't have to keep track of where you
are on the screen. The PRINT -the-character routine in the Ap
ple is $FDED (65005 decimal). This is a very important ad
dress; you should memorize it.

For convenience, you might want to make a standard
"header" for all your ML source programs that you use with
LADS. It would consist of a series of "equates" which define
frequently used internal subroutines by giving them labels:
30 PRINTIT = $FDED; PRINTS CHARACTER IN

ACCUMULATOR
40 HOME = $FC58; CLEAR SCREEN
50 SCREEN = $0400; LOCATION OF TEXT SCREEN
60 TEXT = $FB2F; SET TEXT MODE
70 GRAPHICS = $FB40; SET GRAPHICS MODE (LIKE GR)

Then, when you're writing an ML source program using LADS
and want to print some character, you just JSR PRINTIT.
Whenever you want to clear the text screen, you JSR HOME.

124

Borrowing from BASIC

You would write JSR TEXT to set the text mode; JSR GRAPH
ICS to set graphics mode. ML can thus be very similar to
BASIC in that, when you are going to use a known sub
routine, a subroutine that you've given a label at the begin
ning of your program in the manner illustrated above, you just
type a word like TEXT that means something to your program
and also means something memorable to you.

The same PRINT routine will work for a printer or a disk
or a tape-anything that the computer sees as an output de
vice. However, unless you open a file to one of the other de
vices (it's simplest to do this from BASIC in the normal way
and then SYS to an ML subroutine), the computer defaults to
(assumes) the screen as the output device, and $FDED prints
there. To see how to set up different output targets, see the
Openl source code of LADS in Appendix D.

So, if you look into any ML program and discover a series
of JMPs (4C xx xx 4C xx xx), you've found a jump table. Using
a jump table should help make your programs compatible
with later versions of BASIC which might be released. Though
this is the purpose of such tables, there are never any guar
antees that the manufacturer will consistently observe them.
And, of course, the program which depends on them will cer
tainly not work on any other brand.

What's Fastest?
Since, when a BASIC program runs, it is JSRing around inside
itself, how, then, is a JSR into BASIC code faster than a BASIC
program? The answer is that a program written entirely in ML,
aside from the fact that it borrows only sparingly from BASIC
prewritten routines, differs from BASIC in an important way.

A finished ML program is like compiled code; that is, it is
ready to execute without any overhead. BASIC, for each com
mand or instruction, must be interpreted as it runs. This is
why BASIC is called an interpreter. Each instruction must be
looked up in a table to find its address in ROM. And many
other aspects of a BASIC instruction need to be interpreted.
All this takes time. Your ML code will contain the direct ad
dresses for its JSRs. When that ML program runs, the instruc
tions don't need elaborate interpretation, time-consuming
cross-checking, table lookups, or any other delay. The JSR just
leaps into the right area of BASIC ROM without further ado.

125

Borrowing from BASIC

There are special programs called compilers which can
take a BASIC program and transform (compile) it into ML-like
code which can then be executed like ML, without having to
interpret each command during the program's run. The JSRs
are within the compiled program, just as in ML. Compiled
programs will run perhaps 20 to 40 times faster than the
BASIC program they grew out of. (Generally, there is a small
price to pay in that the compiled version is almost always
larger than its BASIC equivalent.)

Compilers are interesting; they act almost like automatic
ML writers. You write it in BASIC, and they translate it into
an ML-like program. Even greater improvements in speed can
be achieved if a program uses no floating point (decimal
points) in the arithmetic. Also, there are "optimized" com
pilers which take longer during the translation phase to com
pile the finished program, but which try to create the fastest,
most efficient compiled program design possible. No compiler
is excessively slow, however. A good optimizing compiler can
translate an 8K BASIC program in two or three minutes. Well,
why not just compile BASIC programs and forget about ML
altogether? The main reason is that ML is always far faster
than even optimized compilations. You just can't beat the ef
ficiency of hand-crafted communications which speak directly
to the chip in its own language.

GET and PRINT
Two of the most common activities of a computer program are
getting characters from the keyboard and printing them to the
screen. To illustrate how to use BASIC from within an ML
program, we'll show how both of these tasks can be accom
plished from within ML.

Try this program and hit a key on the keyboard. Notice
that the code number for whatever character you typed on the
keyboard appears in the accumulator.

Apple Microsoft BASIC's GET waits for user input:
2000 JSR $FD1B (GET a byte from the keyboard)

This address, $FD1B, will wait until the user types in a
character, but will not show a cursor on the screen. It will po
sition a flashing cursor at the correct position. However, it will
not print an "echo," an image of the character on the screen.

To print to the screen:

126

Borrowing from BASIC

2000 LOA #$Cl (Put " A" into the accumulator)
2002 JSR $FOEO (Print it)

If you combine these routines into a " GET and PRINT,"
you can leave out the LDA #$C1, because JSR $FDOC will
have left the value of whatever key you typed in the accu
mulator, and JSR $FDED will print it to the next available
location on screen:
2000 JSR $FOOC; (Get a keypress)
2003 JSR $FOEO; (Print it)

However, if you intend to use or analyze what's being
typed into the computer, you must also store each character
somewhere in RAM:
2000 LOY #$0; (Use Y as an offset into your buffer)
2002 LOOP JSR $FOOC
2005 STA BUFFER, Y
2008 INY; (Raise the offset)
2009 JSR $FOEO; (Echo the character to the screen)
2012 JMP LOOP; (Return to fetch the next character)

Notice that this example is an endless loop: It has no way
to exit its loop. You would need to add a CMP #141 if you
wanted to exit when the typist hit the RETURN key. You
would CMP #141:BEQ END to branch to a label called END
which you put somewhere beyond this loop, beyond that JMP
LOOP instruction in line 2012.

In any event, an ML routine within BASIC which keeps
track of the current cursor position and will help you print
things to the screen is often needed in ML programming. Ap
ple uses $FDED. You can safely use the Y register to print out
a series of letters, by having Y hold the index, the counter,
that keeps moving through the message and, simultaneously,
through the screen RAM. You could print out an entire word
or paragraph of text or graphics using the method illustrated
in Program 7-1.

If you look at a map of the ROM chips in your computer's
Reference Manual from Apple, you will discover that there are
many freeze-dried ML modules sitting in BASIC. These
routines were written by the professionals who built BASIC it
self, and their methods can seem intimidating at first. How
ever, disassembling some of these routines and picking them
apart is a good way to discover new techniques, new efficien
cies, and to see how the best ML programs are constructed.

127

Borrowing from BASIC

Studying your computer's BASIC is worth the effort, and
it's something you can do for yourself. You won't understand
everything (some shortcuts are taken which are obscure in the
extreme). Nevertheless, if you've got some time, take a look at
a particular routine and see if you can see the logic in it, its
purpose and structure.

128

.....
.

N
 "'

P
ro

g
ra

m
 7

-1

2
0

8

0
0

0

C
O

U
N

TE
R

=

 $
5

5

3
0

8

0
0

0

LE
N

G
TH

=

 1
1

O

N
E

LA
R

G
ER

TH

A
N

TH

E
T

R
U

E

LE
N

G
TH

4

0

8
0

0
0

P

R
IN

T
IT

=

 $
FD

E
D

5

0

6
0

8

0
0

0

A
0

0
0

ST

A
R

T

7
0

8

0
0

2

B
9

0E

8
0

L

O
O

P
8

0

8
0

0
5

2

0

ED

FD

9
0

8

0
0

8

C
8

1
0

0

8
0

0
9

C

0
0B

1

2
0

8

0
0

B

D
0

F
5

1
3

0

8
0

0
0

6

0

1
4

0

LD
Y

#

0

LD
A

S

T
R

IN
G

,Y

JS
R

P

R
IN

T
IT

!N

Y

C
PY

#L

EN
G

TH

B
N

E
LO

O
P

R
TS

1
5

0

8
0

0
E

ST

R
IN

G

.B
Y

T
E

"S

U
PE

R
D

U
PE

R

c:o

0 .., .., 0 ~
.

::
l

(J
Q

 --.., 0 3 O
J

)>

IR

Building a Program
Using what we've learned so far, and adding a couple of
new techniques, let's build a useful program. This example
will demonstrate many of the techniques we've discussed and
will also show some of the thought processes involved in writ
ing ML.

Among the computer's more impressive talents is search
ing. It can run through a mass of information and find some
thing very quickly. We can write an ML routine which looks
through any area of memory to find matches with anything
else. Based on an idea by Michael Erperstorfer published in
COMPUTE! magazine, this ML program will report the line
number of all the matches it finds .

Safe Havens
Before we go through some typical ML program-building
methods, let's clear up the "where do I put it?" question. ML
can't be just dropped anywhere in RAM. When you give the
starting address to LADS at the beginning of your source code
with the "'= symbol, you can't just put in any address that
pops into mind.

There are other things going on in the computer in addi
tion to your hard-won ML program. RAM is used in many
ways. There is always the possibility that you want to have a
BASIC program coresident with your ML program. If so, you'll
need to figure out where to put the ML so that it won't cover
up, or be covered up by, the BASIC. Too, BASIC needs to use
part of RAM to store some of its variables. During execution,
these variables might be written (POKEd) into your vulnerable
ML if you located it in a vulnerable zone. That would fatally
corrupt your ML.

Also, the operating system, the disk operating system,
cassette or disk loads, printers-they all use parts of RAM for
their housekeeping activities. There are other things going on
besides your ML. And you obviously can't put your ML pro
gram into ROM addresses. That's impossible. Nothing can be
POKEd into those frozen ROM addresses; they're read only
memory, no writing allowed.

Where to put ML? There are some fairly safe areas. Ad
dresses 768-1023 ($300-$3FF), also called page 3, is safe.

The "safe storage problem" is solved most easily by
knowing about this free zone, or by creating artificial space by

133

Building a Program

changing the computer's knowledge about the start or end of
your BASIC RAM storage space. When BASIC is running, it
will set up arrays and strings in RAM memory. The RAM of a
BASIC program's text (the line numbers, commands, and so
on, up to the top line number) isn't the only RAM that a
BASIC program uses. Sometimes it stores strings just after the
program itself. Sometimes it builds them down from the "top
of memory," the highest RAM address. Where are you going
to hide your ML routine if you want to use it along with a
BASIC program? How are you going to keep BASIC from
overwriting the ML code?

Misleading the Computer
If the ML is a short piece of program, you can stash it into the
safe $0300-3FF zone mentioned above. Because this safe area
is only a couple hundred bytes long, and because so many ML
routines want to use that area, it can become crowded. Worse
yet, we've been putting the word "safe" in quotes because it
isn't 100 percent safe. Apple uses this page 3 for high-res
work, for example. The alternative is to deceive the computer
into thinking that its RAM is smaller than it really is. This is
usually the best solution, unless you are writing short routines
or practicing with the examples in this book where you can
just go ahead and use $0300-03FF.

Your ML will be truly safe if your computer doesn't even
suspect the existence of some set-aside RAM. It will leave the
now-safe RAM alone because you've told it that it has less
RAM than it really does. Nothing can overwrite your ML pro
gram after you've misled your computer's operating system
about the size of its RAM memory. There are two bytes in
zero page which tell the computer what its highest RAM ad
dress is. You just change those bytes to point to a lower ad
dress. You can have your ML program do this as its first job.

These crucial bytes are 115,116 ($73,$74 hex).
To repeat, pointers such as these are stored in LSB,MSB

order. That is, the more significant byte (the one that's mul
tiplied by 256) comes second (this is the reverse of normality).
For example, $8000, divided between two bytes in this top-of
RAM pointer, would look like this:
0073 00
0074 80

134

Building a Program

As we mentioned earlier, this odd inversion of normal nu
meric representation is a peculiarity of the 6502 that you just
have to get used to. You can take comfort in the fact that the
6502 and its family of chips have far fewer peculiarities and il
logical rules than their main rivals, the Z80 family. You can be
driven to distraction with chips where the language is frequently
at odds with the way humans think. Destinations precede
sources, and so on. It's maddening. Fortunately, the 68000
chip, the chip in the Mac, is a sensible, programmer-friendly
chip, too. If you go on to learn how to work with this new
generation of chips, the 6502 family will seem both familiar
and reasonable . But do beware of the pointer inversion: The
LSB is stored in the lower byte in memory. It's a small price to
pay for an otherwise well-designed microprocessor.

Anyway, you can lower the computer's opinion of the
top-of-RAM-memory, thereby making a safe place for your
ML, by changing only the MSB. If you need one page (256
bytes), POKE 116, PEEK (116)-1. For four pages, POKE 116,
PEEK (116)-4, and so on. You don't need to fiddle around
with the LSB of the pointer. Give yourself plenty of room.

If you want to reserve safe RAM as the first act of your
ML program (so that it protects itself), just take a look at the
LADS source code in the Eval subprogram. It protects itself by
stuffing its START into the top-of-RAM pointer. Take a look at
lines 80-150 in Eval; here, LADS is setting some of its own
pointers, but is also protecting itself by inserting its START
into the BMEMTOP (BASIC memory top) variable. BMEMTOP
was defined in the Defs subprogram.

For details on how to protect ML programs in high RAM
with ProDOS, see CALL in Chapter 9.

Building the Code
Now we return to the subject at hand-building an ML pro
gram. Most people find it easiest to mentally divide a task into
several tasks, solve the individual small tasks, and then weave
them all together into a complete program. That's how we'll
attack the job of building a search program.

We will build our ML program in pieces and then tie
them all together at the end. The first phase, as always, is the
initialization. We set up the variables and fill in the pointers.
Lines 20 and 30 define two, two-byte zero page pointers. L1 L
is going to point at the address of the BASIC line we are

135

Building a Program

currently searching through; L2L points to the starting address
of the line following it.

BASIC stores four important bytes just prior to the start of
the code in each BASIC line. Take a look at Figure 8-1. The
first two bytes contain the address of the next line in the
BASIC program. Thus, when BASIC has finished evaluating
and acting upon the current line, it will already know where
to go to find the next line. This is called linking.

The second two bytes hold the line number. The end of a
BASIC line is signaled by a zero. Zero does not stand for any
thing in the ASCII code or for any BASIC command. This is
quite similar to the way we signal in ML programs that a text
message is finished-by storing a zero at the end of the text.
We discussed this earlier when we talked of delimiting an
ASCII message.

If there are three zeros in a row, it tells BASIC that it has
reached the end of the program in memory. Three zeros is a
super delimiter.

But back to our examination of the ML program. In line
40 is a definition of the zero page location which holds a two
byte number that BASIC looks at when it is going to print a
line number on the screen. We'll want to store line numbers in
this location as we come upon them during the execution of
our ML search. Each line number will temporarily sit waiting
in case a match is found. If a match is found, the program will
JSR to the BASIC ROM routine we're calling PLINE, as de
fined in line 70. This routine prints a line number on the
screen, and it will need to have the "current line number"
where it expects to find it.

Line 50 establishes that BASIC RAM starts at $0800, and
line 60 gives the address of the "print the character in the
accumulator" ROM routine. Use * = 768 to put the object code
into the traditional "safe" RAM area to store short ML
programs.

Refer to Program 8-1 to follow the logic of constructing
our search program. The search is initiated by typing in line 0
followed by a colon and the item we want to locate. It might
be that we are interested in removing all REM statements from
a program to shorten it. We would type O:REM and hit RE
TURN to enter this line into the BASIC program. Then we
would start the search by a CALL to the starting address of
the ML program: CALL 768.

136

.....
.

w

'
I

F
ig

u
re

 8
-1

.
A

 B
A

S
IC

 P
ro

g
ra

m
's

 S
tr

u
ct

u
re

N
o

th
in

g
 I

s
P

o
in

te
d

 t
o

N
ow

I
ll

~
I 0 I

 PO
IN

T
E

R
 I L

IN
E

 #
 !

B
A

SI
C

 C
O

D
E

 I 0
I PO

IN
T

E
R

 I L
IN

E

I 2N

D
 B

A
S

IC
 L

IN
E

 I 0
 I 0

I 0 I

I
I

S
ta

rt
 o

f
E

nd
 o

f
L

in
e

P
ro

gr
am

B

A
S

IC

E
n

d
s

10
 P

R
IN

T
" H

I"

2
0

E
N

D

08
00

08

0B

08
11

OO

OB
 0

8
O

A
 0

0
99

 2
2

48
 4

9
22

 0
0

11

08
 1

4
00

 8
0

00
 0

0
00

L

IN
E

?

"
H

I

"
L

IN
E

E

N
D

10

20

O

:l c: a..

:J

()
Q

Il
l ., ..., 0 ()

Q
 ..., Il
l 3

Building a Program

By entering the "sample" string or command into the
BASIC program, we simplify our task in two ways. First, if the
thing we're searching for is a string, it will be automatically
stored as the ASCII code for that string, just as BASIC stores
strings.

If it is a keyword like REM, it will be translated into the
"tokenized," one-byte representation of the keyword, just as
BASIC stores keywords.

The second problem this method solves is that our sample
is located in a known area of RAM. By looking at Figure 8-1,
you can tell that the sample's starting address will always be
the start of BASIC plus six. In Program 8-1 that means $0806
(see line 550).

Set Up the Pointers
We will have to get the address of the next line in the BASIC
program we are searching. And then we need to store it while
we look through the current line. The way that BASIC lines
are arranged, we come upon the link to the next line's address
and the line number before we see any BASIC code itself.
Therefore, the first order of business is to put the address of
the next line into our L1 L location for safekeeping. Lines
150-180 take the link found in start-of-BASIC RAM (plus one)
and move it to the storage pointer L1L.

Next, lines 190-250 check to see if we have reached the
end of the BASIC program. It would be the end if we had
found two zeros in a row as the pointer to the next line's ad
dress. If it is the end, the RTS sends us back to BASIC mode.

The subroutine in lines 260-440 saves the pointer to the
following line's address and also the current line number.

Note the double-byte addition in lines 390-440. We al
ways CLC before any addition. If adding four to the LSB (line
400) results in a carry, we want to be sure that the MSB goes
up by one during the add-with-carry in line 430. At first
glance, it seems to make no sense to add a zero in that line.
What's the point? We're doing an addition with carry; in other
words, if the carry flag has been set up by the addition of four
to the LSB in line 400, then the MSB will have one added to
it. That's the carry. The carry flag makes this happen.

138

Building a Program

First Characters
When you're searching for something, say, your car in a park
ing lot, you look for something distinctive. You might search
for the color blue, or perhaps a plastic flower that you've at
tached to the antenna. You certainly don't look at each entire
car, at the hood, the wheels, the windows, the size, the color,
etcetera, etcetera. You look for a single attribute; then, if the
car is blue, you compare other attributes to see if it is indeed
entirely the same as yours.

Likewise, it's better just to compare the first character in a
word against each byte in the searched memory than to try to
compare the entire sample word. If you are looking for the
word MEM, you don't want to stop at each byte in memory
and see if M-E-M starts there. Just look forM's. When you
come upon an M, then go through the full string comparison.
If line 490 finds a first-character match, it transfers the pro
gram to the subroutine labeled SAME (line 520) which will
perform a thorough comparison.

On the other hand, if the routine starting at line 460
comes upon a zero (line 470), it knows that the BASIC line
has ended (all BASIC lines end with zero, and zero is not used
in any other way within a BASIC program). Our search pro
gram then goes down to STOPLINE (line 610) which puts the
"next line" address pointer into the "current line" pointer and
the whole process of reading a new BASIC line begins anew.

If, however, a perfect match was found (line 560 found a
zero at the end of the O:REM line, showing that we had come
to the end of the sample string), we go to PERFECT and it
makes a JSR to print out the line number (line 660). The PER
FECT subroutine bounces back (RTS) to STOPLINE which re
places the "current line" (Ll L) pointer with the "next line"
pointer (L2L).

Then we JMP back to READLINE which, once again, pays
very close attention to zeros to see if the whole BASIC pro
gram has ended with a pair of zeros. We have now returned
to the start of the main loop of this ML program.

This all sounds more complicated than it is. If you've fol
lowed it so far, you can see that there is enormous flexibility
in constructing ML programs. If you want to put the
STOPLINE segment before the SAME subroutine-go ahead.

It is quite common to see a structure like this:

139

Building a Program

Definitions
SCREEN = $0400
Initialization
LOA #15
STA $83
Main Loop

START JSR 1
JSR 2
JSR 3

BEQ START (Until some index runs out)
RTS (To BASIC)
Subroutines
1
2 (Each ends with RTS back to the Main Loop)
3
DATA
Table 1
Table 2
Table 3

These are the main subdivisions of machine language pro
grams. If you use this structure, you will find that it simplifies
locating the different parts of a program and it also prevents
nonprogram data (such as tables, messages, definitions) from
getting mixed in with the program code proper. LADS is de
signed using this nearly universal format. Since all but the
shortest programs will have defined variables, initialization, a
main loop, a cluster of subroutines, and, finally, a collection of
data tables, why not organize all your programs in this simple,
straightforward, and sensible way?

There is a BASIC loader program which will POKE in the
ML for you if you don't want to assemble the source code.
Remember from Chapter 2 that a loader is a BASIC program
that creates an ML program. It POKEs numbers that are held
in DATA statements. These numbers form the ML. Once you
have entered and run the loader, you could examine the
resulting ML program by using the Apple built-in monitor.

Use CALL 768 to activate the program; that's where it sits
in RAM when it's POKEd from the BASIC loader or created
via an assembler.

As your skills improve, you will likely begin to appreciate,
and finally embrace, the extraordinary freedom that ML con
fers on the programmer.

At first, learning ML can seem fraught with apparently

140

Building a Program

endless obscure tricks and rules. It can even seem menacing,
beyond your understanding. It's this way with every new lan
guage because the words are still new, still odd.

Everyone, this author included, passes through this
(surprisingly brief) sense of dread. Once you know how to tell
your computer, directly in its language, how to print some
thing on the screen, you don't need to relearn this trick.
Things fall into place. It won't take as long as it might now
seem for you to begin to grasp the relatively few novelties in
volved when programming in ML. ML isn't the theory of
relativity; it's no more difficult than BASIC. It's just a new
vocabulary for the same programming techniques you've been
using with BASIC.

And this brief sensation, this brief confusion, is a very
small price to pay for the flights you will soon be taking
through your computer. Work at it. Try things. Learn how to
find your errors . It's not circular-there will be steady ad
vances in your understanding. One day soon, you'll be able to
easily turbocharge your BASIC programs with ML; to write
convenient, custom utilities like our search routine; and to do
pretty much anything you could want to do with your machine.

141

.....

P
ro

gr
am

 8
-1

.
Se

ar
ch

 S
ou

rc
e

C
od

e
o:

J
~

c:
N

0.

..
1

4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

:::1

1
5

D

E
F

IN
E

V

A
R

IA
B

L
E

S
B

Y

G
IV

IN
G

TH

EM

L
A

B
E

L
S

.
()

Q

1
6

O

J

2Q
J

0
3

0
0

L

lL

=

$
F

9

\:
)

..,
3

0

Q
J3

00

L
2

L

=

$F
B

0 ()
Q

4Q
J

0
3

0
0

FO

U
N

D

=

 $
7

5

.., OJ

5
0

0

3
0

0

B
A

S
I C

=

 $
0

8
0

0

3
6

0

0
3

0
0

P

R
IN

T

=

 $F
D

E
D

7

0

0
3

0
0

P

L
IN

E

=

 $
E

D
20

P

R
IN

T

L
IN

E

8

0

9
0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
0

0

IN
IT

IA
L

IZ
E

P

O
IN

T
E

R
S

11

Q
J

1
5

0
 0

3
0

0

A
D

0

1

0
8

LO

A

B
A

S
IC

+
l

1
6

0

0

3
0

3

8
5

F

9

S
T

A

L
lL

1

7
0

0

3
0

5

A
D

0

2

0
8

L

O
A

B

A
S

IC
+

2
1S

f!J

0
3

0
8

a

s
FA

S

T
A

L

1L
+

1
1

8
5

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
8

6

SU
B

R
O

U
T

IN
E

TO

C

H
E

C
K

FO

R

2
Z

E
R

O
S

.
1

8
7

IF

W

E
D

O
N

•T

F
IN

D

T
H

E
M

,
W

E
A

R
E

N

O
T

1
8

8

Y
ET

A

T
TH

E
EN

D

O
F

T
H

E

PR
O

G
R

A
M

.
1

8
9

1

9
0

 0
3

0
A

A

0
0

0

R
E

A
D

L
IN

E

LO
Y

#

0

2Q
J0

0

3
0

C

B
1

F
9

LO

A

<
L

lU
,

Y

2
1

0

0
3

0
E

0

0

0
6

B

N
E

G

O
O

N

2
2

0

0
3

1
0

ca

IN

Y

23
Q

J
0

3
1

1

B
1

F
9

LO

A

<
L

lU
,Y

2

4
0

0

3
1

3

0
0

0

1

B
N

E

G
O

O
N

2

5
0

0

3
1

5

6
0

EN

D

R
T

S

R
ET

U
R

N

T
O

B

A
S

I C

2
5

1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2:
52

S

U
B

R
O

U
T

IN
E

TO

U

PD
A

T
E

P

O
IN

T
E

R
S

TO

T

H
E

N

E
X

T

L
IN

E

2
S

3

A
N

D

S
T

O
R

E

T
H

E

C
U

R
R

E
N

T

L
IN

E

N
U

M
B

ER

IN

C
A

SE

W
E

2:
54

F

IN
D

A

M

A
TC

H

A
N

D

N
E

E
D

TO

P

R
IN

T

T
H

E

L
IN

E

#
.

2
S

S

A
L

S
O

,
W

E
A

D
D

4

T
O

T

H
E

C

U
R

R
E

N
T

L

IN
E

P

O
IN

T
E

R

SO

TH
A

T
2

S
6

W

E
A

R
E

P

A
S

T

T
H

E

L
IN

E

A

N
D

"P

O
IN

T
E

R
-T

O
-N

E
X

T
-L

IN
E

"
2:

57

IN
F

O
R

M
A

T
IO

N
.

W
E

A
R

E

T
H

E
N

P

O
IN

T
IN

G

A
T

T
H

E

1
S

T

C
H

A
R

.
2

5
a

IN

T
H

E

C
U

R
R

E
N

T

L
IN

E

A
N

D

C
A

N

C
O

M
PA

R
E

IT

TO

T

H
E

S

A
M

P
L

E
.

2
S

9

2
6

0

0
3

1
6

A

0
0

0

G
O

O
N

LO

Y

#1
21

27

12
1

0
3

1
a

B
1

F
9

LD

A

<
L

1
L

>
, Y

G

E
T

N

E
X

T

L
IN

E

2
a
0

0

3
1

A

a
s

F
B

S

T
A

L

2
L

A

D
D

R
E

SS

A
N

D

29
12

1
0

3
1

c

c
a

IN
Y

S

T
O

R
E

IT

IN

L

2
L

3

0
0

0

3
1

D

B
1

F
9

LD

A

<
L

1
L

>
, Y

31

12
1

12
13

1F

a
s

F
C

S

T
A

L

2
L

+
1

32

12
1

0
3

2
1

c
a

IN
Y

33

12
1

0
3

2
2

B

1
F

9

LD
A

<

L
1

L
>

, Y

P
U

T

L
IN

E

3

4
0

0

3
2

4

a
s

7
S

S

T
A

FO

U
N

D

IN

ST
O

R
A

G
E

T

O
O

3S

12
1

0
3

2
6

c
a

IN
Y

IN

C

A
S

E

IT

36
12

1
0

3
2

7

B
1

F
9

LD

A

<
L

1
L

>
, Y

N

E
E

D
S

TO

B

E
37

12
1

12
13

29

a
s

7
6

S

T
A

F

O
U

N
D

+
!

P
R

IN
T

E
D

O

U
T

L
A

T
E

R

3
a
0

0

3
2

B

A
S

F
9

LD

A

L
lL

O

J
39

12
1

12
13

2D

1
a

C
L

C

M
O

V
E

FO
R

W
A

R
D

TO

F

IR
S

T

c
412

112
1

0
3

2
E

6

9

12
14

A

D
C

#$

12
14

PA

R
T

O

F

B
A

S
IC

T

E
X

T

Q
..

41
12

1
0

3
3

0

a
s

F
9

S

T
A

L

lL

<P
A

ST

L
IN

E

A

N
D

:::

l

4
2

0

0
3

3
2

A

S
F

A

LD
A

L

1
L

+
1

P

O
IN

T
E

R

TO

N
E

X
T

L

IN
E

>

()
'Q

4
3

0

0
3

3
4

6

9

121
121

A

D
C

#1

21

~

4
4

0

0
3

3
6

a
s

FA

S
T

A

L
1

L
+

1

" ""'
4

4
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0
()

'Q

4
4

2

S
U

B
R

O
U

T
IN

E

TO

C
H

E
C

K

FO
R

Z

E
R

O

<
L

IN
E

IS

F

IN
IS

H
E

D
?>

""'

.....
..

~

*'"
4

4
3

A

N
D

T

H
E

N

C
H

EC
K

1

S
T

C

H
A

R
A

C
T

E
R

IN

B

A
S

IC

L
IN

E

A
G

A
IN

S
T

3

w

.....
.

ol:
>.

ol:
>.

4
4

4

4
4

5

4
4

6

4
4

7

4
4

8

4
4

9

4:
50

4

5
1

4

6
0

4

7
0

4

8
0

4

9
0

5

0
0

:5

10

1
S

T

C
H

A
R

A
C

TE
R

IN

SA

M
PL

E

S
T

R
IN

G

A
T

L
IN

E

~
-

IF

TH
E

1S
T

C

H
A

R
A

C
T

E
R

S
M

A
TC

H
,

W
E

M
O

V
E

TO

A
 F

U
L

L

S
T

R
IN

G

C
O

M
PA

R
IS

O
N

IN

TH

E
SU

B
R

O
U

T
IN

E

C
A

L
L

E
D

"S

A
M

E
".

IF

1S

T

C
H

A
R

S.

D
O

N
"

T

M
A

TC
H

,
W

E
R

A
IS

E

TH
E

"Y
"

C
O

U
N

TE
R

A

N
D

C

H
EC

K

FO
R

A

M

A
TC

H

IN

T
H

E

2N
D

C

H
A

R
.

O
F

TH
E

C
U

R
R

EN
T

B
A

S
IC

L

IN
E

"S

T
E

X
T

.

~
3
3
8

0
3

3
A

0

3
3

C

0
3

3
E

0

3
4

1

0
3

4
3

0

3
4

4

A
~

0
0

81

F

9

F
~

lC

CD

0
6

F

0

0
4

C

8

0
8

4C

3A

0
3

LO
O

P
LD

Y

#
0

LD

A

B
EQ

C

M
P

B
EQ

IN

Y

JM
P

<
L

lU
,

Y

S
T

O
P

L
IN

E

B
A

S
IC

+
6

SA
M

E

LO
O

P

~

M
EA

N
S

L
IN

E

F
IN

IS
H

E
D

SA

M
E

A
S

1S
T

SA

M
PL

E

C
H

A
R

?
Y

E
S

?
C

H
EC

K

W
H

O
LE

S

T
R

IN
G

N

O
?

C
O

N
T

IN
U

E

SE
A

R
C

H

:5
11

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

:5
12

5

1
3

:5

14

5
1

5

:5
16

5

1
7

5

1
8

5

1
9

SU
B

R
O

U
T

IN
E

TO

LO

O
K

A

T
E

A
C

H

C
H

A
R

A
C

TE
R

IN

B

O
TH

T

H
E

SA

M
PL

E

<
L

IN
E

0

)
A

N
D

T

H
E

TA

R
G

ET

<C
U

R
R

EN
T

L
IN

E
>

TO

S

E
E

IF

T

H
E

R
E

IS

A

 P
E

R
F

E
C

T

M
A

TC
H

.
Y

K

E
E

P
S

TR

A
C

K

O
F

T
A

R
G

E
T

.
X

IN

D
E

X
E

S
SA

M
PL

E
.

IF

W
E

F
IN

D

A
 M

IS
M

A
TC

H

B
E

FO
R

E

A
 L

IN
E

-E
N

D

Z
E

R
O

,
W

E
FA

L
L

TH

R
O

U
G

H

TO

L
IN

E

5
9

0

A
N

D

JU
M

P
B

A
C

K

U
P

TO

4
6

0

W
H

ER
E

W
E

C
O

N
T

IN
U

E

O
N

L

O
O

K
IN

G

FO
R

1S

T

C
H

A
R

.
M

A
TC

H
ES

IN

C

U
R

R
E

N
T

L

IN
E

.

:5
20

0

3
4

7

A
2

0
0

:5

30
 0

3
4

9

E
8

:5
40

0

3
4

A

C
8

5
5

0

0
3

4
B

BD

0

6

0

8

:5
60

0

3
4

E

F
0

0

7

5
7

0

0

3
5

0

D
1

F
9

5

8
0

0

3
:5

2

F
0

F

5

5
9

0

0

3
5

4

4C

3A

0
3

SA
M

E
C

O
M

PA
R

E
LD

X

#
0

IN

X

IN
Y

LD

A

B
EQ

C

M
P

B
EQ

JM

P

C
O

M
PA

R
E

SA
M

PL
E

TO

T

A
R

G
E

T

B
A

S
IC

+
6

,X

P
E

R
F

E
C

T

<
L

1L
>

,Y

C
O

M
PA

R
E

L
O

O
P

L
IN

E

E
N

D
S

SO

P
R

IN
T

C
O

N
T

IN
U

E

C
O

M
PA

R
E

N
O

M

A
TC

H

O
:l c Q
..

::::
l

C1
Q s:IJ

""
'0 ., 0 C1

Q ., s:IJ
 3

6
0

0
 0

3
5

7

2
0

 6
5

 0
3

PE

R
FE

C
T

JS

R

PR
IN

T
O

U
T

6

0
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

6
0

2

SU
B

R
O

U
T

IN
E

TO

R

EP
LA

C
E

"C
U

R
R

E
N

T

L
IN

E
"

PO
IN

T
E

R

6
0

3

W
IT

H

TH
E

"N
E

X
T

L

IN
E

"
PO

IN
T

E
R

W

E
SA

V
ED

IN

TH

E
6

0
4

SU

B
R

O
U

T
IN

E

ST
A

R
T

IN
G

A

T
L

IN
E

2

6
0

.
6

0
5

TH

EN

JU
M

P
B

A
C

K

TO

TH
E

ST
A

R
T

W

IT
H

TH

E
C

H
EC

K

FO
R

TH

E
6

0
6

E

N
D

-O
F-

PR
O

G
R

A
M

D

O
U

B
LE

Z

E
R

O
.

T
H

IS

IS

TH
E

LA
ST

6

0
7

SU

B
R

O
U

T
IN

E

IN

TH
E

M
A

IN

LO
O

P
O

F
TH

E
PR

O
G

R
A

M
.

6
0

8

6
1

0

03
5A

A

S
FB

ST

O
PL

IN
E

LO

A

L
2L

6

2
0

0

3
5

C

8
5

 F
9

ST

A

L
1L

6

3
0

 0
3

5
E

A

S
FC

LO

A

L
2L

+
1

6
4

0
 0

3
6

0

8
5

 F
A

ST

A

L
1L

+
1

6
5

0
 0

3
6

2

4C

0A

0
3

JM

P
R

E
A

D
L

IN
E

65

1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

6
5

2

SU
B

R
O

U
T

IN
E

TO

P

R
IN

T

O
U

T
A

 B
A

S
IC

L

IN
E

N

U
M

B
ER

.
6

5
3

T

H
IS

RO

M

R
O

U
T

IN
E

P

R
IN

T
S

TH

E
N

U
M

BE
R

A
T

TH
E

6
5

4

N
EX

T
C

U
R

SO
R

P

O
S

IT
IO

N

ON

TH
E

SC
R

E
E

N
.

6
5

5

TH
EN

W

E
PR

IN
T

A

 B
LA

N
K

SP

A
C

E

6
5

6

A
N

D

R
ET

U
R

N

TO

L
IN

E

6
1

0

TO

C
O

N
TI

N
U

E
O

N

W
IT

H

6
5

7

TH
E

M
A

IN

LO
O

P
A

N
D

FI

N
D

A

N
Y

M

O
RE

M

A
TC

H
ES

.
6

5
8

6

6
0

 0
3

6
5

2

0

2
0

ED

PR

IN
T

O
U

T

JS
R

P

L
IN

E

6
7

0
 0

3
6

8

A
9

A
0

LO
A

#$

A
0

T
H

IS

IS

A
 B

LA
N

K

6
8

0

03
6A

2

0

ED

FD

JS
R

PR

IN
T

TO

PR

IN
T

B

ET
W

EE
N

L

IN
E

#

•s

6
9

0
 0

3
6

0

6
0

R

T
S

6
9

1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

6
9

2

CO
M

B
.......

=
 7

6
8

~

(J
l

o:
l

c 0.
..

:::J

O
Q

llJ

""
0 ..., 0 O

Q
 ..., llJ
 3

~

P
ro

gr
am

 8
-2

.
S

ea
rc

h
B

A
S

IC
 L

oa
de

r
0

\

1
0

FO

R

X
 =

 7
6

8

TO

8
8

0
:

R
EA

D

A
:C

K

=
 C

K

+
 A

:
PO

K
E

X

,A

:
N

EX
T

X

2
0

IF

CK

<

>

1

5
7

8
6

TH

EN

P
R

IN
T

"E

R
R

O
R

IN

D

A
TA

ST

A
T

E
M

E

N
T

S
":

EN

D

1
0

0

D
A

TA

1
7

3
,1

,8
,1

3
3

,2
4

9
,1

7
3

1

1
0

D

A
TA

2

,8
,1

3
3

,2
5

0
,1

6
0

,0

1
2

0

D
A

TA

1
7

7
,2

4
9

,2
0

8
,6

,2
0

0
,1

7
7

1

3
0

D

A
TA

2

4
9

,2
0

8
,1

,9
6

,1
6

0
,0

1

4
0

D

A
TA

1

7
7

,2
4

9
,1

3
3

,2
5

1
,2

0
0

,1
7

7

1
5

0

D
A

TA

2
4

9
,1

3
3

,2
5

2
,2

0
0

,1
7

7
,2

4
9

1

6
0

D

A
TA

1

3
3

,1
1

7
,2

0
0

,1
7

7
,2

4
9

,1
3

3

1
7

0

D
A

TA

1
1

8
,1

6
5

,2
4

9
,2

4
,1

0
5

,4

1
8

0

D
A

TA

1
3

3
,2

4
9

,1
6

5
,2

5
0

,1
0

5
,0

1

9
0

D

A
TA

1

3
3

,2
5

0
,1

6
0

,0
,1

7
7

,2
4

9

2
0

0

D
A

TA

2
4

0
,2

8
,2

0
5

,6
,8

,2
4

0

2
1

0

D
A

TA

4
,2

0
0

,7
6

,5
8

,3
,1

6
2

2

2
0

D

A
TA

0

,2
3

2
,2

0
0

,1
8

9
,6

,8

2
3

0

D
A

TA

2
4

0
,7

,2
0

9
,2

4
9

,2
4

0
,2

4
5

2

4
0

D

A
TA

7

6
,5

8
,3

,3
2

,1
0

1
,3

2

5
0

·D
A

TA

1
6

5
,2

5
1

,1
3

3
,2

4
9

,1
6

5
,2

5
2

2

6
0

D

A
TA

1

3
3

,2
5

0
,7

6
,1

0
,3

,3
2

2

7
0

D

A
TA

3

2
,2

3
7

,1
6

9
,1

6
0

,3
2

,2
3

7

2
8

0

D
A

TA

2
5

3
,9

6
,2

5
4

,2
5

4
,2

O
J c: a.
. s· ()

Q

tu
 " .., 0 ()

Q
 .., tu
 3

ML Equivalents of
BASIC Commands
What follows is a small dictionary, arranged alphabetically, of
the major BASIC commands. If you need to accomplish some
thing in ML-TAB, for example-look it up in this chapter to
see one way of doing it in ML. Often, because ML is so much
freer than BASIC, there will be several ways to go about a
given task.

Of these choices, one might work faster, one might take
up less memory, and one might be easier to program and
understand. When faced with this choice, I have selected ex
ample routines for this chapter which are easier to program
and understand.

At ML's extraordinary speeds, and with the large amounts
of RAM memory available to today's computerists, it will be
rare that you will need to opt for velocity or memory
efficiency.

CALL
This is BASIC's way of using a piece of ML code, an ML rou
tine, as a subroutine. The only difference between CALL and
GOSUB is that the computer is alerted to the fact that it needs
to switch mental gears: The next series of instructions will be
ML. In other words, the computer shouldn't try to interpret
what it finds at the CALL address as more BASIC instructions.
When it comes upon an RTS instruction in the ML program
which was not matched by a previous JSR instruction, it will
then revert to the BASIC program and pick up where it left
off, following the CALL instruction.

There are times when you want to write in ML and use it
as a subroutine for a BASIC program. This can greatly speed
up the execution of the BASIC program. To put an ML pro
gram in RAM where it will be safe from BASIC's dynamic
variable storage (where it won't be overwritten by BASIC),
you boot DOS and then lower the HIMEM pointer ($73,74) to
create some space in high RAM of which the computer is "un
aware." HIMEM contains the address (in the usual LSB,MSB
format discussed earlier) beyond which BASIC is forbidden to
intrude.

149

CLR

After resetting this pointer, you are free to load in your
ML program into the now-safe RAM between HIMEM and the
true highest RAM byte in your computer.

The new ProDOS system, however, requires a slightly
more complicated way of setting aside safe RAM. In effect,
you access a routine which will lower the location of
ProDOS's buffers and then you can put your ML program be
tween these buffers and the ROM operating system starting
location.

You put the number of pages (256-byte increments) of
RAM memory you will require for your ML into the accu
mulator and then JSR $BEF5. When finished, this subroutine
returns the MSB of the start address of your safe, reserved
block of RAM. As an example, if you LDA #l :JSR $BEF5, you
will have secured 256 bytes of RAM for your ML program be
tween $9900 and $99FF. One page.

Short ML routines can always be stored in the page be
tween $0300 and $03FF without any special preliminaries.

CLR
In BASIC, this clears all variables . Its primary effect is to reset
pointers. It is a somewhat abbreviated form of NEW since it
does not "blank out" your program, as NEW does.

CLR, in fact, is rarely used.
We might think of CLR, in ML, as the initialization phase

of a program which erases (fills with zeros) the memory loca
tions you've set aside to hold your ML flags, pointers,
counters, and so on. You can see an example of this in the
LADS source code in Eval between lines 30 and 70.

Before an ML program runs, you will usually want to be
sure that some of these variables are set to zero. If they are
in different places in memory, you will need to zero them
individually:
2000 LOA #$0
2002 STA $1990 (Put zero into one of the "variables. ")
2005 STA $1994 (Continue putting zero into each byte which needs

to be initialized.)

On the other hand, if you've put all your variables to
gether at the end, the job is easy: Just loop through the list,
putting zero in each variable. BASIC sets up a group of its
variables (pointers) in zero page, so you can use a loop to zero
them out:

150

DATA

2000 LOA #$0
2002 LOY #$OF (Y will be the counter. There are 15 bytes to zero

out in this example.)
2004 STA $199,Y (The highest of the 15 bytes)
2007 DEY
2008 BNE $2004 (Let Y count down to zero, BNEing until Y is zero,

then the Branch if Not Equal will let the program
fall through to the next instruction at $200A.)

CONT
This BASIC command allows your program to pick up where
it left off after a STOP command (or after hitting the system
break key combination). You might want to look at STOP, be
low. In ML, you can't usually get a running program to stop
with the break (or STOP) key. If you like, you could write a
subroutine which checks to see if a particular key is being held
down on the keyboard and, if it is, BRK:

3000 LOA $COOO; (The "key currently pressed" location)
3002 CMP #$80 (This is the RETURN key on your machine, but

you'll want CMP here to the value that appears in
the "currently pressed" byte for the key you select
as your STOP key. It could be any key. If you
want to use A for your "stop" key, try CMP
#$Cl.)

3004 BNE $3007 (If it's not your target key, jump toRTS.)
3006 BRK (If it is the target, BRK.)
3007 RTS (Back to the routine which called this subroutine)

The 6502 places the program counter (plus two) on the
stack after a BRK.

A close analogy to BASIC is the placement of BRK within
ML code to cause a halt to program execution. Then, after
examining registers or variables or buffers (places that hold in
put or output before it's received or sent), you can restart your
program by using the monitor G (go) command. G is the
equivalent of CONT.

DATA
In BASIC, DATA announces that the items following the word
DATA are to be considered pieces of information (as opposed
to being thought of as parts of the program). That is, the pro
gram will probably use this data, but the data are not BASIC
commands. In ML, such a zone of "nonprogram" is called a

151

DATA

table. It is unique only in that the program counter never starts
trying to run through a table to carry out instructions. This
never happens because you never transfer program control to
anything within a table. (This is similar to the way that BASIC
slides right over DATA lines.) There are no meaningful
instructions inside a table. To see what a table looks like and
what it does, see the Tables subprogram in the LADS source
code in this book.

To keep things simple, tables of data are usually stored
together either above or below the program. Usually, tables
are stored above, at the very end of the ML program. (See Fig
ure 9-1.)

Tables can hold messages that are to be printed to the
screen, hold variables, hold flags (temporary indicators), and
so on. If you disassemble your BASIC in ROM, you'll find the
words STOP, RUN, LIST, and so forth, gathered together in a
table. You can suspect a data table when your disassembler
starts giving lots of error messages. It cannot find groups of
meaningful opcodes within tables.

Figure 9-1. Typical ML Program Organization

DATA

INITIALIZATION

MAIN
LOOP

SUBROUTINES

DATA

152

Bottom of Memory

Start of ML Program

END

DIM
With its automatic string handling, array management, and er
ror messages, BASIC makes life easy for the programmer.

The price you pay for this hand-holding is that it slows
down the program when it's run. In ML, the DIMensioning of
space in memory for variables is not explicitly handled by the
computer. You must make a note that you are setting aside
memory from $6000 to $6500, or whatever, to hold variables.
It helps to make a simple map of this "dimensioned" memory
so that you know where permanent strings, constants, variable
strings, and variables, flags, and so on, are within the dimen
sioned zone. Because this set-aside memory will not contain
meaningful ML instructions, it is generally placed at the end of
the actual ML program. With LADS, you can make Tables the
final file in your chain of files. That will automatically put the
tables at the end of your program proper. To define data
(string or numeric), you use the .BYTE instruction; .BYTE auto
matically makes space, like DIM.

A particular chunk of memory (where, and how much, is
up to you) is set aside; that's all. You don't write any instruc
tions in 6502 ML to set aside the memory; you just start using
the .BYTE pseudo-op and it fills in your tables.

END
There are several ways to make a graceful exit from ML pro
grams. You can use the "warm start" address in the map of its
BASIC locations and JMP to that address. Or you can go to
the "cold start" address.

If you went into the ML from BASIC with a CALL, you
can return to BASIC with an RTS. Recall that every JSR
matches up with its own RTS. Every time you use a JSR, it
shoves its "return here" address onto the top of the stack. If
the computer finds another JSR (before any RTS), it will shove
another return address on top of the first one. So, after two
JSRs, the stack contains two return addresses. When the first
RTS is encountered, the top return address is lifted from the
stack and put into the program counter so that the program
returns control to the current instruction following the most
recent JSR.

When the next RTS is encountered, it pulls its appropriate
return (waiting for it on the stack), and so on. The effect of a

153

END

CALL from BASIC is like a JSR from within ML. The return
address to the correct spot within BASIC is put on the stack.
In this way, if you are within ML and there is an RTS (with
out any preceding JSR), what's on the stack had better be a re
turn-to-BASIC address left there by CALL when you first went
into ML.

Another way to END is to put a BRK in your ML code.
This drops you into the machine's monitor. Normally, you use
BRKs during program debugging. When the program is fin
ished, though, you would not want this ungraceful exit any
more than you would want to end a BASIC program with
STOP.

In fact, many ML programs, if they stand alone and are
not part of a larger BASIC program, never END at all. They
are an endless loop. The main loop just keeps cycling over
and over. A game will not end until you turn off the power.
After each game, you see the score and are asked to press a
key when you are ready for the next game. Arcade games
which cost a quarter will ask for another quarter, but they
don't end. They go into " attract mode." The game graphics
are left running onscreen to interest new customers.

An ML word processor will cycle through its main loop,
waiting for keys to be pressed, words to be written, format or
disk instructions to be given. Here, too, it is common to find
that the word processor takes over the machine, and you can
not stop it without turning the computer off. Among other
things, such an endless loop protects software from being pi
rated. Since it takes control of the machine, how is someone
going to save it or examine it once it's in RAM? Some such
programs are "auto-booting" in that they start themselves run
ning as soon as they are loaded into the computer.

BASIC itself an ML program, also loops endlessly until
you power down. When a program is running, all sorts of
things are happening. BASIC is an interpreter, which means
that it must look up each word (like INT) it comes across
during a RUN (interpreting, or translating, its meaning into
machine-understandable JSRs). Then, BASIC executes the cor
rect sequence of ML actions from its collection of routines.

In contrast to BASIC RUNs, BASIC spends 99 percent of
its time waiting for you to program with it. This waiting for
you to press keys is its endless loop, a tight, small loop
indeed.

154

FOR-NEXT

It would look like our "which key is pressed?" routine:
2000 LOA 49168; THIS SETS THE LEFTMOST BIT IN 49152 TO 0
2003 LOOP LOA 49152; THE APPLE'S "WHICH KEY IS BEING

PRESSED" LOCATION
2006 BMI LOOP; IF THE LEFTMOST BIT IS OFF, KEEP

LOOPING

If the BMI is triggered, this means that the LDA found the
leftmost bit off in address 49152 and, thus, no key has been
pressed. So, we keep looping until the value in address 49152
has the leftmost bit on. This setup is the same as GET in
BASIC because not only does it wait until a key is pressed, but
it also leaves the value of the key in the accumulator when it's
finished.

FOR-NEXT
Everyone has had to use delay loops in BASIC (FOR T = 1
TO 1000: NEXT T) which are also tight loops, sometimes
called do-nothing loops because nothing happens between the
FOR and the NEXT except the passage of time. For example,
when you need to let the user read something on the screen,
it's sometimes easier just to use a delay loop than to say,
"When finished reading, press any key."

In any case, you'll need to use delay loops in ML just to
slow ML itself down. In a game, the ball can fly across the
screen. It can get so fast, in fact, that you can't see it. It just
"appears" when it bounces off a wall. And, of course, you'll
need to use loops in many other situations. Loops of all kinds
are fundamental programming techniques.

In ML, you don't have that convenient little counter (T in
the BASIC FOR-NEXT example above) which decides when to
stop the loop. When T becomes 1000, go to the instructions
beyond the word NEXT. Again, you must set up and check
your counter variable by yourself.

If the loop is going to be smaller than 255 cycles, you can
use the X register as the counter (Y is saved for the very useful
indirect indexed addressing discussed in Chapter 4: LDA
(96),Y). Anyway, by using X, you can count to 200 by:
2000 LOX #200 (or $C8 hex)
2002 DEX
2003 BNE $2002

155

FOR-NEXT-STEP

For loops involving counters larger than 255, you'll need
to use two bytes to count down, one going from 255 to 0 and
then clicking (like a gear) the other (more significant) byte.

To count to 512:
2000 LOA #$2
2002 STA $0

2004 LOX #$0

2006 OEX
2007 BNE $2006

(Put the 2 into address 0, our MSB, most signifi
cant byte, counter.)
(Set X to 0 so that its first DEX will make it 255 .
Further DEXs will count down again to 0, when it
will click the MSB down from 2 to 1 and then fi
nally 0.)

2009 DEC $0 (Click the number in address 0 down 1.)
200B BNE $2006

Here we used the X register as the LSB (least significant
byte) and address 0 as the MSB. Why use address 0? Why
not? Use any RAM byte you want that won't interfere with
other things going on in the computer.

We could use addresses 0 and 1 to hold the MSB /LSB if
we wanted. This is commonly useful because then address 0
(or some available, two-byte space in zero page) can be used
for LDA ($0),Y. You would print a message to the screen using
the combination of a zero page counter and LDA (zero page
address),Y.

FOR-NEXT -STEP
Here you would just increase your counter (usually X or Y)
more than once. To create FOR I = 100 TO 1 STEP -2 you
could use:

2000 LOX # 100
2002 DEX
2003 DEX
2004 BNE $2002

For larger numbers you create a counter which uses two
bytes, working together, to keep count of the events. Follow
ing our example above for FOR-NEXT, we could translate FOR
I = 512 TO 0 STEP -2:

2000 LOA #$2
2002 STA $0
2004 LOX #$0

156

(This is going to hold our MSB.)
(X is holding our LSB.)

GET

2006 DEX
2007 DEX (Here we click X down a second time, for - 2.)
2008 BNE $2006
200ADEC $0
200c BNE $2006

To count up, use the CoMPare instruction. FOR I = 1 TO
50 STEP 3:
2000 LDX #$0
2002 INX
2003 INX
2004 INX
2005 CPX #$50
2007 BNE $2002

For larger STEP sizes, you can use a nested loop within
the larger one. This would avoid a whole slew of INXs. To
write the ML equivalent of FOR I = 1 TO 50 STEP 10:
2000 LDX #$0
2002 LDY #$0
2004 INY
2005 CPY #$0A
2007 BNE $2004
2009 CPX #$32
200B BNE $2002

GET
Every computer must have that important "which key is being
pressed?" address, where it holds the value of a character
typed in from the keyboard. To GET, you create a very small
loop which just keeps testing this address. In the Apple:
2000 LDA $COOO ("Which key pressed?" Note: this is in hex.)
2003 BPL $2000 (If the seventh bit of $COOO is clear-meaning no

key was pressed-the BPL branch instruction is trig
gered and we jump back to keep waiting until the
seventh bit in $COOO is set which, on the Apple,
means a key was struck on the keyboard.)

2005 STA $COlO (Clears the keyboard)
2008 AND #$7F (To give the correct character value)

This routine will wait until a key is pressed. For most
programming purposes, you want the computer to wait until a
key has actually been pressed. However, if your program is
supposed to fly around doing things until a key is pressed,

157

GOSUB

you might use the above routine without the loop structure.
Just use a CMP to test for the particular key that would stop
the routine and branch the program somewhere else when a
particular key is pressed. This flexibility would never be
permitted in BASIC, but that's one of the signal advantages of
ML. How you utilize and construct a GET -type command in
ML is up to you, tailored to each application.

GOSUB
This is nearly identical to BASIC in ML. Use JSR $NNNN and
you will go to a subroutine at address NNNN instead of a line
number as in BASIC. (NNNN just means that you can sub
stitute any hex number for the NNNN that you want to. This
is a form of math shorthand.) LADS allows you to give labels,
names to JSR to, instead of addresses. A simple assembler like
the one in the monitor does not allow labels. You are respon
sible (as with DATA tables, variables, and so on) for keeping a
list of your subroutine addresses and the parameters involved if
you're not using LADS.

Parameters are the number or numbers handed to a sub
routine to give it information it needs. Quite often, BASIC
subroutines work with the variables already established within
the BASIC program. In ML, though, managing variables is up
to you. Subroutines are useful because they can perform tasks
repeatedly without needing to be written into the body of the
program each time the task is to be carried out. Beyond this,
they can be generalized so that a single subroutine can act in a
variety of ways, depending upon the variable (the parameter)
which is passed to it.

A delay loop to slow up a program could be general in
the sense that the amount of delay is handed to the subroutine
each time. The delay can, in this way, be of differing dura
tions, depending on what it gets as a parameter from the main
routine.

Let's say that we've decided to use address 0 to pass
parameters to subroutines. We could pass a delay of five cy
cles of the loop by:

158

GOTO

2000 LOA #$5
The Main Program 2002 STA $0

2004 JSR $5000

The Subroutine

5000 DEC $0
5002 BEQ $500C (If address 0 has counted all

the way down from five to
zero, RTS back to the Main
Program.)

5004 LOY #$0
5006 DEY
5007 BNE $5006
5009 JMP $5000
500C RTS

A delay which lasted twice as long as the above would
merely require a single change to the calling routine: 2000
LDA #$0A.

GOTO
In ML, it's JMP. JMP is like JSR, except the address you leap
away from is not saved anywhere. You jump, but cannot use
an RTS to find your way back. A conditional branch would be
CMP #O:BEQ 5000. The condition of equality is tested by
BEQ, Branch if EQual. BNE tests a condition of inequality,
Branch if Not Equal. Likewise, BCC (Branch if Carry is Clear)
and the rest of these branches are testing conditions within the
program.

GOTO and JMP do not depend on any conditions within
the program, so they are unconditional branches. The question
arises, when you use a GOTO: Why did you write a part of
your program that you must always (unconditionally) jump
over? GOTO and JMP are sometimes used to patch up a pro
gram, but used without restraint, they can make your program
hard to understand later. On the other hand, JMP can many
times be the best solution to a programming problem. In fact,
it is hard to imagine ML programming without it.

One additional note about JMP: It makes a program
nonrelocatable. If you later need to move your whole ML pro
gram to a different part of memory, all the JMPs (and JSRs)

159

GOTO

need to be checked to see if they are pointing to addresses
which are no longer correct. (JMP or JSR into your BASIC
ROMs will still be the same, but not those which are targeted
to addresses within the ML program.)
2000 JMP $2005
2003 LOY #$3
2005 LOA #$5

If you moved this little program up to $5000, everything
would survive intact and work correctly except the JMP $2005.
It would still say to jump to $2005, but it should say to jump
to $5005, after the move. You have to go through with a dis
assembly and check for all these incorrect JMPs. To make your
programs more "relocatable," you can use a special trick with
unconditional branching which will move without needing to
be fixed:
2000 LOY #$0
2002 BEQ $2005 (Since we just loaded Y with a zero, this Branch if

EQual to zero instruction will always be true and
cause a pseudo-JMP.)

2004 NOP
2005 LOA #$5

Various monitors and assemblers include a "moveit" rou
tine, which will take an ML program and relocate it some
where else in memory for you. On the Apple, you can go into
the monitor and type *5000<2000.2006M (you give the mon
itor these numbers in hex). The first number is the target ad
dress . The second and third are the start and end of the
program you want to move.

The best solution to relocatability, however, is LADS.
With it, you never JMP to actual addresses; rather, you JMP or
JSR or branch to labels. This way, relocating your program
couldn't be simpler. You just change the start address with * =
and reassemble. Everything is taken care of and the program
reassembles to the new location flawlessly. With LADS, the
example above is written like this:
100 JMP NEXTROUTINE
110 LOY #3
120 NEXTROUTINE LOA #5

(The numbers at the left are not addresses; they are line num
bers for your convenience when writing the program, and they
have no effect on the resulting ML code after assembly.)

160

INPUT

GR(APHICS)
JSR $FB40 switches to the graphics screen.

HOME
JSR $FC58 clears the screen and puts the cursor in the upper
left-hand corner, just like BASIC.

IF-THEN
This familiar and fundamental computing structure is accom
plished in ML with the combination CMP-BNE or any other
conditional branch: BEQ, BCC, and so forth. Sometimes, the IF
half isn't even necessary. Here's how it would look:

2000 LOA $57 (What's in address $57?)
2002 CMP #$OF (Is it $OF, 15 decimal?)
2004 BEQ $2000 (IF it is, branch up to $200D)
2006 LOA #$0A (or ELSE, put a $0A, 10 decimal, into address

$57)

(and jump over the THEN part.)
2008 STA $57
200A JMP $2011
2000LOA #$14
200F STA $57
2011

(THEN, put a $14, 20 decimal, into address $57.)

(Continue with the program)

Often, though, your flags are already set by an action,
making the CMP unnecessary. For example, if you want to
branch to $200D if the number in address $57 is zero, just
LDA $57:BEQ $200D. This works because the act of loading
the accumulator will affect the status register flags. You don't
need to CMP #0 because the zero flag will be set if a zero was
just loaded into the accumulator. It won't hurt anything to use
a CMP, but you'll find many cases in ML programming where
you can shorten and simplify your coding if you wish to. As
you gain experience, you will see these patterns and learn
how and what affects the status register flags.

INPUT
This is a series of GETs, echoed to the screen as they are
typed in, which end when the typist hits the RETURN key.
The reason for the echo (the symbol for each key typed is re
produced on the screen) is that few people enjoy typing with
out seeing what they've typed. This also allows for error

161

INPUT

correction using cursor control keys or DELETE and INSERT
keys.

To handle all of these actions, an INPUT routine must be
fairly complicated. We don't want, for example, the DELETE
to become a character within the string. We want it to im
mediately act on the string being entered during the INPUT,
to erase a mistake.

Our INPUT routine must also be smart enough to know
what to add to the string and what keys are intended only to
modify it. Here is the basis for constructing your own ML IN
PUT. It simply receives a character from the keyboard, stores
it in the screen RAM cells, and ends when the RETURN key is
pressed. We'll write this INPUT as a subroutine. That simply
means that when the 141 (Apple ASCII for carriage return) is
encountered, we'll perform an RTS back to a point just follow
ing the main program address which JSRed to our INPUT
routine:
5000 LOY #$0 (Y will act here as an offset for storing the

characters to the screen as they come in.)
5002 LOA $9E (This is the "number of keys in the keyboard

buffer" location. If it's zero, nothing has been
typed yet.)

5004 BNE $5002 (So we go back to $5002.)
5006 LOA $26F (Get the character from the keyboard buffer.)
5009 CMP #$80 (Is it a carriage return?)
500B BNE $500F (If not, continue.)
5000 RTS (Otherwise, return to the main program.)
500E STA $8000,Y (Echo it to the screen.)
500F INY
5010 LOA #$0
5012 STA $96 (Reset the "number of keys" counter to zero.)
5014 JMP $5002 (Continue looking for the next key.)

This INPUT could be much more complex. As it stands, it
will hold the string on the screen only. To save the string, you
would need to read it from screen RAM and store it elsewhere
where it will not be erased. Or, you could have it echo to the
screen, but (also using Y as the offset) store it into some safe
location where you are keeping string variables. The routine
above does not make provisions for DELETE or INSERT,
either. The great freedom you have with ML is that you can
redefine anything you want. You can softkey: define a key's
meaning via software; have any key perform any task you
want. You might even decide to use the$ key to DELETE.

162

Along with this freedom goes the responsibility for
organizing, writing, and debugging these routines.

LET

LET

Although this word is still available on most BASICs, it is a
holdover from the early days of computing. It is supposed to
remind you that statements like LET NAME = NAME + 4 is
an assignment of a value to a variable, not an algebraic equa
tion. The two numbers on either side of the equal sign, in
BASIC, are not intended to be equal in the algebraic sense.
Most people write NAME = NAME + 4 without using LET.
The function of LET applies though to ML as well as to
BASIC: We must assign values to variables.

In the Apple, for example, where the address of the
screen RAM can change depending on how much memory is
in the computer, and so on, there has to be a place where we
find out the starting address of screen RAM. Likewise, a pro
gram will sometimes require that you assign meanings to
string variables, counters, and the like. This can be part of the
initialization process, the tasks performed before the real pro
gram, your main routine, gets started. Or it can happen during
the execution of the main loop. In either case, there has to be
an ML way to establish, to assign, variables. This also means
that you must have zones of memory set aside to hold these
variables. Normally, you will store your variables as a group
at the end of an ML program.

For strings, you can think of LET as the establishment of
a location in memory. In our INPUT example above, we might
have included an instruction which would have sent the
characters from the keyboard to a table of strings as well as
echoing them to the screen. If so, there would have to be a
way of managing these strings. For a discussion on the two
most common ways of dealing with strings in ML, see Chapter
6 under the subhead "Dealing with Strings."

In general, you will probably find that you program in
ML using somewhat fewer variables than in BASIC. There are
three reasons for this:
1. You will probably not write many programs in ML like

databases where you manipulate hundreds of names, ad
dresses, and so forth . It might be somewhat inefficient to
create an entire database management program, an inventory

163

LET

program for example, in ML. Keeping track of the variables
would require careful programming. (For an example data
base manager, see LADS's Equate and Array subprograms.)

The value of ML is its speed of execution, but its
drawback is that it requires more precise programming and,
at least for beginners, can take more time to write. So, for
an inventory program, you could write the bulk of the pro
gram in BASIC and simply attach ML routines for sorting
and searching tasks within the program.

2. The variables in ML are often handled within a series of
instructions (not held elsewhere as BASIC variables are) .
FOR I = 1 TO 10 : NEXT I becomes LDY #1:INY:CPY
#10:BNE.

Here, the BASIC variable is counted for you and
stored outside the body of the program. The ML "variable,"
though, is counted by the program itself. ML has no inter
preter which handles such things. If you want a loop, you
must construct all of its components yourself.

3. In BASIC, it is tempting to assign values to variables at the
start of the program and then to refer to them later by their
variable names, as in 10 BALL = 79. Then, anytime you
want to PRINT the BALL to the screen, you could say,
PRINT CHR$(BALL). Alternatively, you might define it this
way in BASIC: 10 BALL$ = "0". In either case, your pro
gram will later refer to the word BALL. In this example we
are assuming that the number 207 will place a ball charac
ter on your screen (the letter 0).

In ML we can use variable names precisely the same way
if we are programming with an advanced assembler like
LADS. However, with an elementary assembler like the one in
the monitor, you will just LDA #207, STA (screen position)
each time. Some people like to put the 207 into their zone of
variables (that arbitrary area of memory set up at the end of a
program to hold tables, counters, and important addresses).
They can pull it out of that zone whenever it's needed. That is
somewhat cumbersome, though, and slower. You would LDA
1015, STA (screen position), assuming you had put a 207 into
this "ball" address, 1015, earlier.

Obviously a value like BALL will always remain the same
throughout a program. The ball will look like a ball in your
game, whatever else happens. So, it's not a true variable; it

164

LOAD

does not vary. It is constant. A true variable must be located in
your "zone of variables," your variable table.

It cannot be part of the body of your program itself (as in
LDA #207) because it will change. You don't know when writ
ing your program what the variable will be. So you can't use
immediate mode addressing because it might not be a #207.
You have to LDA 1015 from within your table of variables.

Elsewhere in the program you have one or more STA
1015 or INC 1015 or some other manipulation of this address
which keeps updating this variable. In effect, ML makes you
responsible for setting aside areas which are safe to hold vari
ables if you are using the monitor assembler. What's more,
you have to remember the addresses and update the variables
in those addresses whenever necessary. This is why it is so
useful to keep a piece of paper next to you when you are writ
ing ML. The paper lists the start and end addresses of the
zone of variables, the table . You write down the specific ad
dress of each variable as you write your program. LADS, of
course, makes variable zones and names automatic with the
.BYTE pseudo-op. See LADS's Tables subprogram to see how
variables (and constants) can be handled efficiently.

LIST
This is done via a disassembler. It will not have line numbers
(though, again, advanced assembler-disassembler packages
like LADS do have line numbers). You will see the address of
each instruction in memory. You can look over your work and
plan debugging strategies, where to set BRKs into problem
areas, and so on.

The most common way to list and check your work, how
ever, is to read over the source code. This does not require a
disassembler. You write LADS source code as if it were a
BASIC program and, thus, can LIST it and modify it as if it
were a BASIC program.

LOAD
The method of saving and loading an ML program varies from
computer to computer. Normally, you have several options
which can include loading from within the monitor, from
BASIC, or even from an assembler. When you finish working
on a program, or a piece of a program, on the mini-assembler

165

NEW

you will know the starting and ending addresses of your
work. Using these, you can save to tape using the W monitor
command (described in Chapter 3) or to disk using BSAVE in
the manner you would from BASIC. To LOAD, the simplest
way is just to BLOAD. (From tape, you use the monitor R
command.)

To see how to save and load from within your ML pro
grams, to write ML which itself saves and loads files, please
refer to the Open1 subprogram of LADS in Appendix D.

NEW
In Microsoft BASIC, this has the effect of resetting some point
ers which make the machine think that you are going to start
over again. The next program line you type in will be put at
the " start-of-a-BASIC-program" area of memory. Some
computers, the Atari for example, even wash memory by fill
ing it with zeros. There is no special command in ML for
NEWing an area of memory, though the monitor has a "fill
memory" option which will fill an area of memory as large as
you want with whatever value you choose.

The reason that NEW is not found in ML is that you do
not always write your programs in the same area of memory
as you do in BASIC, building up from some predictable ad
dress. You might have a subroutine floating up in high mem
ory, another way down low, your table of variables at the end,
and your main program in the middle. Or you might not.
We've been using $2000 as our starting address for many of
the examples in this book and $5000 for subroutines, but this
is entirely arbitrary.

To "NEW" in ML, just start assembling over the old
program.

Alternatively, you could just turn the power off and then
back on again . This would, however, have the disadvantage of
wiping out LADS along with your program.

ON-GOSUB
In BASIC, you are expecting to test values from among a
group of numbers: 1, 2, 3, 4, 5 The value of X must fall
within this narrow range: ON X GOSUB 100, 200, 300 ... (X
must be 1 or 2 or 3 here). In other words, you could not
conveniently test for widely separated values of X (18, 55,

166

ON-GOTO

220). Some languages feature an improved form of ON
GOSUB where you can test for any values . If your computer
were testing the temperature of your bath water:
CASE

80 OF GOSUB HOT ENDOF
100 OF GOSUB VERYHOT ENDOF
120 OF GOSUB INTOLERABLE ENDOF

END CASE

ML permits you the greater freedom of the CASE struc
ture. Using CMP, you can perform a multiple branch test:

2000 LDA $96 (Get a value, perhaps input from the keyboard)
2002 CMP #$50 (Decimal 80)
2004 BNE $2009
2006 JSR $5000 (Where you would print "hot," following our ex-

ample of CASE)
2009 CMP #$64 (Decimal 100)
200B BNE $2011
2000 JSR $5020 (Print "very hot")
2010 CMP #$78 (Decimal 120)
2012 BNE $2017
2014 JSR $5030 (Print "intolerable")

This illustrates one way that bugs get into ML-by not
cleanly entering and leaving subroutines. The potential prob
lem here is triggering the CMPs more than once. Since you
are JSRing and then will be RISing back to within the mul
tiple branch test above, you will have to be sure that the sub
routines up at $5000 do not change the value of the
accumulator. If the accumulator started out with a value of
$50 and, somehow, the subroutine at $5000 left a $64 in the
accumulator, you would print "hot" and then also print "very
hot. " One way around this would be to put a zero into the
accumulator before returning from each of the subroutines
(LDA #$0) . This assumes that none of your tests, none of your
cases, responds to a zero.

ON-GOTO
This is more common in ML than the ON-GOSUB structure
above. It eliminates the need to worry about what is in the
accumulator when you return from the subroutines. Instead of
RISing back, you jump back, following all the branch tests.

167

PLOT

2000 LOA $96
2002 CMP #$50
2004 BNE $2009
2006 JMP $5000 (Print "hot")
2009 CMP #$64
200B BNE $2010
2000 JMP $5020 (Print "very hot")
2010 CMP #$78
2012 BNE $2017
2014 JMP $5030 (Print "intolerable")
2017 (All the subroutines JMP $2017 when they finish.)

Instead of RTS, each of the subroutines will JMP back to
$2017, which lets the program continue without accidentally
"triggering" one of the other tests with something left in the
accumulator during the execution of one of the subroutines.

PLOT
You can use the BASIC PLOT command by putting the row
into the accumulator, the column into the Y register, and then
JSR to $F800. However, Program 9-1, written by my associate
Tim Victor, illustrates how you can construct an arcade-style
game from within ML by using a flexible routine in BASIC
ROM which calculates the start address of any screen line. By
then using the Y register as an offset from the line (in other
words, Y holds the number of the column you're after), you
can print and erase a character as it flies around the screen.

A great variety of playerjenemy action games can be con
structed by using the techniques illustrated in Program 9-1, so
let's look at the structure of this program.

Between lines 50 and 120, we define the labels of this
program. We're going to move a ball-like character around the
screen. The current position of the ball must be known at all
times, so we'll keep its row (on which line on the screen it
currently resides) in $FF, labeled ROW, and the column num
ber in the location called COL.

But we also need to erase the ball every time it moves to
a new location, so we create places that will hold the previous
position of the ball and we call these places OLDROW and
OLDCOL. Now we're ready to move the ball around.

In lines 150-160 we set the row to zero which means
we'll start on the first screen line, and we set the column to
zero so that we'll be in the leftmost space on that line.

168

P
ro

g
ra

m
 9

-1

1
0

*=

7

6
8

1

5

.D

B
A

L
L

.O
B

J
2

0

:
SU

B
R

O
U

T
IN

E

TO

M
O

V
E

A

B
A

LL

A
R

O
U

N
D

TH

E
S

C
R

E
E

N
.

3
0

4

0

:
5

0

B
A

SC
A

LC

=

$F
B

C
1:

C

A
L

C
U

L
A

T
E

S
TH

E
ST

A
R

T

A
D

D
R

E
SS

O

F
A

 L
IN

E

6
0

:

(W
H

EN

G
IV

E
N

TH

E
L

IN
E

'S

#)

7
0

:

8
0

B

A
SE

=

 $
2

8
:

(P
L

A
C

E

W
H

ER
E

B
A

SC
A

LC

L
E

A
V

E
S

IT
S

P

O
IN

T
E

R
)

9
0

C

O
L

=
 $

F
E

1

0
0

RO

W

=

 $
F

F
:

(W
E

SA
V

E
T

H
E

C

U
R

R
EN

T
L

IN
E

N

U
M

B
ER

H

E
R

E
)

1
1

0

O
LD

C
O

L
=

$

E
E

:
(W

E
N

EE
D

TO

E

R
A

SE

IN

T
H

IS

C
O

LU
M

N
)

·
1

2
0

O

LD
RO

W

=

$
E

F
:

(
A

N
D

IN

T

H
IS

RO

W
)

1
3

0

1
4

0

:-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
5

0

LO
A

#0

1

6
0

ST

A

R
O

W
:S

T
A

C

O
L

:
ST

A
R

T

A
T

U
PP

E
R

L

E
F

T

O
F

SC
R

E
E

N

1
6

5

1
6

6

:-
-M

A
IN

L

O
O

P,

H
O

R
IZ

O
N

T
A

L

M
O

V
E

1
6

7

1
7

0

LO
O

P
LO

A

C
O

L
:S

T
A

O

L
D

C
O

L
:

SA
V

E
P

O
S

IT
IO

N

1
8

0

IN
C

C

O
L

1
9

0

CM
P

#
3

9
:B

N
E

N

O
T

R
IG

H
T

:
A

T
R

IG
H

T

E
D

G
E

?
2

0
0

LO

A

#
0

:S
T

A

C
O

L
2

1
0

2

1
3

2

1
4

:
-
-

V
E

R
T

IC
A

L

M
OV

E
~

2
1

5

~

2
2

0

N
O

T
R

IG
H

T

LO
A

R

O
W

:S
T

A

O
LD

R
O

W
:

SA
V

E

P
O

S
IT

IO
N

'"0
 §

:::i
2

3
0

IN

C

RO
W

2

4
0

C

M
P

#
2

3
:B

N
E

N

O
T

B
O

T
T

;
A

T
B

O
TT

O
M

O

F
S

C
R

E
E

N
?

2
5

0

LO
A

#

0
:S

T
A

RO

W

2
6

3

2
6

4

;-

-
E

R
A

SE

O
LD

B

A
L

L

2
6

5

i
2

7
0

N

O
T

B
O

T
T

LO

A

O
L

D
R

O
W

:J
SR

B

A
SC

A
L

C
;

FI
N

D

S
T

A
R

T

O
F

L
IN

E

FO
R

ER

A
SE

2

8
0

LO

Y

O
L

D
C

O
L

:L
D

A

#
1

6
0

:S
T

A

(B
A

S
E

),
Y

2

8
3

2

8
4

;-

-
D

RA
W

N

EW

B
A

L
L

2

8
5

2

9
0

LO

A

R
O

W
:J

SR

B
A

SC
A

L
C

;
F

IN
D

ST

A
R

T

O
F

L
IN

E

FO
R

D

R
A

W
IN

G

3
0

0

LO
Y

C

O
L

:L
D

A

#
2

0
7

:S
T

A

(B
A

S
E

),
Y

;
ST

O
R

E
T

H
E

B

A
LL

3

0
2

3

0
3

; -

-
D

EL
A

Y

3
0

4

i
3

1
0

LO

X

#
2

0
0

3

1
5

D

L
U

P1

LO
Y

#

0

3
2

0

D
L

U
P2

IN

Y
:B

N
E

D

L
U

P2

3
3

0

IN
X

:B
N

E

D
L

U
P1

3

4
0

JM

P

LO
O

P
3

5
0

.E

N
D

PR

O
G

R
A

M
9.

1

u §

PLOT

To illustrate horizontal, vertical, and diagonal movement,
we'll cause the ball to move down the screen from the upper
left to the lower right. We'll have it move diagonally because
that's simply a combination of horizontal and vertical move
ment: one down, one to the right, one down, and so on.

The first thing we're going to do is save the current col
umn and row locations for future reference. We'll need their
locations when we go to erase the ball character after printing
a new ball lower down on the screen. Since we're going to cal
culate the new row and column (and place them into our
holding areas called ROW and COL), we need to have holding
places which remember the location we need to erase. Without
erasing the old balls, the illusion that a ball is moving would
be destroyed and the graphics on the screen would look like a
string of pearls. (Some games, however, make use of this. To
create a firing ray gun, you can print a line of characters and
then erase the line all the way from the end, all at once. This
looks like a whip shoots out and then recoils.)

In any case, after saving the column position, we then
raise it by one (INC) to move the ball one space to the right (if
we were simply moving the ball horizontally, we'd now be
ready to print the ball).

Next, we check to see if we've gone off the screen to the
right (a column number of 39 would cause us to reset our col
umn number in line 200). Then, between lines 220 and 250,
we perform the same steps for the vertical move downward by
one line.

Now we are ready to call upon the built-in ROM routine
which, if we give it the screen line we're interested in (by
putting the line number in the accumulator), will give us back
the address in RAM of that line. BASE was defined in line 80
as the location where this ROM routine leaves the address of
the BASIC line.

We get our offset out of COL and put it into the Y reg
ister, load the blank character into the accumulator, and store
the blank character at the proper line and offset the proper
number of columns from the start of that line (lines 270-280).

Then we repeat these steps to print the ball character in
the new location. Because ML is so fast, we have to delay
things before printing the next ball, so lines 310-330 simply
waste some time counting up the X and Y registers. It's here
that you would raise or lower the LDX and LDY values to

171

PRINT

adjust the speed of the game or to provide various "skill lev
els" of play.

If your game involved several things bouncing around on
the screen, you would control each of them with their own
OLDCOLjCOL, OLDROW /ROW pairs. If you needed to de
tect whether or not a player had hit a missile or had run into a
wall or some other object, you could insert the following start
ing at line 300:
300 LOY COL:LDA (BASE),Y:CMP #MISSILE:BEQ

HITSOMETHING
302 LOA #207:STA (BASE),Y:JMP DELAY
303 HITSOMETHING (Raise or lower the score or take other

action)
310 DELAY LOX #200

You would have defined the missile character as MISSILE
at the top of the program. The HITSOMETHING routine
could cause an explosion, could damage or transform the
player, or could simply affect the score-it depends on the
rules of the game.

PRINT
You could print out a message in the following way:
2000 LOY #$0
2002 LOA #$C8 (the letter H)
2004 STA $0400,Y (an address on the screen)
2007 INY
2008 LOA #$C5 (the letter E)
200A STA $0400,Y
2000 INY
200E LOA #$CC (the letter L)
2010 STA $0400,Y
2013 INY
2014 LOA #$CC (the letter L)
2016 STA $0400, Y
2019 INY
201A LOA #$CF (the letter 0)
201C STA $0400,Y

But this is clearly a cumbersome, memory-eating way to
go about it. In fact, it would be absurd to print out a long
message this way. The most common ML method involves
putting message strings into a data table and ending each mes
sage with a zero. Zero is never a printing character in comput-

172

PRINT

ers; to print the number zero, you use 176: LDA # 176, STA
$0400. So, zero itself can be used as a delimiter to let the
printing routine know that you've finished the message. In a
data table, we first put in the message "hello":
1000 $C8 H
1001 $C5 E
1002 $CCL
1003 $CCL
1004 $CF 0
1005 $0 (the delimiter)
1006 $C8 H
1007 $C9 I (another message)
1008 $0 (another delimiter)

Such a message table can be as long as you need; it holds
all your messages and they can be used again and again:

2000 LOY #$0
2002 LOA $1000,Y
2005 BEQ $200F (If the zero flag is set, it must mean that we've

reached the delimiter, so we branch out of this
printing routine.)

2007 STA $0400,Y (Put it on the screen.)
200AINY
200B JMP $2002
200F

(Go back and get the next letter in the message.)
(Continue with the program.)

Had we wanted to print HI, the only change necessary
would have been to put $1006 into the LDA at address $2003.
To change the location on the screen that the message starts
printing, we could just put some other address into $2008. The
message table, then, is just a mass of words, separated by ze
ros, in RAM memory.

The process of printing messages is even simpler using
the LADS label-based assembler and its .BYTE trick for storing
numbers or words:
10 SCREEN = $0400

100 LOY #O:MORE LOA MESSAGE,Y:BEQ FINISH
110 STA SCREEN,Y:INY:JMP MORE

with, at the end of your source code, the following line in
cluded somewhere in your table of variables, your data:
400 MESSAGE .BYTE "HELLO":.BYTE 0
410 MESSAGE! .BYTE "HI":.BYTE 0

The fastest way to print to the screen, especially if your
program will be doing a lot of printing, is to create a

173

PRINT

subroutine which will print any of your messages. It can use
some bytes in zero page (addresses 0-255) to hold the location
of the message within your table of data.

To put an address into zero page, you will need to put it
into two bytes. Addresses are too big to fit into one byte. With
LADS, you can use the#< and#> pseudo-ops to extract the
LSB and MSB of a label and thus store the address of your
message into a zero page pointer:

10 MSGADDRESS = 56
20 SCREEN = $0400

100 LOA #<MESSAGE:STA MSGADDRESS; set up pointer
110 LOA #>MESSAGE:STA MSGAODRESS+1
120 JSR PRINTMSG; go to universal print subroutine
500 PRINTMSG LOY #O:LOOP LOA (MSGAOORESS),Y:BEQ

END:STA SCREEN,Y
510 STA SCREEN,Y:INY:JMP LOOP
520 END RTS

This same trick can be done with the simple assembler in the
monitor, but it is more cumbersome.

First, you split the hex number in two. The left two digits,
$10, are the MSB (most significant byte) and the right digits,
$00, make up the LSB (least significant byte). If you are going
to put this target address into zero page at 56 (decimal):
2000 LOA #$00 (LSB)
2002 STA $56
2004 LOA #$10 (MSB)
2006 STA $57
2008 JSR $5000 (Printout subroutine)
5000 LOY #$0
5002 LOA ($56)Y
5004 BEQ $5013 (If zero, return from subroutine)
5006 STA $0400,Y (to screen)
5009 INY
500A JMP $5002
5000 RTS

One drawback to this PRINT subroutine we've con
structed is that it will always print any messages to the same
place on the screen. That $0400 is frozen into your subroutine.
Solution? Use another zero page pair of bytes to hold the
screen address. Then, your calling routine sets up the message
address as above, but also goes on to specify a screen address
as well.

174

RANDOM

We are using the Apple II's low-resolution graphics screen
for the examples in this book, so you will want to put 0 and 4
into the LSB and MSB respectively for your screen pointer.
2000 LOA #$00 (LSB)
2002 STA $56 (Set up message address)
2004 LOA #$10 (MSB)
2006 STA $57
2008 LOA #$0 (LSB)

200A STA $58 (We'll just use the next two bytes in zero page
above our message address for the screen
address.)

200C LOA #$4
200E STA $59
2010 JSR $5000
5000 LOY #$0
5002 LOA ($56)Y
5004 BEQ $5000
5006 STA ($58),Y
5009 INY
500A JMP $5002
5000 RTS

(MSB)

(If zero, return from subroutine)
(to screen)

The easiest way to print messages to particular places on
the screen, however, is to use the Apple's built-in BASIC
PRINT routine to send the characters, one by one, each to the
next cursor position onscreen. The built-in routine updates
and keeps track of the current cursor position for you. So, you
can get around having to keep a screen pointer in zero page
this way. In the example immediately above, just replace line
5006 with JSR $FDED (the Apple PRINT routine) and remove
lines 2008-200E.

RANDOM
To pick off a random number, look in address $4E or $4F
which is erratically updated whenever input is requested from
the user. The reason this works so well is that these locations
are furiously cycled whenever the computer waits for user in
put. Since the amount of time it takes you to type something
in after an INPUT prompt is thoroughly unpredictable in milli
seconds, very high quality randomness is achieved. In other
words, nothing within the machine can achieve the high de
gree of temporal randomness of the human nervous system

175

READ

organizing itself to put a finger to a particular key on a key
board. If you are looking for a random number between cer
tain limits, mask the bytes (described at the end of Chapter 6
under the subhead "Less Common Instructions").

READ
There is no reason for a reading of data in ML. Variables are
not placed into "DATA statements." They are entered into a
table when you are programming. The purpose of READ, in
BASIC, is to assign variable names to raw data, or to take a
group of data and move it somewhere, or to manipulate it into
an array of variables. These things are handled by you, not by
the computer, in ML programming.

If you need to access a piece of information, you set up
the addresses of the datum and the target address to which
you are moving it. (See the "PRINT" routines above.) As al
ways, in ML you are expected to keep track of the locations of
your variables. If you are using the simple assembler in the
monitor, you must keep a map of data locations, vectors, ta
bles, and subroutine locations. This pad of paper is always
next to you as you program in ML. It would seem that you
would need many notes, but in practice an average program
of, say, 1000 bytes could be mapped out and commented on,
using only one sheet.

Alternatively, with more sophisticated assemblers like
LADS, the labels themselves within the program will keep
track of things for you, and embedded comments serve to re
mind you of the use and function of all data.

REM
You do this on a pad of paper, too, when working with a
simple assembler. If you want to comment or make notes
about your program (and it can be a necessary, valuable
explanation of what's going on), you can disassemble some
ML code like a BASIC LISTing. If you have a printer, you can
make notes on the printed disassembly. If you don't use a
printer, make notes on your pad to explain the purpose of
each subroutine, the parameters it expects to get, and the re
sults or changes it effects.

The more sophisticated assemblers like LADS will permit
comments within the source code. As you program, you can

176

RUN

include REMarks by typing a semicolon, which is a signal to
the assembler to ignore the REMarks when it is assembling
your program. In these assemblers, you are working much
closer to the way you work in BASIC. Your REMarks remain
part of the source program and can be listed out and studied.

RETURN
RTS works the same way that RETURN does in BASIC: It
takes you back to just after the JSR (GOSUB) that sent control
of the program away from the main program and into a sub
routine . JSR pushes, onto the stack, the address which im
mediately follows the JSR itself. That address, then, sits on the
stack, waiting until the next RTS is encountered. When an RTS
occurs, the address is pulled from the stack and placed into
the program counter. This has the effect of transferring program
control back to the instruction just after the JSR.

RUN
There are several ways to start an ML program. If you are tak
ing off into ML from BASIC, you just CALL it. This acts just
like JSR and will return control to BASIC, just like RETURN
would, when there is an unmatched RTS in the ML program.
By unmatched we mean the first RTS which is not part of a
JSRJRTS pair. CALL can take you into ML either in immediate
mode (directly from the keyboard) or from within a BASIC pro
gram as one of the BASIC commands.

If you need to "pass" information from BASIC to ML, it is
easiest to use integer numbers and just POKE them into some
predetermined ML variable zone that you've set aside and
noted on your notepad. Then just CALL your ML routine,
which will look into the set-aside, POKEd area when it needs
the values from BASIC.

If you are not going between BASIC and ML, you can
start (RUN) your ML program from within the built-in mon
itor. To enter the monitor on Apple II, type CALL -151 and
you will see an asterisk as your prompt. To run an ML pro
gram from within the monitor, you type 2000G (that's address
8192 in decimal).

The Apple expects to encounter an unmatched RTS or a
BRK instruction to end the run and return control to the
monitor.

177

SAVE

SAVE
When you save a BASIC program, the computer automatically
handles it. The starting address and the ending address of
your program are calculated for you. In ML, you must know
the start address and the length (size in bytes) of the program
if you are BSAVEing. For tape users, use the W function of the
monitor (described in Chapter 3). From the Apple II monitor,
you type the starting and ending address of what you want
saved, and then W for write:

2000.2010W (Note that these commands are in hex. These
addresses are 8192 and 8208, in decimal.)

For more information about BSAVE and BLO L\.D, please
see your User's Guide.

Saving object code is automatic with LADS; you use the
.0 pseudo-op. To see how to save and load from within your
ML programs-to write ML which itself saves and loads
files-please refer to the Open 1 subprogram of LADS in
Appendix D.

STOP
BRK (or an RTS with no preceding JSR) throws you back into
the monitor mode after running an ML program. BRK is most
often used for debugging programs because you can set
"breakpoints" in the same way that you would use STOP to
examine variables when debugging a BASIC program.

TEXT
JSR $FB39. Sets text mode, just like BASIC.

String Handling
ASC
In BASIC, this will give you the number of the ASCII code
which stands for the character you are testing. ? ASC(" A") will
result in a 193 being displayed. There is never any need for
this in ML. If you are manipulating the character A in ML, you
are using ASCII already. In other words, the letter A is 193 in
ML programming. The Apple ASCII isn't standard ASCII; it
stores character symbols in nonstandard ways, so you will
need to write a special program to be able to translate to stan-

178

LEN

dard ASCII if you are using a modem or some other periph
eral which uses true ASCII.

CHR$
This is most useful in BASIC to let you use characters which
cannot be represented within normal strings, will not show up
on your screen, or cannot be typed from the keyboard.

For example, if you have a printer attached to your com
puter, you could send CHR$(13) to it, and it would perform a
carriage return. (The correct numbers which accomplish vari
ous things sometimes differ, though decimal 13-an ASCII
code standard-is nearly universally recognized as carriage re
turn, except that the Apple internal code for a carriage return
on the screen is 141 .)

Or, you could send the combination CHR$(27) CHR$(8),
and the printer would backspace.

There is no real use for CHR$ within ML. If you want to
specify a carriage return, just LDA #141. In ML, you are not
limited to the character values which can appear onscreen or
within strings. Any value can be dealt with directly.

LEFT$
As usual in ML, you are in charge of manipulating data. Here's
one way to extract a certain "substring" from the left side of a
string as in the BASIC statement LEFT$(X$,5):

2000 LOY #$5
2002 LOX #$0
2004 LOA $1000,Y
2007 STA $4000,X

200A INX
200B DEY
200C BNE $2004

LEN

(Use X as the offset for buffer storage)
(The location of X$)
(The "buffer," or temporary storage area, for the
substring)

In some cases, you will already know the length of a string in
ML. One of the ways to store and manipulate strings is to
know beforehand the length and address of a string. Then you
could use the subroutine given for LEFT$, above. More com
monly, though, you will store your strings with delimiters (ze
ros) at the end of each string. To find out the length of a
certain string:

179

MID$

2000 LOY #$0
2002 LOA $1000,Y (The address of the string you are testing)
2003 BEQ $2009 (Remember, if you LDA a zero, the zero flag is

set. So you don 't really need to use a CMP #0
here to test whether you've loaded the zero
delimiter.)

2005 INY
2006 BNE $2002 (We are not using a JMP here because we assume

that all your strings are less than 256 characters
long.)

2008 BRK (If we still haven 't found a zero after 256 INYs,
we avoid an endless loop by just BRKing out of
the subroutine.)

2009 DEY (The LENgth of the string is now in theY
register.)

We had to DEY at the end because the final INY picked
up the zero delimiter. So, the true count of the LENgth of the
string is one less than Y shows, and we must DEY one time to
make this adjustment.

MID$
To extract a substring which starts at the fourth character from
within the string and is five characters long (MID$(X$,4,5)) :

2000 LOY #$5 (The size of the substring we're after)
2002 LDX #$0 (X is the offset for storing the substring.)
2004 LOA $1003,Y (To start at the fourth character from within the

X$ located at $1000, simply add three to that ad
dress. Instead of starting our LDA,Y at $1000,
skip to $1003 . This is because the first character
is not in position 1. Rather, it is at the zeroth po
sition, at $1000.)

2007 STA $4000,X (The temporary buffer to hold the substring)
200A INX
200B DEY
20DC BNE $2004

RIGHT$
This, too, is complicated because normally we do not know
the LENgth of a given string. To find RIGHT$(X$,5) if X$
starts at $1000, we should find the LEN first and then move
the substring to our holding zone (buffer) at $4000:

180

TAB

2000 LOY #$0
2002 LOX #$0
2004 LOA $1000,Y
2007 BEQ $2000 (The delimiting zero is found .)
2009 INY
200A JMP $2004
2000 TYA (Put LEN into A so that we can subtract the

substring size from it.)
200E SEC
200F SBC #$5

(Always set carry before any subtraction.)
(Subtract the size of the substring you want to
extract.)

2011 TAY

2012 LOA $1000,Y

(Put the offset back into Y, now adjusted to
point to five characters from the end of X$.)

2015 BEQ $201E (We found the delimiter, so end.)
2017 STA $4000,X
201A INX
201B DEY
201C BNE $2012
201E RTS

TAB
This formatting instruction moves you to a specified column
on a given line. TAB 10 moves you ten spaces from the left
side of the screen.

In ML, you have more direct control over what happens:
You would just add or subtract the amount you want to TAB
over to. If you were printing to the screen and wanted ten
spaces between A and B so it looked like this:

A B

you could write:
2000 LOA #$C1 (A)
2002 STA $0400 (Screen RAM address)
2005 LOA #$C2 (B)
2007 STA $040A (You've added ten to the target address.)

Alternatively, you could add ten to the Y offset (this is
LADS format):
10 SCREEN = $0400

100 LOY #O:LDA #"A:STA SCREEN,Y:LDY #10:LDA #"B:STA
SCREEN,Y

181

TAB

An even simpler LADS method uses the + pseudo-op to
add whatever amount you wish to a label:
10 SCREEN = $0400

100 LDA #"A:STA SCREEN:STA SCREEN+10

As an example, we are writing to the screen here, but
messages that were longer than 40 characters would behave
strangely on the Apple screen because the RAM bytes which
map it are not contiguous across lines. In practice, you would
print to the screen using $FDED as described below. The
examples above, using Y as an offset, are more applicable to
storing, say, items in a database or printing hardcopy.

Nonetheless, if you are printing out many columns of
numbers and need a subroutine to correctly space your print
out, you might want to use a subroutine which will add ten to
the Y offset each time you call the subroutine:
5000 TYA
5001 CLC
5002 ADC #10
5004 TAY
5005 RTS

This subroutine directly adds ten to the Y register when
ever you JSR $5000. To accomplish TAB onscreen correctly,
however, and to take into account the entire screen, you
should use blanks (character 160) and feed them to the screen
via the built-in ROM routine which prints the number of
blanks you've requested in the X register: $F94A. So, LDX
#45:JSR $F94A will print 45 blanks. Then, send your actual
message via the PRINT subroutine in ROM: $FDED. The Ap
ple screen is not orderly, and, thus, $F94A in combination
with $FDED will do all the hard work for you. Just stuff
blanks onto the screen whenever you need to SPC forward to
format text. To tab backward, use JSR $FC10 to print a back
space character.

Related formatting routines in ROM are

JSR $FC1A; (Moves the cursor up one line)
JSR $FC66; (Moves the cursor down one line-not a carriage return

since the cursor remains in the same column)

182

6502 Instruction Set
Here are the 56 mnemonics, the 56 instructions you can give
the 6502 (or 651 0) chip. Each of them is described in several
ways: what it does, what major uses it has in ML program
ming, what addressing modes it can use, what flags it affects,
its opcode (hex/ decimal), and the number of bytes it uses up.

ADC
What it does: Adds byte in memory to the byte in the

accumulator, plus the carry flag if set. Sets the carry flag if re
sult exceeds 255 . The result is left in the accumulator.

Major uses: Adds two numbers together. If the carry flag
is set prior to an ADC, the resulting number will be one
greater than the total of the two numbers being added (the
carry is added to the result) . Thus, one always clears the carry
(CLC) before beginning any addition operation. Following an
ADC, a set (up) carry flag indicates that the result exceeded
one byte's capacity (was greater than 255), so you can chain
add bytes by subsequent ADCs without any further CLCs (see
"Multibyte Addition" in Appendix E) .

Other flags affected by addition include the V (overflow)
flag . This flag is rarely of any interest to the programmer. It
merely indicates that a result became larger than could be held
within bits 0-6. In other words, the result "overflowed" into
bit 7, the highest bit in a byte. Of greater importance is the
fact that the Z is set if the result of an addition is zero. Also
the N flag is set if bit 7 is set. This N flag is called the "neg
ative" flag because you can manipulate bytes thinking of the
seventh bit as a sign (+ or -) to accomplish "signed
arithmetic" if you want to. In this mode, each byte can hold a
maximum value of 127 (since the seventh bit is used to reveal
the number's sign). The B branching instruction's relative
addressing mode uses this kind of arithmetic.

ADC can be used following an SED which puts the 6502
into "decimal mode. " Here's an example. Note that the num
ber 75 is decimal after you SED:
SED
CLC
LOA #75
ADC #$05 (this will result in 80)
CLD (always get rid of decimal mode as soon as you've

finished)

185

A: 6502 Instruction Set

Attractive as it sounds, the decimal mode isn't of much real
value to the programmer. LADS will let you work in decimal
if you want to without requiring that you enter the 6502 's
mode. Just leave off the $ and LADS will handle the decimal
numbers for you.

Addressing Modes:

Name Format

Immediate ADC # 15
Zero Page ADC 15
Zero Page,X ADC 15,X
Absolute AOC 1500
Absolute,X AOC 1500,X
Absolute,Y ADC 1500,Y
Indirect,X ADC (15,X)
Indirect,Y ADC (15),Y

Affected flags: N Z C V

AND

Opcode

$69/ 105
$65/ 101
$75j ll7
$60/ 109
$70/ 125
$79/ 121
$61 / 97
$71 / 113

Number of
Bytes Used

2
2
2
3
3
3
2
2

What it does: Logical ANDs the byte in memory with the
byte in the accumulator. The result is left in the accumulator.
All bits in both bytes are compared, and if both bits are 1, the
result is 1. If either or both bits are 0, the result is 0.

Major uses: Most of the time, AND is used to turn bits
off. Let's say that you are pulling in numbers higher than 128
(10000000 and higher) and you want to "unshift" them and
print them as lowercase letters . You can then put a zero into
the seventh bit of your " mask" and then AND the mask with
the number being unshifted:

LDA ? (test number)
AND #$7F (01111111)

(If either bit is 0, the result will be 0. So the seventh bit of the
test number is turned off here and all the other bits in the test
number are unaffected.)

186

A: 6502 Instruction Set

Addressing Modes:

Name

Immediate
Zero Page
Zero Page,X
Absolute
Absolute,X
Absolute,Y
Indirect,X
lndirect,Y

Affected flags: N Z

ASL

Format

AND # 15
AND 15
AND 15,X
AND 1500
AND 1500,X
AND 1500,Y
AND (15,X)
AND (15),Y

Opcode

$29/41
$25/37
$35 / 53
$2D j 45
$3Dj61
$39/ 57
$21 / 33
$31/49

Number of
Bytes Used

2
2
2
3
3
3
2
2

What it does: Shifts the bits in a byte to the left by 1.
This byte can be in the accumulator or in memory, depending
on the addressing mode. The shift moves the seventh bit into
the carry flag and shoves a 0 into the zeroth bit.

Flag Bit Bit Bit Bit Bit Bit Bit Bit
7 6 54 3 210

Major uses: Allows you to multiply a number by 2. Num
bers bigger than 255 can be manipulated using ASL with ROL
(see "Multiplication" in Appendix E).

A secondary use is to move the lower four bits in a byte
(a four-bit unit is often called a nybble) into the higher four
bits. The lower bits are replaced by zeros, since ASL stuffs ze
ros into the zeroth bit of a byte. You move the lower to the
higher nybble of a byte by ASL ASL ASL ASL.

187

A: 6502 Instruction Set

Addressing Modes:

Name Format

Accumulator ASL
Zero Page ASL 15
Zero Page,X ASL 15,X
Absolute ASL 1500
Absolute,X ASL 1500,X

Affected flags: N Z C

BCC

Opcode

$0A j 10
$06/ 6
$16/ 22
$0E j 14
$1E j 30

Number of
Bytes Used

1
2
2
3
3

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the carry flag is clear.
In effect, it branches if the first item is lower than the second,
as in LDA #150: CMP #149 or LDA #22: SBC #15. These ac
tions would clear the carry and, triggering BCC, a branch
would take place.

Major uses: For testing the results of CMP or ADC or
other operations which affect the carry flag. IF-THEN or ON
GOTO type structures in ML can involve the BCC test. It is
similar to BASIC's > instruction.
Addressing Modes:

Name Format

Relative BCC addr.

Affected flags: none

BCS

Opcode

$90/144

Number of
Bytes Used

2

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the carry flag is set. In
effect, it branches if the first item is higher than the second, as
in LOA #150: CMP #249 or LOA #22: SBC #85. These actions
would set the carry and, triggering BCS, a branch would take
place.

Major uses: For testing the results of LDA or ADC or
other operations which affect the carry flag . IF-THEN or ON
GOTO type structures in ML can involve the BCC test. It is
similar to BASIC's < instruction.

188

Addressing Modes:

Name Format

Relative BCS addr.

Affected flags: none

BEQ

A: 6502 Instruction Set

Opcode

$80/176

Number of
Bytes Used

2

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the zero flag (Z) is set.
In other words, it branches if an action on two bytes results in
a 0, as in LDA #150: CMP #150 or LDA #22: SBC #22. These
actions would set the zero flag, so the branch would take
place.

Major uses: For testing the results of LDA or ADC or
other operations which affect the carry flag. IF-THEN or ON
GOTO type structures in ML can involve the BEQ test. It is
similar to BASIC's = instruction.

Addressing Modes:

Name

Relative

Format

BEQ addr.

Affected flags: none

BIT

Opcode

$F0/240

Number of
Bytes Used

2

What it does: Tests the bits in the byte in memory against
the bits in the byte held in the accumulator. The bytes (mem
ory and accumulator) are unaffected. BIT merely sets flags.
The Z flag is set as if an accumulator AND memory had been
performed. The V flag and the N flag receive copies of the
sixth and seventh bits of the tested number.

Major uses: Although BIT has the advantage of not hav
ing any effect on the tested numbers, it is infrequently used
because you cannot employ the immediate addressing mode
with it. Other tests (CMP and AND, for example) can be used
instead.

189

A: 6502 Instruction Set

Addressing Modes:

Name Format

Zero Page BIT 15
Absolute BIT 1500

Affected flags: N Z V

BMI

Opcode

$24/36
$2Cj44

Number of
Bytes Used

2
3

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the negative (N) flag is
set. In effect, it branches if the seventh bit has been set by the
most recent event: LDA #150 or LDA #128 would set the sev
enth bit. These actions would set the N flag, signifying that a
minus number is present if you are using signed arithmetic or
that there is a shifted character (or a BASIC keyword) if you
are thinking of a byte in terms of the ASCII code.

Major uses: Testing for BASIC keywords, shifted ASCII,
or graphics symbols. Testing for + or - in signed arithmetic.

Addressing Modes:

Name Format

Relative BMI addr.

Affected flags: none

BNE

Opcode

$30/48

Number of
Bytes Used

2

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the zero flag is clear.
In other words, it branches if the result of the most recent
event is not zero, as in LOA #150: SBC #120 or LOA #128:
CMP #125. These actions would clear the Z flag, signifying
that a result was not 0.

Major uses: The reverse of BEQ. BNE means Branch if
Not Equal. Since a CMP subtracts one number from another
to perform its comparison, a 0 result means that they are
equal. Any other result will trigger a BNE (not equal). Like the
other B branch instructions, it has uses in IF-THEN, ON-

190

A: 6502 Instruction Set

GOTO type structures and is used as a way to exit loops (for
example, BNE will branch back to the start of a loop until a 0
delimiter is encountered at the end of a text message) . BNE is
like BASIC's <> instruction.

Addressing Modes:

Name

Relative

Format

BNE addr.

Affected flags: none

BPL

Ope ode

$DO j 208

Number of
Bytes Used

2

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the N flag is clear. In
effect, it branches if the seventh bit is clear in the most recent
event, as in LOA #12 or LOA #127. These actions would clear
the N flag, signifying that a plus number (or zero) is present in
signed arithmetic mode.

Major uses: For testing the results of LOA or AOC or
other operations which affect the negative (N) flag. IF-THEN
or ON-GOTO type structures in ML can involve the BCC
test. It is the opposite of the BMI instruction. BPL can be used
for tests of "unshifted" ASCII characters and other bytes
which have the seventh bit off and so are lower than 128
(OXXXXXXX).

Addressing Modes:

Name Format

Relative BPL addr.

Affected flags: none

BRK

Opcode

$10/ 16

Number of
Bytes Used

2

What it does: Causes a forced interrupt. This interrupt
cannot be masked (prevented) by setting the I (interrupt) flag
within the status register. If there is a Break Interrupt Vector (a
vector is like a pointer) in the computer, it may point to a res
ident monitor if the computer has one. The PC and the status

191

A: 6502 Instruction Set

register are saved on the stack. The PC points to the location
of the BRK + 2.

Major uses: Debugging an ML program can often start
with a sprinkling of BRKs into suspicious locations within the
code. The ML is executed, a BRK stops execution and drops
you into the monitor, you examine registers or tables or vari
ables to see if they are as they should be at this point in the
execution, and then you restart execution from the breakpoint.
This instruction is essentially identical to the actions and uses
of the STOP command in BASIC.

Addressing Modes:

Name Format

Implied BRK
Affected flags: Break (B) flag is set.

BVC

Opcode

$00/ 0

Number of
Bytes Used

1

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the V (overflow) flag
is clear.

Major uses: None. In practice, few programmers use
" signed" arithmetic where the seventh bit is devoted to in
dicating a positive or negative number (a set seventh bit
means a negative number). The V flag has the job of notifying
you when you've added, say, 120 + 30, and have therefore
set the seventh bit via an "overflow" (a result greater than
127). The result of your addition of two positive numbers
should not be seen as a negative number, but the seventh bit
is set. The V flag can be tested and will then reveal that your
answer is still positive, but an overflow took place.

Addressing Modes:

Name

Relative

Format

BVC addr.

Affected flags: none

192

Opcode

$50/ 80

· Number of
Bytes Used

2

A: 6502 Instruction Set

BVS
What it does: Branches up to 127 bytes forward or 128

bytes backward from its own address if the V (overflow) flag
is set) .

Major uses: None. See BVC above.

Addressing Modes:

Name

Relative

Format

BVS addr.
Affected flags: none

CLC

Opcode

$70/ 112

Number of
Bytes Used

2

What it does: Clears the carry flag. (Puts a 0 into it.)
Major uses: Always used before any addition (ADC). If

there are to be a series of additions (multiple-byte addition),
only the first ADC is preceded by CLC since the carry feature
is necessary. There might be a carry, and the result will be in
correct if it is not taken into account.

The 6502 does not offer an addition instruction without
the carry feature. Thus, you must always clear it before the
first ADC so a carry won't be accidentally added.

Addressing Modes:

Name

Implied

Format

CLC

Opcode

$18/ 24

Affected flags: Carry (C) flag is set to zero.

CLD

Number of
Bytes Used

1

What it does: Clears the decimal mode flag. (Puts a 0
into it.)

Major uses: Commodore computers execute a CLD when
first turned on as well as upon entry to monitor modes
(PET/CBM models) and when the SYS command occurs. Apple
and Atari, however, can arrive in an ML environment with the
D flag in an indeterminant state. An attempt to execute ML

193

A: 6502 Instruction Set

with this flag set would cause disaster-all mathematics would
be performed in "decimal mode." It is therefore suggested that
owners of Apple and Atari computers CLD during the early
phase, the initialization phase, of their programs. Though this
is an unlikely bug, it would be a difficult one to recognize
should it occur.

For further detail about the 6502's decimal mode, see SED
below.

Addressing Modes:

Name

Implied

Format

CLD

Opcode

$D8/216
Affected flags: Decimal (D) flag is set to zero.

CLI

Number of
Bytes Used

1

What it does: Clears the interrupt-disable flag. All inter
rupts will therefore be serviced (including maskable ones).

Major uses: To restore normal interrupt routine process
ing following a temporary suspension of interrupts for the
purpose of redirecting the interrupt vector. For more detail, see
SEI below.

Addressing Modes:

Name

Implied

Format

CLI

Opcode

$58/88
Affected flags: Interrupt (I) flag is set to zero.

CLV

Number of
Bytes Used

1

What it does: Clears the overflow flag. (Puts a 0 into it.)
Major uses: None. (See BVC above.)

Addressing Modes:

Name

Implied

Format

CLV

Opcode

$88/184
Affected flags: Overflow (V) flag is set to zero.

194

Number of
Bytes Used

1

A: 6502 Instruction Set

CMP
What it does: Compares the byte in memory to the byte

in the accumulator. Three flags are affected, but the bytes in
memory and in the accumulator are undisturbed. A CMP is
actually a subtraction of the byte in memory from the byte in
the accumulator. Therefore, if you LDA #15:CMP #15-the
result (of the subtraction) will be zero, and BEQ would be trig
gered since the CMP would have set the Z flag.

Major uses: This is an important instruction in ML. It is
central to IF-THEN and ON-GOTO type structures. In
combination with the B branching instructions like BEQ, CMP
allows the 6502 chip to make decisions, to take alternative
pathways depending on comparisons. CMP throws theN, Z,
or C flag up or down. Then a B instruction can branch,
depending on the condition of a flag.

Often, an action will affect flags by itself, and a CMP will
not be necessary. For example, LDA #15 will put a 0 into the
N flag (seventh bit not set) and will put a 0 into the Z flag
(the result was not 0). LDA does not affect the C flag. In any
event, you could LDA #15: BPL TARGET, and the branch
would take effect. However, if you LDA $20 and need to
know if the byte loaded is precisely $0D, you must CMP
#$0D:BEQ TARGET. So, while CMP is sometimes not ab
solutely necessary, it will never hurt to include it prior to
branching.

Another important branch decision is based on > or <
situations. In this case, you use BCC and BCS to test the C
(carry) flag. And you've got to keep in mind the order of the
numbers being compared. The memory byte is compared to
the byte sitting in the accumulator. The structure is memory is
less than or equal to the accumulator (BCC is triggered because
the carry flag was cleared). Or memory is more than accu
mulator (BCS is triggered because the carry flag was set).
Here's an example. If you want to find out if the number in
the accumulator is less than $40, just CMP #$41:BCC
LESSTHAN (be sure to remember that the carry flag is cleared
if a number is less than or equal; that's why we test for less
than $40 by comparing with a $41):
LOA #75
CMP #$41; IS IT LESS THAN $40?
BCC LESSTHAN

195

A: 6502 Instruction Set

One final comment about the useful BCC/BCS tests
following CMP: It's easy to remember that BCC means less
than or equal and BCS means more than if you notice that C is
less than S in the alphabet.

The other flag affected by CMPs is the N flag. Its uses are
limited since it merely reports the status of the seventh bit;
BPL triggers if that bit is clear, BMI triggers if it's set. How
ever, that seventh bit does show whether the number is
greater than (or equal to) or less than 128, and you can apply
this information to the ASCII code or to look for BASIC
keywords or to search databases (BPL and BMI are used by
LADS's database search routines in the Array subprogram).
Nevertheless, since LDA and many other instructions affect
the N flag, you can often directly BPL or BMI without any
need to CMP first.

Addressing Modes:

Name

Immediate
Zero Page
Zero Page,X
Absolute
Absolute,X
Absolute,Y
Indirect,X
Indirect,Y

Format

CMP #15
CMP 15
CMP 15,X
CMP 1500
CMP 1500,X
CMP 1500,Y
CMP (15,X)
CMP (15),Y

Affected flags: N Z C

CPX

Opcode

$C9 /201
$C5/197
$D5j213
$CD/205
$DD/221
$D9/217
$C1j193
$D1/209

Number of
Bytes Used

2
2
2
3
3
3
2
2

What it does: Compares the byte in memory to the byte
in the X register. Three flags are affected, but the bytes in
memory and in the X register are undisturbed. A CPX is ac
tually a subtraction of the byte in memory from the byte in
the X register. Therefore, if you LDA #15:CPX #15-the result
(of the subtraction) will be zero and BEQ would be triggered
since the CPX would have set the Z flag .

Major uses: X is generally used as an index, a counter
within loops. Though the Y register is often preferred as an in
dex since it can serve for the very useful indirect Y addressing

196

A: 6502 Instruction Set

mode (LDA (15),Y)-the X register is nevertheless pressed into
service when more than one index is necessary or when Y is
busy with other tasks.

In any case, the flags , conditions, and purposes of CPX
are quite similar to CMP (the equivalent comparison instruc
tion for the accumulator) . For further information on the vari
ous possible comparisons (greater than, equal, less than, not
equal), see CMP above.

Addressing Modes:

Name Format

Immediate CPX #15
Zero Page CPX 15
Absolute CPX 1500

Affected flags: N Z C

CPY

Opcode

$EOj224
$E4/ 228
$EC j 236

Number of
Bytes Used

2
2
3

What it does: Compares the byte in memory to the byte
in the Y register. Three flags are affected, but the bytes in
memory and in the Y register are undisturbed. A CPX is ac
tually a subtraction of the byte in memory from the byte in
theY register. Therefore, if you LDA #15: CPY #15-the re
sult (of the subtraction) will be zero, and BEQ would be trig
gered since the CPY would have set the Z flag.

Major uses: Y is the most popular index, the most heavily
used counter within loops since it can serve two purposes: It
permits the very useful indirect Y addressing mode (LDA
(15),Y) and can simultaneously maintain a count of loop
events .

See CMP above for a detailed discussion of the various
branch comparisons which CPY can implement.

Addressing Modes:

Name Format

Immediate CPY # 15
Zero Page CPY 15
Absolute CPY 1500

Affected flags: N Z C

Opcode

$COj192
$C4/ 196
$CC j 204

Number of
Bytes Used

2
2
3

197

A: 6502 Instruction Set

DEC
What it does: Reduces the value of a byte in memory by

1. The N and Z flags are affected.
Major uses: A useful alternative to SBC when you are

reducing the value of a memory address. DEC is simpler and
shorter than SBC, and although DEC doesn 't affect the C flag,
you can still decrement double-byte numbers (see " Decrement
Double-Byte Numbers" in Appendix E) .

The other main use for DEC is to control a memory index
when the X and Y registers are too busy to provide this ser
vice . For example, you could define, say, address $505 as a
counter for a loop structure. Then: LOOP STA $8000:DEC
$505:BEQ END:JMP LOOP. This structure would continue
storing A into $8000 until address $505 was decremented
down to zero. This imitates DEX or DEY and allows you to set
up as many nested loop structures (loops within loops) as you
wish.

Addressing Modes:

Name

Zero Page
Zero Page,X
Absolute
Absolute,X

Affected flags: N Z

DEX

Format

DEC 15
DEC 15,X
DEC 1500
DEC 1500,X

Opcode

$C6/198
$D6j214
$CE j 206
$DE j 222

What it does: Reduces the X register by 1.

Number of
Bytes Used

2
2
3
3

Major uses: Used as a counter (an index) within loops.
Normally, you LDX with some number (the number of times
you want the loop executed) and then DEX:BEQ END as a
way of counting events and exiting the loop at the right time.

Addressing Modes:

Name Format

Implied DEX

Affected flags: N Z

198

Opcode

$CA j 202

Number of
Bytes Used

1

A: 6502 Instruction Set

DEY
What it does: Reduces the Y register by 1.
Major uses: Like DEX, DEY is often used as a counter for

loop structures. But DEY is the more common of the two since
the Y register can simultaneously serve two purposes within a
loop by permitting the very popular indirect Y addressing
mode. A common way to print a screen message (the ASCII
form of the message is at $5000 in this example, and the mes
sage ends with 0): LDY #O:LOOP LDA $5000,Y:BEQ
END:STA SCREEN,Y:INY:JMP LOOP:END continue with the
program.

Addressing Modes:

Name Format

Implied DEY

Affected flags: N Z

EOR

Ope ode

$88/136

Number of
Bytes Used

1

What it does: Exclusive ORs a byte in memory with the
accumulator. Each bit in memory is compared with each bit in
the accumulator, and the bits are then set (given a 1) if one of
the compared bits is 1. However, bits are cleared if both are 0
or if both are 1. The bits in the byte held in the accumulator
are the only ones affected by this comparison.

Major uses: EOR doesn't have too many uses. Its main
value is to toggle a bit. If a bit is clear (is a 0), it will be set (to
a 1); if a bit is set, it will be cleared. For example, if you want
to reverse the current state of the sixth bit in a given byte:
LDA BYTE:EOR #$40:STA BYTE. This will set bit 6 in BYTE if
it was 0 (and clear it if it was 1). This selective bit toggling
could be used to "shift" an unshifted ASCII character via EOR
#$80 (1000000). Or if the character were shifted, EOR #$80
would make it lowercase. EOR toggles.

199

A: 6502 Instruction Set

Addressing Modes:

Name

Immediate
Zero Page
Zero Page,X
Absolute
Absolute,X
Absolute,Y
Indirect,X
Indirect,Y

Affected flags: N Z

INC

Format

EOR #15
EOR 15
EOR 15,X
EOR 1500
EOR 1500,X
EOR 1500,Y
EOR (15,X)
EOR (15),Y

Opcode

$49/ 73
$45/69
$55/ 85
$4D j 77
$5D j 93
$59/ 89
$41 / 65
$51 / 81

Number of
Bytes Used

2
2
2
3
3
3
2
2

What it does: Increases the value of a byte in memory
by 1.

Major uses: Used exactly as DEC (see DEC above), except
it counts up instead of down. For raising address pointers or
supplementing the X and Y registers as loop indexes.

Addressing Modes:

Name

Zero Page
Zero Page,X
Absolute
Absolute,X

Affected flags: N Z

INX

Format

INC 15
INC 15,X
INC 1500
INC 1500,X

Opcode

$E6j 230
$F6/ 246
$EE/ 238
$FE/254

What it does: Increases the X register by 1.

Number of
Bytes Used

2
2
3
3

Major uses: Used exactly as DEX (see DEX above), except
it counts up instead of down. For loop indexing.

Addressing Modes:

Name Format

Implied INX

Affected flags: N Z

200

Opcode

$E8j232

Number of
Bytes Used

1

A: 6502 Instruction Set

INY
What it does: Increases the Y register by 1.
Major uses: Used exactly as DEY (see DEY above), except

it counts up instead of down. For loop indexing and working
with the indirect Y addressing mode (LDA (15),Y).

Addressing Modes:

Name

Implied
Affected flags: N Z

JMP

Format

INY

Opcode

$C8j200

Number of
Bytes Used

1

What it does: Jumps to any location in memory.
Major uses: Branching long range. It is the equivalent of

BASIC's GOTO instruction. The bytes in the program counter
are replaced with the address (the argument) following the
JMP instruction and, therefore, program execution continues
from this new address.

Indirect jumping-JMP (1500)-is not recommended, al
though some programmers find it useful. It allows you to set
up a table of jump targets and bounce off them indirectly. For
example, if you had placed the numbers $00 $04 in addresses
$88 and $89, a JMP ($0088) instruction would send the pro
gram to whatever ML routine was located in address $0400.
Unfortunately, if you should locate one of your pointers on
the edge of a page (for example, $00FF or $17FF), this indirect
JMP addressing mode reveals its great weakness. There is a
bug which causes the jump to travel to the wrong place-JMP
($00FF) picks up the first byte of the pointer from $00FF, but
the second byte of the pointer will be incorrectly taken from
$0000. With JMP ($17FF), the second byte of the pointer
would come from what's in address $1700.

Since there is this bug, and since there are no compelling
reasons to set up JMP tables, you might want to forget you
ever heard of indirect jumping.

201

A: 6502 Instruction Set

Addressing Modes:

Name

Absolute
Indirect

Format

JMP 1500
JMP (1500)

Affected flags: none

JSR

Opcode

$4Cj76
$6C/108

Number of
Bytes Used

3
3

What it does: Jumps to a subroutine anywhere in mem
ory. Saves the PC (Program Counter) address, plus three, of
the JSR instruction by pushing it onto the stack. The next RTS
in the program will then pull that address off the stack and re
turn to the instruction following the JSR.

Major uses: As the direct equivalent of BASIC's GOSUB
command, JSR is heavily used in ML programming to send
control to a subroutine and then (via RTS) to return and pick
up where you left off. The larger and more sophisticated a
program becomes, the more often JSR will be invoked. In
LADS, whenever something is printed to screen or printer,
you'll often see a chain of JSRs performing necessary tasks:
JSR PRNTCR: JSR PRNTSA:JSR PRNTSPACE:JSR
PRNTNUM:JSR PRNTSPACE. This JSR chain prints a carriage
return, the current assembly address, a space, a number, and
another space.

Another thing you might notice in LADS and other ML
programs is a PLA:PLA pair. Since JSR stuffs the correct return
address onto the stack before leaving for a subroutine, you
need to do something about that return address if you later
decide not to RTS back to the position of the JSR in the pro
gram. This might be the case if you usually want to RTS, but
in some particular cases, you don't. For those cases, you can
take control of program flow by removing the return address
from the stack (PLA:PLA will clean off the two-byte address)
and then performing a direct JMP to wherever you want to go.

If you JMP out of a subroutine without PLA:PLA, you
could easily overflow the stack and crash the program.

202

Addressing Modes:

Name Format

Absolute JSR 1500
Affected flags: none

LOA

A: 6502 Instruction Set

Ope ode

$20/ 32

Number of
Bytes Used

3

What it does: Loads the accumulator with a byte from
memory. Copy might be a better word than load, since the byte
in memory is unaffected by the transfer.

Major uses: The busiest place in the computer. Bytes .
coming in from disk, tape, or keyboard all flow through the
accumulator, as do bytes on their way to screen or peripherals.
Also, because the accumulator differs in some important ways
from the X andY registers, the accumulator is used by ML
programmers in a different way from the other registers.

Since INY /DEY and INX/DEX make those registers useful
as counters for loops (the accumulator couldn't be conve
niently employed as an index; there is no INA instruction), the
accumulator is the main temporary storage register for bytes
during their manipulation in an ML program. ML program
ming, in fact, can be defined as essentially the rapid, or
ganized maneuvering of single bytes in memory. And it is the
accumulator where these bytes often briefly rest before being
sent elsewhere.

Addressing Modes:

Name

Immediate
Zero Page
Zero Page,X
Absolute
Absolute,X
Absolute,Y
Indirect,X
Indirect,Y
Affected flags: N Z

Format

LDA # 15
LDA 15
LDA 15,X
LDA 1500
LDA 1500,X
LDA 1500,Y
LDA (15,X)
LDA (15),Y

Opcode

$A9j169
$A5j165
$85/181
$ADj173
$8Dj 189
$89/ 185
$A1j161
$81 / 177

Number of
Bytes Used

2
2
2
3
3
3
2
2

203

A: 6502 Instruction Set

LDX
What it does: Loads the X register with a byte from

memory.
Major uses: The X register can perform many of the tasks

that the accumulator performs, but it is generally used as an
index for loops. In preparation for its role as an index, LDX
puts a value into the register.

Addressing Modes:

Name

Immediate
Zero Page
Zero Page,Y
Absolute
Absolute,Y

Affected flags: N Z

LDY

Format

LDX #15
LDX 15
LDX 15,Y
LDX 1500
LDX 1500,Y

Opcode

$A2j162
$A6j166
$86/182
$AEj174
$8E/190

Number of
Bytes Used

2
2
2
3
3

What it does: Loads the Y register with a byte from
memory.

Major uses: The Y register can perform many of the tasks
that the accumulator performs, but it is generally used as an
index for loops. In preparation for its role as an index, LDY
puts a value into the register.

Addressing Modes:

Name

Immediate
Zero Page
Zero Page,X
Absolute
Absolute,X

Affected flags: N Z

204

Format

LDY #15
LDY 15
LDY 15,X
LDY 1500
LDY 1500,X

Opcode

$AOj160
$A4/ 164
$84/180
$ACj172
$8Cj188

Number of
Bytes Used

2
2
2
3
3

A: 6502 Instruction Set

LSR
What it does: Shifts the bits in the accumulator or in a

byte in memory to the right, by one bit. A zero is stuffed into
bit 7, and bit 0 is put into the carry flag.

Bit Bit Bit Bit Bit
7 6 5 4 3

Bit Bit Bit
2 1 0

Carry
Flag

Major uses: To divide a byte by 2. In combination with
the ROR instruction, LSR can divide a two-byte or larger num
ber (see Appendix E).

LSR:LSR:LSR:LSR will put the high four bits (the high
nybble) into the low nybble (with the high nybble replaced by
the zeros being stuffed into the seventh bit and then shifted to
the right).

Addressing Modes:

Name Format

Accumulator LSR
Zero Page LSR 15
Zero Page,X LSR 15,X
Absolute LSR 1500
Absolute,X LSR 1500,X

Affected flags: N Z C

NOP

Ope ode

$4A/74
$46/70
$56/86
$4E/78
$5E/94

What it does: Nothing. No operation.

Number of
Bytes Used

2
2
2
3
3

Major uses: Debugging. When setting breakpoints with
BRK, you will often discover that a breakpoint, when exam
ined, passes the test. That is, there is nothing wrong at that
place in the program. So, to allow the program to execute to
the next breakpoint, you cover the BRK with a NOP. Then,
when you run the program, the computer will slide over the
NOP with no effect on the program. Three NOPs could cover
a JSR XXXX, and you could see the effect on the program
when that particular JSR is eliminated.

205

A: 6502 Instruction Set

Addressing Modes:

Name

Implied

Format

NOP

Affected flags: none

ORA

Opcode

$EA/234

Number of
Bytes Used

1

What it does: Logically ORs a byte in memory with the
byte in the accumulator. The result is in the accumulator. An
OR results in a 1 if either the bit in memory or the bit in the
accumulator is 1.

Major uses: Like an AND mask which turns bits off, ORA
masks can be used to turn bits on. For example, if you wanted
to "shift" an ASCII character by setting the seventh bit, you
could LDA CHARACTER:ORA #$80. The number $80 in bi
nary is 10000000, so all the bits in CHARACTER which are
ORed with zeros here will be left unchanged. (If a bit in
CHARACTER is a 1, it stays a 1. If it is a 0, it stays 0.) But the
1 in the seventh bit of $80 will cause a 0 in the CHARACTER
to turn into a 1. (If CHARACTER already has a 1 in its sev
enth bit, it will remain a 1.)

Addressing Modes:

Name

Immediate
Zero Page
Zero Page,X
Absolute
Absolute,X
Absolute,Y
Indirect, X
Indirect,Y

Affected flags: N Z

206

Format

ORA #15
ORA 15
ORA 15,X
ORA 1500
ORA 1500,X
ORA 1SOO,Y
ORA (15,X)
ORA (15),Y

Opcode

$09/9
$05/5
$15/ 21
$0Dj 13
$1D j 29
$19/ 25
$01 / 1
$11 / 17

Number of
Bytes Used

2
2
2
3
3
3
2
2

A: 6502 Instruction Set

PHA
What it does: Pushes the accumulator onto the stack.
Major uses: To temporarily (very temporarily) save the

byte in the accumulator. If you are within a particular sub
routine and you need to save a value for a brief time, you can
PHA it. But beware that you must PLA it back into the accu
mulator before any RTS so that it won't misdirect the computer
to the wrong RTS address. All RTS addresses are saved on the
stack. Probably a safer way to temporarily save a value (a
number) would be to STA TEMP or put it in some other tem
porary variable that you've set aside to hold things. Also, the
values of A, X, and Y need to be temporarily saved, and the
programmer will combine TYA and TXA with several PHAs to
stuff all three registers onto the stack. But, again, matching
PLAs must restore the stack as soon as possible and certainly
prior to any RTS.

Addressing Modes:

Name Format

Implied PHA

Affected flags: none

PHP

Opcode

$48/72

Number of
Bytes Used

1

What it does: Pushes the "processor status" onto the top
of the stack. This byte is the status register, the byte which
holds all the flags: N Z C I D V.

Major uses: To temporarily (very temporarily) save the
state of the flags. If you need to preserve all the current con
ditions for a minute (see description of PHA above), you may
also want to preserve the status register as well. You must,
however, restore the status register byte and clean up the
stack by using a PLP before the next RTS.

Addressing Modes:

Name

Implied

Format

PHP

Affected flags: none

Opcode

$08/8

Number of
Bytes Used

1

207

A: 6502 Instruction Set

PLA
What it does: Pulls the top byte off the stack and puts it

into the accumulator.
Major uses: To restore a number which was temporarily

stored on top of the stack (with the PHA instruction). It is the
opposite action of PHA (see above). Note that PLA does affect
the N and Z flags. Each PHA must be matched by a
corresponding PLA if the stack is to correctly maintain RTS
addresses, which is the main purpose of the stack.

Addressing Modes:

Name

Implied

Affected flags: N Z

PLP

Format

PLA

Opcode

$68/ 104

Number. of
Bytes Used

1

What it does: Pulls the top byte off the stack and puts it
into the status register (where the flags are). PLP is a mne
monic for PuLl Processor status.

Major uses: To restore the condition of the flags after the
status register has been temporarily stored on top of the stack
(with the PHP instruction). It is the opposite action of PHP
(see above). PLP, of course, affects all the flags. Any PHP
must be matched by a corresponding PLP if the stack is to cor
rectly maintain RTS addresses, which is the main purpose of
the stack.

Addressing Modes:

Name Format

Implied PLP

Affected flags: all

ROL

Opcode

$28/ 40

Number of
Bytes Used

1

What it does: Rotates the bits in the accumulator or in a
byte in memory to the left, by one bit. A rotate left (as op
posed to an ASL, Arithmetic Shift Left) moves bit 7 to the

208

A: 6502 Instruction Set

carry, moves the carry into bit 0, and every other bit moves one
position to its left. (ASL operates quite similarly, except it al
ways puts a 0 into bit 0 .)

Carry_.__.,. TTTTTTirl
Flag Bit Bit Bit Bit Bit Bit Bit Bit

7 6 5 4 3 2 1 0

Major uses: To multiply a byte by 2. ROL can be used
with ASL to multiply multiple-byte numbers since ROL pulls
any carry into bit 0. If an ASL resulted in a carry, it would be
thus taken into account in the next higher byte in a multiple
byte number. (See Appendix E.)

Notice how the act of moving columns of binary numbers
to the left has the effect of multiplying by 2:
0010
0100

(the number 2 in binary)
(the number 4)

This same effect can be observed with decimal numbers,
except the columns represent powers of 10:
0010 (the number 10 in decimal)
0100 (the number 100)

Addressing Modes:

Name Format

Accumulator ROL
Zero Page ROL 15
Zero Page,X ROL 15,X
Absolute ROL 1500
Absolute,X ROL 1500,X

Affected flags: N Z C

ROR

Opcode

$2Aj 42
$26/ 38
$36/ 54
$2E j 46
$3E j 62

Number of
Bytes Used

1
2
2
3
3

What it does: Rotates the bits in the accumulator or in a
byte in memory to the right, by one bit. A rotate right (as op
posed to a LSR, Logical Shift Right) moves bit 0 into the carry,

209

A: 6502 Instruction Set

moves the carry into bit 7, and every other bit moves one po
sition to its right. (LSR operates quite similarly, except it al
ways puts a 0 into bit 7.)

Bit Bit Bit Bit Bit
7 6 5 4 3

Bit Bit
2 1

Bit
0

Flag

Major uses: To divide a byte by 2. ROR can be used with
LSR to divide multiple-byte numbers since ROR puts any
carry into bit 7. If an LSR resulted in a carry, it would be thus
taken into account in the next lower byte in a multiple-byte
number. (See Appendix E.)

Notice how the act of moving columns of binary numbers
to the right has the effect of dividing by 2:
1000 (the number 8 in binary)
0100 (the number 4)

This same effect can be observed with decimal numbers,
except the columns represent powers of 10:
1000 (the number 1000 in decimal)
0100 (the number 100)

Addressing Modes:

Name Format

Accumulator ROR
Zero Page ROR 15
Zero Page,X ROR 15,X
Absolute ROR 1500
Absolute,X ROR 1500,X

Affected flags: N Z C

RTI

Ope ode

$6Ajl06
$66/ 102
$76/ 118
$6E j 110
$7E j l 26

What it does: Returns from an interrupt.

Number of
Bytes Used

1
2
2
3
3

Major uses: None. You might want to add your own
routines to your machine's normal interrupt routines (see SEI

210

A: 6502 Instruction Set

below), but you won't be generating actual interrupts of your
own. Consequently, you cannot ReTurn from Interrupts you
never create.

Addressing Modes:

Name

Implied

Format

RTI

Opcode

$40/64

Number of
Bytes Used

1

Affected flags: all (status register is retrieved from the stack).

RTS
What it does: Returns from a subroutine jump (caused by

JSR).
Major uses: Automatically picks off the two top bytes on

the stack and places them into the program counter. This re
verses the actions taken by JSR (which put the program
counter bytes onto the stack just before leaving for a sub
routine). When RTS puts the return bytes into the program
counter, the next event in the computer's world will be the
instruction following the JSR which stuffed the return address
onto the stack in the first place.

Addressing Modes:

Name

Implied

Format

RTS
Affected flags: none

SBC

Opcode

$60/96

Number of
Bytes Used

1

What it does: Subtracts a byte in memory from the byte
in the accumulator, and "borrows" if necessary. If a "borrow"
takes place, the carry flag is cleared (set to 0). Thus, you al
ways SEC (set the carry flag) before an SBC operation so you
can tell if you need a "borrow." In other words, when an SBC
operation clears the carry flag, it means that the byte in mem
ory was larger than the byte in the accumulator. And since

211

A: 6502 Instruction Set

memory is subtracted from the accumulator in an SBC opera
tion, if memory is the larger number, we must "borrow."

Major uses: Subtracts one number from another.
Addressing Modes:

Name Format

Immediate SBC #15
Zero Page SBC 15
Zero Page,X SBC 15,X
Absolute SBC 1500
Absolute,X SBC 1500,X
Absolute,Y SBC 1500,Y
Indirect,X SBC (15,X)
Indirect,Y SBC (15),Y

Affected flags: N Z C V

SEC

Opcode

$E9 j 233
$E5j229
$F5 j 245
$EDj237
$FD j 253
$F9j249
$E1 j 225
$F1j241

Number of
Bytes Used

2
2
2
3
3
3
2
2

What it does: Sets the carry (C) flag (in the processor sta
tus register byte).

Major uses: This instruction is always used before any
SBC operation to show if the result of the subtraction was
negative (if the accumulator contained a smaller number than
the byte in memory being subtracted from it). See SBC above.

Addressing Modes:

Name Format

Implied SEC

Affected flags: C

SED

Opcode

$38/ 56

Number of
Bytes Used

1

What it does: Sets the decimal (D) flag (in the processor
status register byte).

Major uses: Setting this flag puts the 6502 into decimal
arithmetic mode. This mode can be easier to use when you are
inputting or outputting decimal numbers (from the user of a
program or to the screen). Simple addition and subtraction can
be performed in decimal mode, but most programmers ignore

212

A: 6502 Instruction Set

this feature since more complicated math requires that you re
main in the normal binary state of the 6502.

Note: Commodore computers automatically clear this mode
when entering ML via SYS. However, Apple and Atari computers
can enter ML in an indeterminant state. Since there is a possibil
ity that the D flag might be set (causing havoc) on entry to an ML
routine, it is sometimes suggested that owners of these two
computers use the CLD instruction at the start of any ML program
they write. Any ML programmer must CLD following any delib
erate use of the decimal mode.

Addressing Modes:

Name Format

Implied SED

Affected flags: D

SEI

Opcode

$F8j248

Number of
Bytes Used

1

What it does: Sets the interrupt disable flag (the I flag) in
the processor status byte. When this flag is up, the 6502 will
not acknowledge or act upon interrupt attempts (except a few
nonmaskable interrupts which can take control in spite of this
flag, like a reset of the entire computer). The operating sys
tems of most computers will regularly interrupt the activities
of the chip for necessary, high-priority tasks such as updating
an internal clock, displaying things on the TV, receiving sig
nals from the keyboard, etc. These interruptions of whatever
the chip is doing normally occur 60 times every second. To
find out what housekeeping routines your computer interrupts
the chip to accomplish, look at the pointer in $FFFE/FFFF. It
gives the starting address of the maskable interrupt routines.

Major uses: You can alter a RAM pointer so that it sends
these interrupts to your own ML routine, and your routine then
would conclude by pointing to the normal interrupt routines.
In this way, you can add something you want (a click sound
for each keystroke? the time of day on the screen?) to the nor
mal actions of your operating system. The advantage of this
method over normal SYSing is that your interrupt-driven rou
tine is essentially transparent to whatever else you are doing

213

A: 6502 Instruction Set

(in whatever language). Your customization appears to have
become part of the computer's ordinary habits.

However, if you try to alter the RAM pointer while the
other interrupts are active, you will point away from the nor
mal housekeeping routines in ROM, crashing the computer.
This is where SEI comes in. You disable the interrupts while
you LDA STA LDA STA the new pointer. Then CLI turns the
interrupt back on and nothing is disturbed.

Interrupt processing is a whole subcategory of ML
programming and has been widely discussed in magazine arti
cles. Look there if you need more detail.

Addressing Modes:

Name Format

Implied SEI

Affected flags: I

STA

Opcode

$78/ 120

Number of
Bytes Used

1

What it does: Stores the byte in the accumulator into
memory.

Major uses: Can serve many purposes and is among the
most used instructions. Many other instructions leave their re
sults in the accumulator (ADCjSBC and logical operations like
ORA), after which they are stored in memory with STA.

Addressing Modes:

Name Format

Zero Page STA 15
Zero Page,X STA 15,X
Absolute STA 1500
Absolute,X STA 1500,X
Absolute,Y STA 1500,Y
Indirect,X STA (15,X)
Indirect,Y STA (15),Y

Affected flags: none

214

Opcode

$85/133
$95/ 149
$80/ 141
$90/ 157
$99/153
$81 / 129
$91 / 145

Number of
Bytes Used

2
2
3
3
3
2
2

A: 6502 Instruction Set

STX
What it does: Stores the byte in the X register into

memory.
Major uses: Copies the byte in X into a byte in memory.

Addressing Modes:

Name

Zero Page
Zero Page,Y
Absolute

Format

STX 15
STX 15,Y
STX 1500

Affected flags: none

STY

Opcode

$86/ 134
$96/ 150
$8E j 142

Number of
Bytes Used

2
2
3

What it does: Stores the byte in the Y register into
memory.

Major uses: Copies the byte in Y into a byte in memory.

Addressing Modes:

Name

Zero Page
Zero Page,X
Absolute

Format

STY 15
STY 15,X
STY 1500

Affected flags: none

TAX

Opcode

$84/132
$94/ 148
$8C/ 140

Number of
Bytes Used

2
2
3

What it does: Transfers the byte in the accumulator to the
X register.

Major uses: Sometimes you can copy the byte in the
accumulator into the X register as a way of briefly storing the
byte until it's needed again by the accumulator. If X is cur
rently unused, TAX is a convenient alternative to PHA (an
other temporary storage method).

However, since X is often employed as a loop counter,
TAX is a relatively rarely used instruction.

215

A: 6502 Instruction Set

Addressing Modes:

Name Format

Implied TAX

Affected flags: N Z

TAY

Opcode

$AA/170

Number of
Bytes Used

1

What it does: Transfers the byte in the accumulator to the
Y register.

Major uses: Sometimes you can copy the byte in the
accumulator into the Y register as a way of briefly storing the
byte until it's needed again by the accumulator. If Y is cur
rently unused, TAY is a convenient alternative to PHA (an
other temporary storage method).

However, since Y is quite often employed as a loop
counter, TAY is a relatively rarely used instruction.

Addressing Modes:

Name Format

Implied TAY

Affected flags: N Z

TSX

Opcode

$A8/168

Number of
Bytes Used

1

What it does: Transfers the stack pointer to the X register.
Major uses: The stack pointer is a byte in the 6502 chip

which points to where a new value (number) can be added to
the stack. The stack pointer would be "raised" by two, for ex
ample, when you JSR and the two bytes of the program
counter are pushed onto the stack. The next available space on
the stack thus becomes two higher than it was previously. By
contrast, an RTS will pull a two-byte return address off the
stack, freeing up some space, and the stack pointer would
then be "lowered" by two.

The stack pointer is always added to $0100 since the stack
is located between addresses $0100 and $01FF.

216

A: 6502 Instruction Set

Addressing Modes:

Name Format

Implied TSX

Affected flags: N Z

TXA

Opcode

$BAjl86

Number of
Bytes Used

1

What it does: Transfers the byte in the X register to the
accumulator.

Major uses: There are times, after X has been used as a
counter, when you'll want to compute something using the
value of the counter. And you'll therefore need to transfer the
byte in X to the accumulator. For example, if you search the
screen for character $75:
CHARACTER = $75:SCREEN = $0400
LOX #0
LOOP LOA SCREEN,X:CMP #CHARACTER:BEQ MORE:INX
BEQ NOTFOUNO ; (this prevents an endless

loop
MORE TXA ; (you now know the

character's location)
NOTFOUNO BRK

In this example, we want to perform some action based
on the location of the character. Perhaps we want to remem
ber the location in a variable for later reference. This will re
quire that we transfer the value of X to the accumulator so it
can be added to the SCREEN start address.

Addressing Modes:

Name

Implied

Affected flags: N Z

Format

TXA

Opcode

$8Aj138

Number of
Bytes Used

1

217

A: 6502 Instruction Set

TXS
What it does: Transfers the byte in X register into the

stack pointer.
Major uses: Alters where, in the stack, the current "here's

storage space" is pointed to. There are no common uses for
this instruction.

Addressing Modes:

Name Format

Implied TXS

Affected flags: none

TYA

Opcode

$9Aj154

Number of
Bytes Used

1

What it does: Transfers the byte in the Y register to the
accumulator.

Major uses: See TXA.

Addressing Modes:

Name Format

Implied TYA

Affected flags: N Z

218

Opcode

$98/152

Number of
Bytes Used

1

How to Use LADS
Here is a step-by-step explanation of how to assemble ma
chine language programs using the LADS assembler. As you
familiarize yourself with its features and practice using it, you
will likely discover things about the assembler which you'll
want to change or features you'll want to add. For example, if
you find yourself frequently using an impossible addressing
mode like LOY (lS,Y), you might want to insert an error trap
for that into LADS source code. Appendix C, "Modifying
LADS," shows you how these customizations can be accom
plished. But here is a description of the features which are
built into LADS.

General Instructions for Using LADS
LADS assembles from source files. They are particularly easy
and convenient to create; just turn on your computer, if you
are using DOS 3.3, BRUN LADS, and pretend you're writing a
BASIC program. (ProDOS users, run Program B-1 to install
the ProDOS version of LADS.) Apple LADS works with
source files created exactly the way you would write a BASIC
program (you must always BRUN LADS before creating
source code). You use line numbers, you can use colons, you
can insert new line numbers or delete . The only difference is
that you're writing ML, so you use ML commands rather than
BASIC commands. Here's an example:

10 ·= $0300
15 .s
20 LOA #22:LDY #0
30 STA $1500,Y
40 .END TEST

Use line numbers, colons, and whatever programmer's
aids (such as automatic line numbering) that you ordinarily
use to write BASIC itself. But notice that if you use colons you
should keep the instructions tight against the colons. (LDA
#22 : LDY #0 would confuse LADS. Spaces following a colon
won't cause any problems, but it's best to make a habit of using
no spaces around colons.)

After you've typed in a program, save to disk in the nor
mal way. (Tape drive users: See " Special Note to Tape Drive
Users" at the end of this appendix.) Notice line 10 in the ex
ample above. The first line of any LADS source fil e must provide
the starting address, the address where you want the ML

221

B: How to Use LADS

program to begin in the computer's memory. You signify this
with the * = symbol, which means "Program Counter equals."
When LADS sees * =, it sets the program counter to the num
ber following the equal sign. Remember also that there must be
a space between the = and the starting address.

The only other fixed rule for every source code file is that
the last line of each LADS source file must contain either the
.END pseudo-op or the .FILE pseudo-op. Either of them links
source files together in case you want to chain several files
into one large ML program. However, .FILE names the next
linked source file in the chain, whereas .END always specifies
the first source file of the chain. If there is only one file (as in
our example above), you still must end it with .END and give
its name as the first file. More about this shortly.

Also notice that you can use either decimal or hexadeci
mal numbers interchangeably in LADS. Lines 10 and 30 con
tain hex; line 20 has decimal numbers.

After you've saved the source code to disk, you can as
semble it by typing ASM filename, where filename is the name
of the source file (or the first file in a chain) that you want
assembled.

Let's go through the process of assembling step by step.
Type in the little source program above as if you were writing
a BASIC program. Save it by typing:

SAVE TEST
Then ASM TEST

You will see the assembler create the object code, the bytes
which go into memory ctnd comprise the ML program.

Note: Be sure to remember that every source code program
must end with the .END NAME pseudo-op. In our example, we
concluded with .END TEST because TEST is the name of the
only file in this source code. Also notice that you do not use
quotes with these filenames .

To review: Every source code program must contain the
starting address in the first line (for example, 10 * = $0300)
and must list the filename on the last line (for example, 500
.END SCREENPROG). If you chain several source code pro
grams together using the .FILE pseudo-op, you end only the fi
nal program in the chain with the .END pseudo-op. These two
rules will become clearer in a minute when we discuss the
.END and .FILE pseudo-ops.

222

B: How to Use LADS

Features
There are a number of pseudo-ops available in LADS. Pseudo
cps are direct instructions to the assembler which make things
easier for the programmer. The .S in line 15 is such an instruc
tion. It tells LADS to print the results of an assembly to the
screen. If you add the following lines to our test program, you
will cause the listing to be in decimal instead of hex and cause
LADS to save the object code (the runnable ML program) to a
disk file called OBJ.
10 *= $0360
ll.NH
12 .D OBJ
15 .s
20 LOA #22:LDY #0
30 STA $1500,Y
40 .END TEST

The pseudo-op .NH means no hex (causing the listing to
change from hex to decimal), and .D means create a disk file
containing the ML program which results from the assembly
process.

You can add REM-like comments by using a semicolon.
And you can turn the screen listing off with .NS, anytime.
Turn it on or off as much as you want:
10 *= $0360
ll.NH
12 .D OBJECTPROGRAM
15 .NS
20 LOA #22:LDY #0; load A with 22, load Y with zero
30 STA $1500, Y
40 .END TEST

You turn on printer listings with .P and turn them off
with .NP. However, for the .P pseudo-op to work, the .S
screen listings pseudo-op must also be turned on. In other
words, you cannot have listings sent to the printer without the
.S pseudo-op. The assembly will not appear on the screen
when you use the .P and .S together. If you want screen echo
while assembling to the printer, you'll need to use the system
utilities on the lie to configure the serial port; on other II 's
you 'll need to set the switches on the printer interface. On the
Apple super-serial card, set the switches to 40-column line
width with screen echo. If you have another card you'll have
to consult your interface and printer manual. Your printer

223

B: How to Use LADS

interface must be in slot 1 for LADS to assemble to a printer.
To have the ML stored into memory during assembly, use

.0 and turn off these POKEs to memory with .NO. LADS will
assemble somewhat faster if the .S and .P features are not
used.

The pseudo-ops which turn the printer on and off; direct
object code to disk, screen, and RAM; or switch between hex
and decimal printout can be switched on and off within your
source code wherever convenient. For example, you can turn
on your printer anywhere within the program by inserting .P
and turn it off anywhere with .NP. Among other things, this
would allow you to specify that only a particular section of a
large program be printed out. This can come in very handy if
you're working on a 5000-byte program: You would have a
long wait if you had to print out the whole thing.

Always put pseudo-ops on a line by themselves. Any other
programming code can be put on a line in any fashion (di
vided by colons: LOA 15:STA 27:INY), but pseudo-ops should
be the only thing on their lines. (The .BYTE pseudo-op is an
exception-it can be on a multiple-statement line.)

100 .P .S (wrong)
100 .P (right)
110 .s (right)

And remember to keep your instructions right next to the
colons, no spaces:

100 LOA #15 : STA 5000 : INY (wrong)
100 LOA #15:STA 5000:INY
(right)

Here's a summary of the commands you can give LADS:

.P

. NP

.0

. NO

.D filename

Turn on printer listing of object code (.S must be
activated).
Turn off printer listing of object code .
Turn on POKEs to memory. Object code is stored
into RAM during assembly.
Turn off POKEs to memory .
Open a file and store object code to disk during
assembly (use no quotes around filename) .

. FILE filename Link one source file to the next in a chain so that they
will all assemble together as a single large source
program (end the chain with .END pseudo-op) .

. END filename Link the last source file to first source file in a chain.
If you are not assembling a chain of files (rather, are

224

.s

. NS

.H

.NH

*=

B: How to Use LADS

assembling from a single file), you must still give its
filename as the .END so the assembler knows where
to go for the second pass. Any source code must
have .END as the last line in the program, whether
the source code is contained within a single disk file
or spread across a multiple-file chain.
Turn on screen listing during assembly (required if
you desire a hardcopy listing from a printer using
the .P pseudo-op).
Turn off screen listing during assembly .
Turn on hexadecimal output for screen or printer
listing.
Turn off hexadecimal output for screen or printer
listing. (As a result, the listings are in decimal.)
Set program counter to new address.

A Stable Buffer
The pseudo-op * = is mainly useful when you want to create
data tables. The subprogram Tables in LADS (see Appendix D)
source code is an example. (A subprogram is one of the source
code files which, when linked together, form an entire ML
program.) Most programmers locate an ML program's tables
equates, buffers, and messages at the high end of the ML pro
gram the way LADS does with its Tables subprogram. Since
you don't know what the highest RAM address will be while
you're writing the program, you can set * = to some address
perhaps 4K above the starting address. This gives you space to
write the program below the tables. The advantage of creating
these now-stable tables is that you can easily PEEK them, and
this greatly assists debugging. You'll always know exactly
where buffers and variables are going to end up in memory
after an assembly-regardless of the changes you make in the
program. After your program is debugged and running per
fectly, you can remove the * = and assemble one last time,
closing up the gap between the program and its tables.

Here's an example. Suppose you write:

10 * = $5000
20 STA BUFFER
30 *= $6000
40 BUFFER .BYTE 0 0 0 0 0 0 0 0 0 0 0 0 0 0
50 .END BUFFEREXAMPLE

This creates an ML instruction (STA buffer) at address
$5000 (the starting address of this particular ML program), but

225

B: How to Use LADS

places the buffer itself at $6000. When you add additional
instructions after STA buffer, the location of the buffer itself
will remain at address $6000. This means that you can write
an entire program without having to worry that the location of
the buffer is changing each time you add new instructions,
new code. It's high enough so that it remains stable at $6000,
and you can debug the program more easily. You can always
check if something is being correctly sent into the buffer by
just looking at $6000.

This fragment of code illustrates two other features of
LADS. You can use the pseudo-op .BYTE to set aside some
space in memory (the zeros above just make space to hold
other things in a "buffer" during the execution of an ML pro
gram). You can also use .BYTE to define specific numbers in
memory:
.BYTE 65 66 67 68

This would put these numbers (you must always use deci
mal numbers with this pseudo-op) into memory at the location
of the .BYTE instruction. An easy way to create messages that
you want to print to the screen is to use the .BYTE pseudo-op
with quotes:
500 FIRSTLETTERS .BYTE II ABCD":.BYTE 0

Then, if you wanted to print this message, you could
write:

2 * = $0360
5 LOY #0

10 LOOP LOA FIRSTLETTERS,Y
20 BEQ ENDMESSAGE
30 STA $0400,Y; location of screen RAM
40 INY
50 JMP LOOP
60 ENDMESSAGE RTS; finished printout

500 FIRSTLETTERS .BYTE 11 ABCD:.BYTE 0
900 .END MESSAGETEST

Note that using the second set of quotes is optional with the
.BYTE pseudo-op: You can use either .BYTE 11 ABCD:.BYTE 0
or .BYTE 11 ABCD":.BYTE 0. To POKE numbers instead of
characters, just leave out the quotes: .BYTE 10 15 75. And
since these numeric values are being POKEd directly into
bytes in memory, they cannot be larger than 255.

Another convenient pseudo-op looks like this: #". It is

226

B: How to Use LADS

used when you want to specify a character instead of a num
ber for immediate addressing. Say, you need to print a comma
to the screen. You could LDA #44 (the ASCII code for a
comma) and JSR PRINT.

But if you don't remember that a comma is the number 44
in the ASCII code, and you don't want to look it up, LADS
will do it for you. Just use a quote after the # symbol: LDA
" , (followed by the character you're after, in this case, the
comma). The correct value for the character will be inserted
into your object code. To print the letter A, you would LDA
" A and proceed to print it. Any character you type after the
quotes will be translated into ASCII for you. Note that this
pseudo-op and the .BYTE " pseudo-op use true ASCII, which on
the Apple screen will appear as reversed characters. If you want
normal characters sent to the screen, you'll have to look up
the Apple version of ASCII in the table in Chapter 2.

Labels
With LADS, or with other assemblers that permit labels, you
need not refer to locations in memory or numeric values by
using numbers. You can use labels .

In the example above, line 10 starts off with the word
LOOP. This means that you can use the word LOOP later on
to refer to that location (see line 50). That's quite a conven
ience: The assembler remembers where the word LOOP is
used, and you need not refer to an actual memory address; you
can refer to the label instead. This kind of label is called a PC
type (for Program Counter) or address-type label.

The other type of label is defined with an assembly
convention called an equate (an equal sign). This is quite simi
lar to the way that BASIC allows you to assign value to
words-it's called " assigning variables" when you do it in
BASIC. In ML, the = pseudo-op works pretty much the way
the = sign does in BASIC and these "equates" should be put
at the very start of an ML program. (See the Defs subprogram
in Appendix D.) Here's an example of equates, located at the
start of the program, in lines 10 and 20:
5 *= $0300
10 SCREEN = $0400; the location of the first byte in RAM of the

screen
20 LETTERA = $Cl; the letter A

30; ------------------------

227

B: How to Use LADS

40 START LOA LETTERA; notice "START" (an address-type
label)

50 STA SCREEN
60 RTS

Line 10 assigns the number $0400 (1024 decimal) to the
word SCREEN. Anytime thereafter that you use the word
SCREEN, LADS will substitute $0400 when it assembles your
ML program. Line 20 "equates" the word LETTERA to the
number $Cl. So, when you LDA LETTERA in line 40, the
assembler will put a C1 into your program. (Notice that, like
BASIC, LADS requires equate labels to be a single word. You
couldn't use LETTER A, since that's two words.)

Line 30 is just a REMark. The semicolon tells the assem
bler that what follows on that line is to be ignored. Neverthe
less, blank lines or graphic dividers like line 30 can help to
visually separate subroutines, tables, artd equates from your
actual ML program. In this case, we've used line 30 to sepa
rate the section of the program which defines labels (lines 10-
20) from the program proper (lines 40-60). All this makes it
easier to read and understand your source code later.

Automatic Math
There are times when you will want to have LADS do addi
tion for you. That's where the + pseudo-op comes in. If you
write " label+ 1" you will add 1 to the value of the label.
Here's how it works:
10 *= 864
20 HIMEM = $73; top-of•memory pointer.

30; -----------------------·-----
40 LOA #O:STA HIMEM:LDA #$50:STA HIMEM+l

Here we are putting a new location into the top-of
memory pointer which the computer uses to decide where it
can store things . (Doing that could protect an ML program
which resides above the address stored in this pointer.) Like
all pointers, it uses two bytes. If we want to store $5000 into
this pointer, we store the lower half (the least significant byte)
into MEMTOP. We'll want to put the number $50 into the
most significant byte of the pointer-but we don 't need to
waste time making a new label. It's just one higher in memory
than MEMTOP, hence, MEMTOP+ 1.

You'll also want to use the + pseudo-op command in
constructions like this :

228

10 ·= 864
15 SCREEN = $0400

17; -----------------------------
20 LOA #160; the blank character
30 LOA #0
40 START STA SCREEN,Y
50 STA SCREEN +256,Y
60 STA SCREEN +512,Y
70 STA SCREEN +768,Y
80 INY
90 BNE START

B: How to Use LADS

This is the fastest way to fill memory with a given byte.
In this case we're clearing out the screen RAM by filling it
with blanks. But it's easy to indicate multiples of 256 by just
adding them to the label SCREEN.

A similar pseudo-op command is the #<. This refers to
the least significant byte of a label. For example:

10 ·= $0360
20 SCREEN = $0400
25 SCREENPOINTER = $FB
30 ;--------------------
40 LOA #<SCREEN; LSB (least significant byte of the label

SCREEN, $11)
50 STA SCREENPOINTER

You'll find this technique used several times in the LADS
source code. It puts the LSB (least signficant byte) or the MSB
(most signficant byte) of a label into the LSB or MSB of a
pointer. In the example above, we want to set up a pointer
that will hold the address of the screen RAM. The pointer is
called SCREENPOINTER, and we want to put $11 (the LSB of
SCREEN) into SCREENPOINTER. So, we extract the LSB of
SCREEN in line 40 by using # combined with the less-than
symbol. We would complete the job with the greater-than
symbol to fetch the MSB: 60 LDA #>SCREEN. Notice that
these symbols must be attached to the label; no space is al
lowed. For example, LDA #> SCREEN would create problems.
This LSB or MSB extraction from a label is something you'll
need to do from time to time. The#< and #> pseudo-ops do
it for you.

Chained Files
It is sometimes convenient to create several source code sub
programs, to break the ML program source code into several

229

8: How to Use LADS

pieces. LADS source code is divided into a number of program
files: Array, Equate, Math, Pseudo, and so on. This way, you
don't need to load the entire source code in the computer's
memory when you just want to work on a particular part of it.
It also allows you to assemble source code far larger than
could fit into available RAM.

In the last line of each subprogram you want to link, you
put the linking pseudo-op .FILE NAME (use no quotes) to tell
the assembler which subprogram to assemble next. Sub
programs, chained together in this fashion, will be treated as if
they were one large program. The final subprogram in the
chain ends with the special pseudo-op .END NAME, and this
time the name is the filename of the first of the subprograms,
the subprogram which begins the chain. It's like stringing
pearls and then, at the end, tying thread so that the last pearl
is next to the first, to form a necklace.

Remember that you always need to include the .END
pseudo-op, even if you are assembling from a single, unlinked
source code file. In that case (where you're working with a
solo file), you don't need the linking .FILE pseudo-op. Instead,
refer the file to itself with .END NAME where you list the solo
file 's name. Here's an illustration of how three subprograms
would be linked to form a complete program:

5 ·= 864
10; FIRST --first program in chain
20;its first line must contain the start address
30;----------
40 LOA #20
50 STA $0400
60 .FILE SECOND

Then you save this subprogram to disk (it's handy to let
the first remark line in each subprogram identify the sub
program's filename) :
SAVE FIRST

Next, you create SECOND, the next link in the chain. But
here, you use no starting address; you enter no * = since only
one start address is needed for any program:
10; SECOND
20 INY:INX:DEY:DEX
30 .FILE THIRD
SAVE SECOND

230

B: How to Use LADS

Now write the final subprogram, ending it with the clasp
pseudo-op .END NAME which links this last subprogram to
the first:

10; THIRD
20 LOA #191:STA $0400
30 .END FIRST
SAVE THIRD

When you want to assemble this chain, just type ASM
FIRST, and it will assemble the entire chain.

If you want the object code (the finished ML program)
stored in the computer's memory during the LADS assembly,
add this line to FIRST, above:
35.0

If you want to save the object code as an ML program on
disk that can be later loaded into the computer and run, add
this line to FIRST:

36 .D PROGRAMNAME

When LADS is finished assembling, there will be an ML
program on disk called PROGRAMNAME. You can BLOAD it
and CALL 864 (that was the start address we gave this pro
gram), and the newly assembled ML program will execute.

Rules for LADS
Here are the rules you need to follow when writing ML for
LADS to assemble:

1. In general, all equate labels (labels using an equal sign) should
be defined at the start of your program. While this isn't ab
solutely necessary for labels with numbers above 255 (see
SCREEN in the example below), it is the best programming
practice. It makes it easier for you to modify your programs
and simplifies debugging. LADS itself locates all its equate
labels in the subprogram Defs (see Appendix D), the first
subprogram in its chain of source code files.

What's more, it is necessary that any equate label with
a value lower than 256 be defined before any ML mnemon
ics reference that label. So, to be on the safe side, just get
into the habit of putting all equate labels at the very start of
your programs:
10 *= 864
20 ARRAYPOINTER = $FB; (251 decimal), a zero page address

231

B: How to Use LADS

30 OTHERPOINTER = $FD; (253 decimal), another zero page
address

40 ;------------------------
50 LOY #O:LDA $41
60 STA ARRAYPOINTER,Y
70 SCREEN = $0400

Notice that it's permissible to define the label
SCREEN anywhere in your program. It's not a zero page
address . You do have to be careful, however, with zero page
addresses (addresses lower than 255). So most ML pro
grammers make it a habit to define all their equates at the
start of their source code.

2. Put only one pseudo-op on a line. Don't use a colon to put
two pseudo-ops on a single line:
10 *= 864
20 .O:.NH
30.0
40 .NH

(wrong)
(right)
(right)

The main exception to this is the .BYTE pseudo-op. Nor
mally, you'll set up messages with a zero at their end to de
limit them, to show that the message is complete. When
you delimit messages with a zero, you don't need to know
the length of the message; you just branch when you come
upon a zero:
10 *= 864
20 SCREEN = $0400

30 ;-------------------·--
40 LOY #0
50 LOOP LOA M~SSAGE,Y:BEQ END; loading a zero signals

end of message.
60 STA SCREEN, Y:INY: JMP LOOP; LADS ignores spaces after

a colon.
70 ; ---------- message area here ----··----
80 MESSAGE .BYTE "PRINT THIS ON SCREEN":.BYTE 0

Any embedded pseudo-ops like + or = or#> can be
used on multiple-statement lines . The only pseudo-ops
which should be on a line by themselves are the IjO
(inputjoutput) instructions which direct communication to
disk, screen, or printer, like .P, .S, .D, .END, and so forth.

Generally, it's important that you space things cor
rectly. If you wrote
SCREEN= 864

232

8: How to Use LADS

LADS would think that your label was screen= instead of
screen. So you need that space between the label and the
equal sign. Likewise, you need to put a single space between
labels, mnemonics, and arguments:

LOOP LOA MESSAGE

Running them together will confuse LADS:
LOOPLOA MESSAGE

and
LOOP LOAMESSAGE

arf' wrong.
Spaces within remarks are ignored. In fact, LADS ig

nores everything within remarks, everything following a
semicolon on a line (see line 70) . Thus, the semicolon
should come after anything you want assembled. You
couldn't rearrange line 50 above by putting the BEQ END
after the remark message. It would be ignored because it
followed the semicolon.

When using the text form of .BYTE, it's up to you
whether you use a close quote:
50 MESSAGE .BYTE "PRINT THIS" (right)
60 MESSAGE .BYTE "PRINT THIS (also right)

However, the true ASCII values will be assembled by
LADS, causing the text to flash when displayed on the
screen. You'll have to look up the Apple ASCII values for
the characters in the table in Chapter 2 and place these val
ues after the .BYTE pseudo-op.

3. The first character of any label must be a letter, not a number.
LADS knows when it comes upon a label because a number
starts with a number; a label starts with a letter of the
alphabet:
10 *= 864
20 LABEL = 255
30 LOA LABEL
40 LOA 255

Lines 30 and 40 accomplish the same thing and are
correctly written . It would confuse LADS, however, if you
wrote
20 5LABEL = 255 (wrong)

since the number 5 at the start of the word label would sig-

233

B: How to Use LADS

nal the assembler that it had come upon a number, not a la
bel. You can use numbers anywhere else in a label name
just don't put a number at the start of the name. Also avoid
using symbols like#, <, >, *, and other punctuation,
shifted letters, or graphics symbols within labels. Stick with
ordinary alphanumerics:
10 5LABEL (wrong)
20 LABEL15 (right)
30 *LABEL* (wrong)

4. Move the program counter forward, never backward. The * =

pseudo-op should be used to make space in memory. If you
set the PC below its current address, you would be writing
over previously assembled code:

10 *= 864
20 LOA #15
30 * = 900 (right)

10 *= 864
20 LOA #15
30 *= 864 (wrong, you 'll assemble right over the LOA #15)

Special Note to Tape Drive Users
LADS will assemble source code from disk or RAM memory.
It is possible to use the assembler with a tape drive, using the
RAM memory-based version (see Appendix C). Of course, disk
users can also assemble from RAM if they choose: That's an
extremely fast way to create ML programs of small to mod
erate size. You'll find yourself writing, assembling, testing, and
correcting your code at a rapid, efficient pace. But tape users
must use RAMLADS.

There is a restriction when using a tape drive as the out
board memory device. You cannot link files together, forming
a large, chained source code listing. The reason for this is that
LADS, like all sophisticated assemblers, makes two passes
through the source code. This means that tape containing the
source code would have to be rewound at the end of the first
pass.

It would be possible, of course, to have LADS pause at
the end of pass 1, announce that it's time to rewind the tape,
and then, when you press a key, start reading the source code
from the start of the tape. But this causes a second problem:
The object code cannot then be stored to tape. A tape drive
cannot simultaneously read and write .

234

B: How to Use LADS

The best way to use LADS with a tape drive is to as
semble from source code in RAM memory and to use the .0
(store object code to RAM pseudo-op). Then, when the fin
ished object code is in RAM, use the monitor program to save
it to tape . If you have access to a disk drive, you could con
struct a version of LADS which automatically directs object
code to tape during assembly using the .D pseudo-op. Note
that if you make a RAM-based version of LADS, you won't
use either the .FILE or .END pseudo-ops in your source
programs.

Assembling Source Code
Once you have typed in Apple LADS, you must BSAVE it to
disk. The start address of the 3.3 version is $79FD and the
length is $1690; The ProDOS version starts at $7800 and the
length is $167C. To execute LADS you BRUN the binary file.
(ProDOS users, RUN PROGRAMB.1.) After it loads and sets
up its special wedge (see Appendix C for details on this
wedge), you will be prompted with the BASIC prompt and a
cursor. You can now type in your files and save them just as
you would an Applesoft file. After saving the program to disk,
you assemble it by typing:
ASM filename

Make sure you have a space between ASM and your filename.
If you do not have the space, you will get a SYNTAX ERROR.
Remember, you must BRUN LADS before entering or saving
source code; and you cannot enter, load, save, or run BASIC
programs once you BRUN LADS since the BASIC tokenize
routine will not execute.

Typing In LADS
LADS will run on any Apple II. There are two versions of
LADS listed below. If you use the ProDOS operating system
be sure to enter Program B-1 and Program B-2; the DOS 3.3
version is Program B-3. Program B-1 will reconfigure for
LADS and BRUN LADS. This program must always be run to
install LADS in memory with ProDOS. Both versions of LADS
must be entered using " MLX," machine language editor. Com
plete instructions on how to enter the object code using MLX,
as well as the MLX program, can be found in Appendix G.

MLX will ask for the starting and ending address of
LADS. When asked enter the following:

235

B: How to Use LADS

DOS 3.3 LADS
Starting address: 79F8
Ending address: 9087

ProDOS LADS
Starting address: 7800
Ending address: 917F

Be sure to use the MLX Loader program (see Appendix G)
each time you use MLX to enter LADS object code.

LADS is a very long program. For those who prefer not to
type- it in, it can be purchased on disk, along with many of the
other programs in this book, by calling COMPUTE! Publica
tions toll-free at 1-800-334-0868 or by using the coupon in the
back of this book. Be sure to state that you want the disk for
the book Apple Machine Language for Beginners.

Running LADS
Once you have saved a copy of LADS using MLX on your
disk, you are ready to run it. To run the 3.3 version of LADS,
simply insert a disk that has DOS 3.3 on it and turn your Ap
ple on. When the prompt appears, insert a disk with LADS on
it and enter BRUN LADS (or whatever filename you used) and
press RETURN.

To load the ProDOS version, first insert a disk with
ProDOS on it and turn on your Apple. When the prompt ap
pears, insert a disk which contains the Loader program, B-1,
and LADS. Now run the Loader program; it will load and run
LADS for you. Once the Loader has executed LADS, type
NEW to delete the Loader from memory. Each time you want
to write source code or assemble code with LADS, you must
use the Loader program to load and run LADS.

(If you 've purchased the Apple Machine Language for
Beginners disk, you must have a disk with DOS 3.3 or ProDOS
on it inserted in the disk drive when you turn on the com
puter-the Apple Machine Language for Beginners disk does
not contain DOS and will not boot.)

Once LADS is executed, everything looks as if you were
in BASIC. If you want to be sure you are actually operating
under LADS, try this little test:

Enter this one-line program, 10 ? "THIS IS A TEST", and
press RETURN. Now type LIST. If you were in BASIC, your
Apple would have changed the question mark into the word
PRINT. If the question mark remains, you're in LADS.

236

B: How to Use LADS

Program B-1. ProDOS LADS Loader

10 REM LOADER FOR PRODOS ONLY
20 FOR I=768 TO I +5
30 READ A:POKE I,A
40 NEXT I
50 CALL 768
60 PRINT CHR$(4);"BRUN LADS"
70 DATA 169,31,32,245,190,96

Note that this Loader program should be changed when you are going to
assemble a program larger than LADS itself (or create a new, expanded
version of LADS as you do when adding the disassembler option de-
scribed in Appendix C). Change the 31 in line 70 above to, say, 51 which
will give you more protected memory.

Program B-2. ProDOS LADS Object Code
This program requires MLX, Appendix G, to be entered.

START ADDRESS: 7800
END ADDRESS: 917F

7800: 4C 10 84 A9 00 A0 32 99 cc
7808: 9A 90 88 00 FA A9 03 85 98
7810: EB 85 4C 8D 80 90 A9 78 57
7818: 85 EC 85 4D BD 81 90 A9 90
7820: 01 BD C6 90 89 00 04 C9 7C
7828: A0 F0 07 99 38 91 CB 4C 0C
7830: 24 78 84 F9 20 CF 81 20 AB
7838: 68 84 A9 00 BD A0 90 20 68
7840: 21 85 AD 83 90 00 3F 20 80
7848: 63 SA A9 E6 20 BC 82 A9 D9
7850: 4C 20 BC 82 A9 41 20 BC 84
7858: 82 A9 44 20 BC 82 A9 53 1C
7860: 20 BC 82 2121 63 SA AD A9 33
7868: 90 D0 08 A9 D0 85 FB A9 16
7870: BE 85 FC 20 94 84 AD A3 67
7878: 9111 85 FD BD 9C 90 AD A4 D8
7880: 90 85 FE BD 9D 90 20 lilA 53
7888: 83 AD A0 90 F0 fcl3 4C 9C 92
7890: 7E 2111 21 85 A9 l10 BD AS 5C
7898: 90 BD 82 90 AC 83 91i! D0 Clll
7BA0: 03 4C C0 78 8C C7 90 AD 4E
7BA8: C5 90 FfO 0C 20 6C SA 2111 6D
7880: 1D SA 20 45 SA 20 1D BA CA
7888: AD BE 90 Fill 03 20 19 89 AB
7BC0: 4C 1D 84 AD 98 90 F0 17 AS
7BC8: C9 03 D0 72 A9 01 BD 98 AE
7BD0: 90 AD D3 BE D0 68 A9 08 62

237

B: How to Use LADS

7BD8: 18 6D 9A 9fil 8D 9A 9fil 4C D7
7BEfil: AD 7D AD B3 9fil Ffil 39 Afil SA
7BE8: FF C8 89 Dfil BE Ffil 2E 99 84
7BF0: 38 91 C9 2fil Dfil F3 C8 89 45
7BF8: Dfil BE C9 3D Dfil fil3 4C DD 12
7Cfilfil: 7D A2 filfil 8E C7 9fil SA 99 78
7Cfil8: 38 91 89 Dfil 8E Ffil 08 9D AB
7C1fil: D0 8E E8 C8 4C filA 7C 9D DF
7C18: Dfil 8E 4C Cfil 7B 2fil 62 8fil 54
7C2fil: 20 fil4 8fil 4C Cfil 78 AD 17 65
7C28: SF C9 40 Bfil 06 AD 18 8F 15
7C30: EE B2 9fil 49 Bfil BD A1 9fil 02
7C38: 2fil A6 8fil 4C BS 7C Afil filfil Afil
7C4fil: 8C A8 9fil 89 D4 8E C9 41 filD
7C48: 9fil fil3 EE AS 9fil 99 17 8F 58
7C5fil: CB 89 D4 8E Ffil 16 99 17 C9
7C58: SF C9 41 90 03 EE AS 90 72
7C6fil: C8 89 04 8E Ffil 06 99 17 99
7C68: SF 4C 60 7C 88 8C A7 90 66
7C70: AD A9 9fil Dfil 4fil AD AS 9fil 64
7C78: Dfil AC A9 17 85 FB A9 8F AA
7C8fil: 85 FC A0 fil0 AD 17 8F C9 42
7C88: 30 80 07 18 E6 FB 90 02 72
7C9fil: E6 FC 81 FB F0 10 C9 29 86
7C98: F0 file C9 2C Ffil 08 C9 20 64
7CA0: Ffil 04 C8 4C 92 7C 48 98 Afil
7CA8: 48 A9 filfil 91 FB 20 94 84 57
7CB0: 68 AS 68 91 FB AD 17 SF 82
7CB8: C9 23 F0 3F C9 28 F0 17 59
7CC0: AD 98 90 C9 08 F0 37 C9 62
7CC8: 03 Dfil 71 A9 08 18 6D 9A 56
7CDfil: 9fil 80 9A 90 4C AD 7D AC 92
7CD8: A7 90 89 17 SF C9 29 Ffil 59
7CEI3: lfil AD 98 90 C9 01 D0 09 C6
7CE8: A9 10 18 6D 9A 90 8D 9A 61
7CF0: 90 AD 9B 9fil C9 06 F0 53 BS
7CF8: 4C 72 7D 4C 8D 7D AD B3 9A
7D00: 90 Dfil 03 4C 72 7D 38 AD 44
7D08: A3 90 ES FD 48 AD A4 90 68
7Dl0: ES FE 80 filE C9 FF Ffil 04 E8
7D18: 68 4C EA 7F 68 1fil filC 4C 97
7D20: 2E 7D Ffil fil4 68 4C EA 7F B9
7D28: 68 1fil fil3 4C EA 7F 38 E9 30
7D3fil: 02 8D A3 90 A9 00 BD A4 1A
7D38: 9fil 4C 72 7D AC A7 90 88 62
7D40: 89 17 8F C9 2C D0 04 C8 El
7D48: 4C E6 7E AD 9A 90 C9 4C C4
7D50: Dfil 03 4C 7B 7D AD A4 9fil 32
7D58: D0 59 AD 98 90 C9 09 F0 3fil
7D60: 52 C9 06 80 0D C9 02 F0 47

238

B: How to Use LADS

7D68: 09 A9 04 18 6D 9A 90 8D D8
7D70: 9A 90 20 60 89 20 86 89 4A
7D78: 4C DD 7D AC A7 90 B9 17 95
7D80: 8F C9 29 D0 05 A9 6C BD 1D
7D88: 9A 90 4C D7 7D AD 18 8F SE
7D90: C9 22 D0 06 AD 19 8F 8D F1
7098: A3 90 AD 98 90 C9 01 D0 77
7DA0: D1 A9 08 18 6D 9A 90 8D FS
7DA8: 9A 90 4C 72 7D 20 60 89 7C
7DB0: 4C DD 7D AD 9B 90 C9 02 88
7DB8: F0 04 C9 07 D0 0C AD 9A 83
7DC0: 90 18 69 08 8D 9A 90 4C FB
7DC8: D7 7D C9 06 80 09 AD 9A 48
7DD0: 90 18 69 0C 8D 9A 90 20 20
7DD8: 60 89 20 A0 89 AD 83 90 6F
7DE0: D0 03 4C 99 7E AD cs 90 EE
7DE8: D0 03 4C 99 7E AD C7 90 FA
7DF0: D0 3E AD C1 90 F0 2A A9 FB
7DF8: 14 38 ES 24 8D B4 90 20 8B
7E00: F7 82 A2 04 20 9A 82 AC 48
7E08: 84 90 10 05 A0 02 4C 13 BE
7E10: 7E A9 20 20 8C 82 88 D0 BE
7E18: FA 20 F7 82 A2 01 20 96 81
7E20: 82 A9 14 85 24 A9 9 8 85 61
7E28: F8 A9 91 85 FC 20 0C SA 23
7E30: A9 1E 38 ES 24 8D 85 90 42
7E38: AD C1 90 F0 1F 20 F7 82 89
7E40: A2 04 20 9A 82 AC 85 90 FF
7E48: F0 0A 30 08 A9 20 20 8C 91
7E50: 82 88 D0 FA 20 F7 82 A2 03
7E58: 01 20 96 82 A9 1E 85 24 cu
7E60: 20 79 8A AD 8F 90 F0 11 28
7E68: C9 01 D0 05 A9 3C 4C 73 3F
7E70: 7E A9 3E 20 8C 82 20 9E AF
7E78: 8A AD C8 90 F0 13 20 1D 79
7E80: BA A9 38 20 8C 82 A9 00 D9
7E88: 85 F8 A9 02 85 FC 20 0C 09
7E90: 8A 20 63 8A AD A0 90 D0 D1
7E98: 03 4C 86 78 AD 83 90 D0 E0
7EA0: 18 EE 83 90 AD 9C 90 85 EC
7EA8: FD AD 9D 90 85 FE 20 F7 2D
7E80: 82 A9 01 20 10 83 20 CF 1A
7E88: 81 4C 37 78 20 F7 82 A9 87
7EC0: 01 20 10 83 A9 02 20 10 26
7EC8: 83 AD C1 90 F0 15 20 F7 48
7ED0: 82 A2 04 20 9A 82 A9 0D 79
7ED8: 20 8C 82 20 F7 82 A9 04 88
7EE0: 20 10 83 4C D0 kJ3 89 17 44
7EE8: 8F C9 58 F0 62 88 88 89 3A
7EF0: l7 8F C9 29 D0 03 4C D7 2C

239

B: How to Use LADS

7EF8: 7C AD A4 90 D0 0F AD 98 F6
7F00: 90 C9 02 F0 4F C9 05 F0 AS
7F08: 48 C9 01 F0 77 AD 98 90 88
7Fl0: C9 01 D0 0C AD 9A 90 18 20
7Fl8: 69 18 BD 9A 90 4C D7 7D 10
7F20: AD 98 90 C9 05 F0 08 A9 31
7F28: 31 20 8A 7F 4C 38 7F AD 13
7F30: 9A 90 18 69 1C 80 9A 90 17
7F38: 4C D7 7D 20 85 SA 20 6C 08
7F40: SA A9 80 85 F8 A9 90 85 84
7F48: FC 20 0C SA 4C DO 7D AD 7A
7F50: A4 90 D0 33 AD 98 90 C9 D9
7F58: 02 D0 0C A9 10 18 6D 9A FE
7F60: 90 8D 9A 90 4C 72 7D C9 58
7F68: 01 F0 10 C9 03 F0 0C C9 80
7F70: 05 F0 08 A9 32 20 8A 7F D0
7F78: 4C 38 7F A9 14 18 60 9A 6D
7F80: 90 8D 9A 90 4C 72 7D AD 5C
7F88: 98 90 C9 02 00 0C A9 18 F4
7F90: 18 60 9A 90 8D 9A 90 4C 97
7F98: D7 7D C9 01 F0 10 C9 IJ3 SA
7FA0: F0 0C C9 05 F0 08 A9 33 02
7FA8: 20 8A 7F 4C 38 7F A9 lC 62
7F80: 18 6D 9A 90 8D 9A 90 4C B7
7F88: D7 7D 8D 84 90 8C 86 90 84
7FC0: BE 85 90 A9 8A 20 8C 82 73
7FC8: 68 AA 68 AS 98 48 SA 48 81
7FD0: 98 20 24 ED AD 84 90 AC 95
7FD8: 86 90 AE 85 90 6k:l A0 00 CF
7FE0: 98 99 00 BE CB C0 FF D0 AF
7FEB: FB 60 20 63 SA 20 85 SA 21
7FF0: 20 6C SA A9 EF 85 F8 A9 3E
7FF8: BF 85 FC 20 0C SA 20 63 F0
8000: SA 4C 72 7D A0 FF CB 89 CF
8008: D0 BE F0 56 C9 20 D0 F6 FF
8010: CB C8 BC AD 9k:l 38 AS E8 80
8018: ED AD 90 85 E8 AS EC E9 9F
8020: 00 85 EC A0 00 89 D0 BE 41
8028: 49 80 91 E8 C8 89 D0 BE 3C
8030: C9 20 F0 05 91 E8 4C 2C BD
8038: 80 CB 89 DO BE C9 3D F0 F6
8040: 32 88 AS FD 91 E8 C8 AS 84
8048: FE 91 EB AE AD 90 CA A0 78
8050: 00 BD D0 BE F0 08 99 D0 6F
8058: BE ·EB CB 4C 51 80 99 00 49
8060: BE 60 20 85 SA A9 28 85 ED
8068: F8 A9 90 85 FC 20 0C BA 47
8070: 4C Al 80 88 BC AE 90 AD 86
8078: A9 90 00 17 CB CB CB 8C 85
8080: A2 90 A9 00 18 6D A2 90 85

240

B: How to Use LADS

8088: 85 F8 A9 BE 69 00 85 FC BC
8090: 20 94 84 AC AE 90 AD A3 DB
8098: 90 91 EB AD A4 90 C8 91 29
80A0: EB 68 68 4C DD 7D AIJ 80 74
80A8: 90 85 ED AD 81 90 85 EE 85
8080: 20 84 81 A9 FF BD C4 90 0A
8088: 38 AS E8 ES ED AS EC ES Eel
80Cel: EE Bel 63 A2 elel 38 AS ED 16
80C8: E9 02 85 ED AS EE E9 00 88
80D0: 85 EE A0 00 81 ED 30 0C 16
80D8: AS ED D0 02 C6 EE C6 ED CF
80E0: E8 4C D4 80 AS ED 8D 87 C3
80E8: 90 AS EE 8D 88 90 81 ED AB
Be!Fel: CD A1 90 Fe! 03 4C 16 81 59
80F8: E8 BE A2 90 A2 01 AD 82 96
8100: 90 F0 04 C8 20 B4 81 C8 34
8108: 89 17 SF Fe! 53 C9 30 90 61
8110: 4F EB D1 ED F0 Fl AD 87 70
8118: 90 85 ED AD 88 90 85 EE SF
8120: 20 84 81 4C 88 80 AD C4 3D
8128: 90 30 01 60 AD B3 90 D0 D3
8130: 02 F0 17 20 85 BA 20 6C 58
8138: 8A 20 lD SA A9 18 85 F8 89
8140: A9 90 85 FC 20 0C 8A 20 23
8148: 63 8A 68 68 AD 9A 90 29 55
8150: lF C9 10 F0 08 AD BF 90 6D
8158: D0 03 4C D7 7D 4C 72 7D 08
8160: EC A2 90 F0 03 4C 16 81 9A
8168: EE C4 90 F0 03 20 8D 81 CA
8170: AC A2 90 AD 82 90 F0 01 lA
8178: C8 81 ED BD A3 90 C8 Bl 85
8180: ED BD A4 90 AD BF 90 F0 F9
8188: 0A C9 02 D0 1E AD A4 90 Dl
Bl90: 8D A3 90 AD BE 90 F0 13 SD
Bl9B: 18 AD 8C 90 6D A3 90 BD sc
81A0: A3 90 AD BD 90 6D A4 90 3F
BlAB: 8D A4 90 AD 83 90 F0 01 48
BlB0: 60 4C 16 81 AS ED D0 02 SA
8188: C6 EE C6 ED 60 20 85 8A AB
81C0: A9 62 85 t'B A9 90 85 FC 39
BlCB: 20 0C SA 20 63 BA 60 20 58
81Del: F7 82 A9 01 20 10 83 A9 A7
81D8: 92 20 75 82 BD C9 90 60 19
81E0: A9 96 20 75 82 BD CA 90 2A
BlEB: BD 15 91 20 00 8F D0 14 E0
81F0: 91 AD 9C 90 BD 26 91 AD 9A
81F8: 9D 90 BD 27 91 20 00 BF DF
B200: C3 21 91 60 A9 00 A6 36 38
B208: 85 36 A9 Cl A4 37 8~ 37 F2
8210: A9 SA 20 ED FD A9 50 8D 34

241

B: How to Use LADS

8218: 79 05 AS 36 BD DF 82 86 AA
8220: 36 84 37 60 AD C9 90 BD 91
8228: 1A 91 20 00 BF CA 19 91 SF
8230: AD 36 91 60 8D 36 91 AD E7
8238: CA 90 8D 1A 91 20 00 BF E6
8240: CB 19 91 60 AD C9 90 F0 50
8248: 08 20 60 82 A9 00 BD C9 BF
8250: 90 60 AD CA 90 F0 FA 20 76
8258: 60 82 A9 00 BD CA 90 60 7C
8260: BD 0D 91 20 00 BF cc 0C 48
8268: 91 60 A9 F0 BD 30 BE A9 E6
8270: FD 8D 31 BE 60 BD 12 91 DB
8278: AS F9 8D 37 91 20 00 BF C0
8280: C8 0E 91 90 0D C9 46 D0 95
8288: 09 20 00 BF C0 00 91 4C 8B
8290: 7D 82 AD 13 91 60 BE 78 7F
8298: 91 60 8A 8D 79 91 60 8C 08
82A0: 7B 91 8E BS 90 AD 78 91 B2
82A8: C9 01 D0 0C 20 24 82 08 4C
82B0: AC 7B 91 AE BS 90 28 60 Atl
82B8: AC 7B 91 60 8C 7B 91 BD 2E
82C0: 7A 91 AD 79 91 C9 02 D0 3D
82C8: 09 AD 7A 91 20 34 82 4C 49
82D0: B8 82 AD 79 91 C9 04 D0 AC
82D8: 0B AD 7A 91 09 80 20 00 C1
82E0: C1 4C B8 82 AD C1 90 D0 7F
82E8: 08 AD 7A 91 09 80 20 F0 41
82F0: FD AD 7A 91 4C B8 82 A9 BC
82F8: 00 8D 79 91 BD 78 91 A9 C4
8300: BC BD 30 BE A9 82 BD 31 SE
8308: BE 60 AD 00 C0 C9 83 60 D0
8310: C9 01 D0 03 4C 44 82 C9 CB
8318: 02 D0 03 4C 52 82 4C 6A 19
8320: 82 8D 7A 91 A9 00 cs B8 cs
8328: D0 1E A9 02 cs B9 D0 18 43
8330: A0 00 B1 BB C9 20 D0 05 BE
8338: E6 BB 4C 32 83 C9 2F 90 BF
8340: 07 C9 3A B0 03 4C D8 83 0E
8348: AD 00 02 C9 41 D0 74 AD E6
8350: 01 02 C9 53 D0 6D AD 02 60
8358: 02 C9 4D D0 66 AD 03 02 7B
8360: C9 20 D0 SF A0 00 B9 04 E0
8368: 02 C9 00 F0 09 09 80 99 F8
8370: 00 04 C8 4C 66 83 A9 A0 BB
8378: 99 00 04 99 01 04 99 02 B3
8380: 04 68 68 20 00 BF C7 2F 70
8388: 91 AD 37 91 D0 32 AD 3C AA
8390: BE 0A 0A 0A 0A AC 3D BE 97
8398: C0 01 F0 02 09 80 8D 33 17
83A0: 91 20 00 BF cs 32 91 AD 3C

242

B: How to Use LADS

83A8: 38 91 29 0F AS C8 C8 A9 E9
83B0: 2F BC 37 91 8D 38 91 99 7C
83B8: 37 91 20 00 BF C6 2F 91 cc
83C0: 4C 03 7B AD 7A 91 C9 3A E0
83C8: 80 0D C9 20 D0 03 4C B1 83
83D0: 00 38 E9 30 38 E9 D0 60 91
83D8: A6 AF 86 69 A6 B0 86 6A FS
83E0: 18 20 roc DA 20 EC 83 68 4F
83E8: 68 4C 6A D4 A0 00 84 94 74
83Fiil: A9 02 85 95 B1 B8 91 94 7F
83F8: C8 C9 00 D0 F7 88 88 B1 88
8400: 94 C9 20 F0 F9 C8 A9 00 1F
8408: 91 94 C8 C8 C8 C8 C8 60 FF
8410: A9 21 85 BB A9 83 85 BC C5
8418: A9 4C 85 BA 60 A0 00 A2 8D
8420: FF E8 B9 AS 8D CD D0 BE FB
8428: F0 0A C8 C8 C8 E0 39 D0 DE
8430: F0 4C E2 7B CB B9 AS BD E4
8438: CD D1 BE F0 06 CB CB D0 33
8440: E0 F0 EE cs B9 AS BD CD B9
8448: D2 BE F0 05 CB D0 D2 F0 EC
8450: E0 AD D3 BE C9 20 F0 04 4D
8458: C9 00 D0 D5 BD 50 BE 8D 97
8460: 9B 90 BC 88 BE BC 9A 90 E7
8468: 4C C3 7B A2 01 20 96 82 SA
8470: A2 04 BE B5 90 20 9F 82 BF
8478: AE BS 90 CA D0 F4 20 9F 3F
8480: 82 C9 2A F0 0E A9 DE 85 EB
8488: FB A9 SF 85 FC 20 0C SA 4F
8490: 4C BC 7E 60 A0 00 B1 FB 29
8498: F0 04 CB 4C 96 84 BC DB B4
84A0: SF 88 A9 00 BD A3 90 BD 72
84A8: A4 90 A2 01 BE B5 90 B1 AA
84B0: FB 29 0F BD D9 BF BD DC C1
84B8: SF A9 00 BD DA SF SD DD DA
84C0: SF CA F0 12 20 E6 84 AD D6
84C8: 09 SF 80 DC SF AD DA SF 9A
8400: BD DD SF 4C C1 84 EE B5 82
8408: 90 AE B5 90 20 0D 85 88 5E
84E0: CE DB SF 00 CA 60 18 0E 50
84E8: 09 SF 2E DA SF 0E 09 SF 2E
84F0: 2E DA SF 18 AD DC SF 6D AS
84F8: D9 SF BD 09 8F AD DD 8F A0
8500: 6D DA SF BD DA 8F 0E 09 4E
8508: SF 2E DA SF 60 18 AD D9 53
8510: SF 60 A3 90 8D A3 90 AD 85
8518: DA 8F 6D A4 90 80 A4 90 01
8520: 60 20 DE 7F A0 00 8C A9 FE
8528: 90 BC C8 90 BC BF 90 BC Dl
8531i!l: BE 91i!J AD C3 90 Dfl:l 0C 20 B0

243

B: How to Use LADS

8538: 9F 82 8D 9E 90 20 9F 82 16
8540: BD 9F 90 20 9F 82 C9 20 CB
8548: D0 08 20 C5 86 68 68 4C 11
8550: 86 7B C9 20 4C SF 85 20 C3
8558: 9F 82 D0 03 4C cs 86 C9 6E
8560: 3A D0 03 4C 09 86 C9 38 13
8568: D0 73 BC 84 90 AD C1 90 E4
8570: F0 55 BD C8 90 AD 84 90 8C
8578: F0 06 20 A7 85 4C CF 85 7E
8580: 20 9F 82 F0 0E C9 7F 90 0A
8588: 03 20 17 86 99 D0 BE C8 SE
8590: 4C 80 85 20 6C BA 20 1D 7F
8598: SA 20 79 BA 20 63 SA A9 16
85A0: 00 BD 84 90 4C CF 85 8D EB
85A8: CB 90 BD 84 90 A0 00 20 60
8580: 9F 82 D0 07 99 00 02 AC 34
8588: 84 90 60 10 03 20 F4 88 SA
85C0: 99 00 02 CB 4C AF 85 20 81
85C8: 9F 82 F0 03 4C C7 85 20 3F
85D0: cs 86 AD 84 90 D0 05 68 98
85D8: 68 4C 86 78 60 C9 3E F0 48
85E0: 58 C9 3C F0 SF C9 28 D0 E8
85E8: 03 EE BE 90 C9 2A D0 03 AD
85F0: 4C 4C 86 C9 2E F0 16 C9 CD
85F8: 24 F0 15 C9 7F 90 03 20 FS
8600: 17 86 99 D0 BE C8 4C 57 02
8608: 85 BD C3 90 60 4C 69 87 48
8610: 99 D0 BE C8 4C E4 86 38 87
8618: E9 7F BD AC 90 A2 FF CE 54
8620: AC 90 F0 08 EB 8D D0 D0 F6
8628: 10 FA 30 F3 EB 8D D0 D0 F1
8630: 30 07 99 D0 BE CB 4C 2C 83
8638: 86 29 7F 60 A9 02 BD 8F FB
8640: 90 4C 57 85 A9 01 8D 8F 18
8648: 90 4C 57 85 AD 8F 90 F0 72
8650: 20 A9 2A 99 D0 BE C8 EE F7
8658: A9 90 AD BF 90 C9 01 F0 AE
8660: 08 AS FE 80 A3 90 4C 57 E2
8668: 85 AS FD BD A3 90 4C 57 89
8670: 85 20 57 85 AD 83 90 F0 D9
8678: 08 A9 2A 20 8C 82 20 79 66
8680: BA 20 63 8A AD A9 90 D0 FS
8688: 20 A0 00 89 D0 BE C9 20 DD
8690: F0 04 C8 4C 88 86 CB 84 81
8698: F8 A9 D0 18 65 FB 85 FB CB
86A0: A9 BE 69 00 85 FC 20 94 48
86A8: 84 AD 83 90 F0 08 AD C0 A6
8680: 90 F0 03 20 83 88 AD A3 63
8688: 90 85 FD AD A4 90 85 FE 78
86C0: 68 68 4C 86 78 99 D0 BE 80

244

B: How to Use LADS

86C8: C8 C0 FF D0 FB 99 D0 BE DS
86D0: 20 9F 82 20 9F B2 F0 06 17
86D8: A9 00 BD C3 90 60 A9 01 03
86E0: 8D A0 90 60 A2 00 20 9F E9
86E8: B2 F0 2C C9 3A F0 2B C9 4S
86F0: 20 F0 F3 C9 38 F0 20 C9 0D
S6FB: 2C F0 0F C9 29 F0 08 9D 97
S700: BD SF EB 99 D0 BE cB 4C 27
8708: E6 B6 BE AA 90 99 D0 BE C3
B710: CB 20 28 B7 4C 57 BS BD C1
B7lB: 84 90 A9 00 BE AA 90 99 84
B720: D0 BE 20 28 B7 AD 84 90 DE
S72B: 4C SA 8S A9 00 SD A3 90 4D
8730: SD A4 90 AA 0E A3 90 2E 3A
873S: A4 90 0E A3 90 2E A4 90 D0
B740: 0E A3 90 2E A4 90 0E A3 58
874B: 90 2E A4 90 8D 8D BF C9 96
B7S0: 41 90 02 E9 07 29 0F 0D 08
87SB: A3 90 BD A3 90 EB EC AA FS
S760: 90 D0 D1 EE A9 90 A9 01 FS
8768: 60 C0 00 F0 0E AE 83 90 0A
8770: D0 09 4S 9S 4S 20 04 S0 0S
8778: 68 AB 6B 99 D0 BE CB 20 FE
8780: 9F 82 99 D0 BE CB C9 42 AD
878S: D0 68 A9 00 BD 89 90 AD 71
8790: 83 90 F0 17 sc 86 90 AD 38
S79S: cs 90 F0 0F 20 6C BA 20 AS
87A0: 1D SA 20 4S SA 20 1D BA D2
87AS: AC 86 90 20 9F S2 99 D0 DA
S780: BE CB C9 20 D0 FS 20 9F 82
8788: 82 99 D0 BE CB C9 22 D0 F4
87C0: 4S 20 9F 82 D0 03 4C 98 SA
87CS: 88 C9 3A D0 03 4C 98 88 E8
87D0: C9 38 D0 0C 20 A7 ss AE C7
B7DS: C1 90 BE CS 90 4C 9S ss 8A
87E0: C9 22 D0 03 4C C1 87 AE CE
87E8: 83 90 D0 09 20 FE 89 4C FC
87F0: C1 B7 4C 69 88 99 D0 BE DS
87FB: AA BC 86 90 20 D6 B9 AC 7C
8800: 86 90 CB 4C C1 87 A2 00 DF
8S08: BE 8A 90 9D D2 SF EB AD 4F
SS10: 8A 90 D0 7S 20 9F 82 F0 S9
SS1S: 43 C9 3A F0 3F C9 38 D0 F8
SS20: 0C 20 A7 BS AE C1 90 BE 88
SS28: CS 90 4C sc 88 BD SF SF D9
BB30: AD 83 90 D0 0D AD SF SF 91
8838: C9 20 D0 D3 20 FE 89 4C E9
8840: 0F as AD SF SF 99 D0 BE 89
8848: ca C9 20 F0 18 C9 00 F0 1C
88S0: 14 C9 3A F0 10 9D D2 SF 60

245

B: How to Use LADS

8858: EB 4C 0F 88 EE 8A 90 BD 6C
8860: 60 BF 4C 2D 88 A9 D2 85 F7
8868: F8 A9 BF 85 FC sc 86 90 44
8870: 20 94 84 AE A3 90 20 D6 AS
8878: 89 AC 86 90 A9 00 A2 05 F0
8880: 9D D2 BF CA D0 FA 4C 0F CD
8888: 88 AD 83 90 DIIJ 03 20 FE 9A
8890: 89 AD 60 BF C9 3A F0 03 F2
8898: 20 cs 86 BD C3 90 EE C7 DA
88A0: 90 68 68 AD 83 90 F0 08 cs
88A8: AD cs 90 F0 03 4C sc 7E A3
8880: 4C 86 78 AD 83 90 C9 02 49
8888: D0 01 60 20 F7 82 A2 02 91
BBC0: 20 9A 82 38 AD A3 90 ES SF
88C8: FD 8D A1 90 AD A4 90 ES 80
88D0: FE SD A2 90 A9 00 20 8C 6C
88D8: 82 AD A1 90 D0 03 CE A2 A6
88E0: 90 CE A1 90 D0 EE AD A2 68
88EB: 90 D0 E9 20 F7 82 A2 01 cs
88F0: 20 96 82 60 38 E9 7F BD 04
BBFB: AC 90 A2 FF CE AC 90 F0 14
8900: 08 EB 8D D0 D0 10 FA 30 03
8908: F3 EB 8D D0 D0 30 07 99 03
8910: 00 02 C8 4C 09 89 29 7F C1
8918: 60 A0 00 A2 00 89 D0 BE C4
8920: C9 28 F0 04 C8 4C 1D 89 7C
8928: CB 89 D0 BE 20 38 89 80 86
8930: 12 9D 8D BF EB 4C 28 89 86
8938: C9 3A 80 06 38 E9 30 38 37
8940: E9 D0 60 A9 00 9D 8D SF A4
8948: A9 BD 85 FB A9 SF 85 FC A3
8950: 20 94 84 AD A3 90 SD 8C 38
8958: 90 AD A4 90 BD 8D 90 60 A1
8960: AD 83 90 D0 04 20 FE 89 7E
8968: 60 AD cs 90 F0 11 20 F7 DC
8970: 82 A2 01 20 96 82 AE 9A 46
8978: 90 20 26 BA 20 1D BA AE 82
8980: 9A 90 20 D6 89 60 AD 83 53
8988: 90 D0 04 20 FE 89 60 AD 27
8990: cs 90 F0 06 AE A3 90 20 6E
8998: 26 BA AE A3 90 4C D6 89 SE
89A0: AD 83 90 D0 07 20 FE 89 D6
89AB: 20 FE 89 60 AD cs 90 F0 59
8980: 06 AE A3 90 20 26 BA AE 4D
8988: A3 90 20 D6 89 AD cs 90 52
89C0: F0 0E AD C6 90 F0 03 20 60
89CB: 1D 8A AE A4 90 20 26 SA 09
89D0: AE A4 90 4C D6 89 BE A2 D7
89DB: 90 AD C2 90 F0 05 A0 00 DD
89E0: BA 91 FD AD C0 90 F0 16 78

246

B: How to Use LADS

89E8: 20 F7 82 A2 02 20 9A 82 cc
89Fiil: AD A2 90 20 8C 82 20 F7 8F
89F8: 82 A2 !ill 20 96 82 18 A9 80
8Aiillil: !ill 65 FD 85 FD A9

"" 65
03

8A08: FE 85 FE 60 Alil "" 81 F8 48
8AHl: Flil lilA 20 8C 82 20 98 SA 40
8Al8: cs 4C 0E SA 60 A9 20 20 19
8A20: 8C 82 20 98 SA 60 BE 85 6A
8A28: 90 AD C6 90 F0 08 SA 20 88
8A30: 50 88 20 Cl SA AE 85 90 78
8A38: 60 A9 00 20 24 ED 20 Cl C4
8A40: SA AE 85 90 60 AD C6 90 DD
8A48: Flil lilE AS FE 20 50 88 AS FC
8A50: FD 20 50 88 20 F4 SA 60 79
SASS~ A6 FD AS FE 20 24 ED 20 72
8A60: F4 SA 60 A9 0D 20 8C 82 lE
8A68: 20 98 SA 60 AE 9E 90 AD C9
8A70: 9F 90 20 24 ED 20 2A 88 SF
8A78: 60 A9 D0 85 F8 A9 BE 85 C3
8A80: FC 20 0C BA 60 A9 07 20 1E
8A88: 8C 82 A9 12 20 8C 82 20 lilC
8A90: 79 BA A9 0D 20 8C 82 60 64
8A98: AE 83 90 D0 101 60 AE Cl 89
8AA0: 90 D0 01 60 8D 84 90 20 DB
8AA8: F7 82 A2 04 20 9A 82 AD 0D
8A80: 84 90 20 8C 82 20 F7 82 18
8A88: A2 01 20 96 82 AD 84 90 91
8AC0: 60 AE 83 90 D0 01 60 AE 28
SACS: Cl 90 D0 01 60 20 F7 82 03
8AD0: A2 04 20 9A 82 AD C6 90 CE
8AD8: F0 09 AD 85 90 20 50 88 EA
8AE0: 4C E8 SA A9 00 AE 85 90 89
8AE8: 20 24 ED 20 F7 82 A2 01 E6
8AF0: 20 96 82 60 AE 83 90 D0 48
8AF8: 01 60 AE Cl 90 D0 01 60 C2
8800: 20 F7 82 A2 04 20 9A 82 F7
8808: AE C6 90 F0 0D AS FE 20 66
8810: 50 88 AS FD 20 50 88 4C 6C
8818: 21 88 AS FE A6 FD 20 24 DB
8820: ED 20 F7 82 A2 01 20 96 4D
8828: 82 60 AE 83 90 D0 01 60 D3
8830: AE C1 90 D0 01 60 20 F7 EF
8838: 82 A2 04 20 9A 82 AD 9F 95
8840: 90 AE 9E 90 20 24 ED 20 85
8848: F7 82 A2 01 20 96 82 60 21
8850: 48 29 0F AS 89 C0 BE AA DA
8858: 68 4A 4A 4A 4A AS 89 C0 4D
8860: BE 20 8C 82 SA 20 8C 82 57
8868: 60 C9 46 D0 08 20 cc 88 DO
8870: 68 68 4C 86 78 C9 45 D0 26

247

B: How to Use LADS

BB7B: 06 20 lF BC 4C 70 BB C9 4C
BBB0: 44 D0 03 4C 57 BC C9 50 E3
BBBB: D0 03 4C A0 BC C9 4E D0 55
8B90: 03 4C El BC C9 4F D0 03 71
BB9B: 4C cc BC C9 53 D0 03 4C 67
B8A0: 79 BD C9 4B D0 03 4C 93 54
BBAB: BD 99 D0 BE 20 6C BA 20 D7
BBB0: lD BA 20 45 BA 20 B5 BA 88
BBBB: 20 79 BA A9 B0 B5 FB A9 E5
BBC0: 90 B5 FC 20 0C BA 20 63 51
BBCB: BA 4C B3 BC 20 9F B2 C9 C5
BBD~: 20 F0 03 4C cc B8 A0 00 2F
BBDB: 20 9F B2 C9 00 F0 0E C9 7E
BBE0: 7F 90 03 20 17 B6 99 D0 15
BBEB: BE CB 4C DB 88 B4 F9 A0 93
BBF0: 00 B9 D0 BE F0 07 99 3B BB
BBFB: 91 CB 4C Fl BB AD 83 90 BE
BC00: D0 06 20 45 BA 20 lD BA F4
BC0B: 20 79 BA 20 63 BA 20 CF 3B
BC10: Bl A2 01 20 96 82 20 C5 79
BClB: B6 A2 00 BE A0 90 60 A9 B7
BC20: 2E 20 BC B2 A9 45 20 BC 77
8C2B: B2 A9 4E 20 BC B2 A9 44 40
BC30: 20 BC B2 A9 20 20 BC B2 F0
BC3B: 20 9F B2 20 cc BB AD B3 3F
BC40: 90 F0 03 EE A0 90 EE 83 06
BC4B: 90 AD 9C 90 B5 FD AD 9D CE
BC50: 90 B5 FE 20 21 B5 60 AD B2
BC5B: B3 90 F0 lE 20 9F B2 99 BD
BC6ro: D0 BE A0 00 20 9F B2 F0 0F
BC6B: 14 C9 7F 90 03 20 17 B6 44
BC70: 99 D0 BE 99 3B 91 CB 4C DB
BC7B: 64 BC 4C 83 BC 84 F9 20 36
BC80: 79 BA 20 63 8A EE C0 90 55
BCBB: 20 E0 81 20 F7 82 A2 01 2C
BC90: 20 96 B2 20 C5 B6 6B 6B 33
BC98: A2 00 BE A0 90 4C B6 7B lD
BCA0: AD B3 90 F0 0E 20 04 B2 lA
SCAB: EE Cl 90 20 F7 B2 A2 01 CD
BCB0: 20 96 B2 20 9F B2 F0 07 Cl
BC8B: C9 3A F0 06 4C 83 8C 20 2E
BCC0: C5 B6 68 6B A2 00 BE A0 C4
BCCB: 90 4C B6 7B A9 2E 20 8C CB
BCD0: B2 A9 4F 20 8C 82 20 63 15
BCDB: BA A9 01 BD C2 90 4C 83 3F
BCE0: BC AD B3 90 F0 CD 20 9F C9
8CEB: B2 C9 50 F0 0C C9 4F F0 E5
BCF0: 3A C9 53 F0 6A C9 48 F0 0F
8CFB: 4C A9 2E 20 8C B2 A9 4E F8
BD00: 20 BC 82 A9 50 20 8C 82 44

248

B: How to Use LADS

8008: 20 63 8A CE C1 90 2121 F7 02
8010: 82 A2 04 20 9A 82 A9 00 06
8018: 20 8C 82 A9 04 20 10 83 A1
8020: 20 F7 82 A2 01 20 96 82 F8
8028: 4C 83 8C A9 2E 20 8C 82 70
8030: A9 4E 20 8C 82 A9 4F 20 FC
8038: 8C 82 20 63 8A A9 0121 80 15
8040: C2 90 4C 83 sc A9 2E 2121 20
8048: 8C 82 A9 4E 2121 BC 82 A9 1F
8050: 48 20 BC 82 20 63 8A A9 A4
8058: 00 80 C6 90 4C .1::13 8C A9 AC
8060: 2E 20 8C 82 A9 4E 20 BC DO
8068: 82 A9 53 20 BC 82 20 63 2F
8070: 8A A9 00 80 C5 90 4C 83 00
8078: 8C A9 2E 20 BC 82 A9 53 A2
808121: 2121 8C 82 20 63 SA AD 83 81
8088: 90 F0 05 A9 1211 80 C5 90 80
8090: 4C 83 sc A9 2E 20 8C 82 08
8098: A9 48 20 8C 82 20 63 8A 50
8DA0: A9 01 80 C6 90 4C 83 8C 98
8DA8: 4C 44 41 4C 44 59 4A 53 57
8080: 52 52 54 53 42 43 53 42 51
8088: 45 51 42 43 43 43 40 50 59
8DC0: 42 4E 45 4C 44 58 4A 40 63
8DC8: 50 53 54 41 53 54 59 53 71
8000: 54 58 49 4E 59 44 45 59 F9
8008: 44 45 58 44 45 43 49 4E CE
8DE0: 58 49 4E 43 43 50 59 43 C9
8DE8: 50 58 53 42 43 53 45 43 06
8DF0: 41 44 43 43 4C 43 54 41 83
8DF8: 58 54 41 59 54 58 41 54 ED
8E00: 59 41 50 48 41 50 4C 41 CD
8E08: 42 52 48 42 40 49 42 50 cc
8E10: 4C 41 4E 44 4F 52 41 45 30
8E18: 4F 52 42 49 54 42 56 43 E9
8E20: 42 56 53 52 4F 4C 52 4F 23
8E28: 52 4C 53 52 43 4C 44 43 28
8E30: 4C 49 41 53 4C 50 48 50 A7
8E38: 50 4C 50 52 54 49 53 45 73
8E40: 44 53 45 49 54 53 58 54 86
8E48: 58 53 43 4C 56 4E 4F 50 6E
8E50: 01 05 1219 00 08 08 08 01 C1
8E58: 08 05 06 1211 02 02 00 1210 A3
8E60: 00 02 00 02 04 1214 01 00 50
8E68: 01 00 00 00 00 00 00 00 06
8E70: 00 08 08 01 01 01 07 08 C2
8E78: 08 03 03 03 00 00 113 00 F0
8E80: 00 00 00 00 00 00 00 00 90
8E88: A1 A0 20 60 80 F0 90 C1 04
8E90: 00 A2 4C 81 84 86 C8 88 88

249

B: How to Use LADS

8E98: CA C6 EB E6 Cel Eel E1 38 DD
BEAel: 61 18 AA AS SA 98 48 68 04
SEAS: eleJ 30 10 21 01 41 24 50 88
8E80: 70 22 62 42 DB 58 02 08 33
8E88: 28 40 FS 78 8A 9A 88 EA 3D
8EC0: 30 31 32 33 34 35 36 37 DS
BECB: 38 39 41 42 43 44 45 46 98
BEDel: 0el 00 0el 0el el0 el0 elel 00 ED
BEDS: 00 00 0el 00 00 eleJ eleJ 00 FS
8EE0: 00 00 00 00 00 00 00 00 FD
BEES: 00 00 00 00 00 00 00 00 06
8EF0: 00 00 00 00 00 00 00 00 0E
BEFB: 00 00 00 00 00 1::10 00 00 16
8F00: 00 00 00 00 00 00 00 00 1F
8F08: 00 00 00 00 00 00 00 00 27
8F10: 00 00 00 00 00 00 00 1::10 2F
8F18: 00 00 00 00 00 00 00 00 37
8F20: 0el 00 00 00 00 00 00 00 3F
8F28: 00 00 00 00 00 00 00 00 47
8F30: 00 00 00 00 00 00 00 00 4F
8F38: 00 00 00 00 00 0el 0el 00 57
8F40: 00 00 00 00 00 00 00 00 SF
8F48: 00 00 00 00 00 00 00 00 67
8F50: 00 00 00 00 00 00 00 00 6F
BFSB: 00 00 00 00 00 1::10 00 00 77
8F60: 00 00 00 00 00 00 00 00 7F
8F68: 00 00 00 00 00 00 00 00 87
8F70: 00 00 00 00 00 00 00 00 BF
8F78: 00 00 00 00 00 00 00 00 97
8F80: 00 00 00 00 00 00 00 00 9F
8F88: 00 00 00 00 00 00 00 00 A7
8F90: 00 00 00 00 00 00 00 00 AF
8F98: 00 00 00 00 00 00 00 00 87
8FA0: 00 00 00 00 00 00 00 00 8F
BFAB: 00 00 00 00 00 00 00 00 C7
BF80: 00 00 00 00 00 00 00 00 CF
BF88: 00 00 00 00 00 00 00 00 D7
8FC0: 00 00 00 00 00 00 00 00 DF
8FC8: 00 00 00 00 00 00 00 00 E7
8FD0: 00 00 00 00 00 00 00 00 EF
8FD8: 00 00 00 00 00 00 4E 4F E3
8FE0: 20 53 54 41 52 54 20 41 EB
BFES: 44 44 52 45 53 53 00 2D EE
8FF0: 2D 2D 2D 2D 2D 2D 2D 2D 10
8FF8: 2D 2D 2D 2D 2D 2D 2D 2D 18
9000: 2D 2D 2D 20 42 52 41 4E D6
9008: 43 48 20 4F 55 54 20 4F 61
9010: 46 20 52 41 4E 47 45 00 D4
9018: 55 4E 44 45 46 49 4E 45 8D
9020: 44 20 4C 41 42 45 4C 00 CB

250

B: How to Use LADS

9028: 10 10 10 10 10 10 10 10 49
9030: 10 20 4E 41 48 45 44 20 00
9038: 4C 41 42 45 4C 00 10 10 26
9040: 10 10 10 20 3C 3C 3C 3C 64
9048: 3C 3C 3C 3C 20 44 49 53 09
9050: 48 20 45 52 52 4F 52 20 81
9058: 3E 3E 3E 3E 3E JE 3E 3E 79
9060: 20 00 10 10 10 10 10 20 BE
9068: 20 20 20 44 55 50 4C 49 81
9070: 43 41 54 45 44 20 4C 41 DE
9078: 42 45 4C 20 20 20 20 00 F5
9080: 10 10 10 10 10 20 20 20 00
9088: 20 53 59 4E 54 41 58 20 17
9090: 45 52 52 4F 52 20 20 20 C2
9098: 20 00 00 00 00 00 00 00 C9
90A0: 00 00 00 00 00 00 00 00 C1
90A8: 00 00 00 00 00 00 00 00 C9
9080: 00 00 00 00 00 00 fi.l0 00 01
9088: 00 00 00 00 00 00 00 00 09
90C0: 00 00 00 00 00 00 00 00 E1
90C8: 00 00 00 FF 00 00 00 00 E9
9000: 00 00 00 00 00 00 00 00 Fl
9008: 00 00 00 00 00 00 00 00 F9
90E0: 00 00 00 00 00 00 00 00 02
90E8: 00 00 00 00 00 00 00 00 0A
90F0: 00 00 00 00 00 00 00 00 12
90F8: 00 00 00 00 00 00 00 00 1A
9100: 07 37 91 C3 06 00 00 01 14
9108: 00 00 00 00 01 00 03 37 70
9110: 91 00 00 00 02 00 00 00 0C
9118: 00 04 00 36 91 01 00 00 30
9120: 00 07 37 91 C3 06 00 00 38
9128: 00 00 00 00 00 00 00 01 4C
9130: 37 91 02 00 38 91 00 00 98
9138: 00 00 00 00 00 00 00 00 58
9140: 00 00 00 00 00 00 00 00 63
9148: 00 00 00 00 00 00 00 00 68
9150: 00 00 00 00 00 00 00 00 73
9158: 00 00 00 00 00 00 00 00 78
9160: 00 00 00 00 00 00 00 00 83
9168: 00 00 00 00 00 00 00 00 88
9170: 00 00 00 00 00 k:10 00 00 93
9178: 00 100 00 00 '10 00 00 00 98

251

B: How to Use LADS

Program B-3. DOS 3.3 LADS Object Code
This program requires MLX, Appendix G, to be entered.

START ADDRESS: 79F8
END ADDRESS: 9el87

79FB: EA EA EA EA EA 4C 09 B3 46
7Af30: A9 130 A0 32 99 E2 BF BB 01
7A08: D0 FA A9 00 BS EB 85 4C 8C
7A10: 8D FB 8F A9 7A BS EC 85 DF
7A18: 4D 8D F9 8F A9 01 8D IOE C9
7A2el: 9el B9 0el 04 C9 Ael F0 07 cs
7A28: 99 el7 BF CB 4C 21 7A 99 9F
7A30: 07 BF CB B9 00 04 C9 A0 85
7A3B: D0 E7 BB B4 F9 20 E9 80 8D
7A40: 20 6C B3 A9 00 BD EB BF Jd3
7A4B: 20 22 84 AD FB SF D0 3F 40
7A50: 20 64 89 A9 E6 20 FS 81 SF
7A58: A9 4C 20 FS 81 A9 41 20 ED
7A60: FS 81 A9 44 20 FS B1 A9 AF
7A68: 53 20 FS B1 20 64 89 AD 39
7A70: F1 BF D0 0B A9 05 BS FB 75
7A7B: A9 BE 85 FC 20 95 B3 AD 72
7AB0: EB SF BS FD BD E4 SF AD AC
7AB8: EC SF 85 FE BD ES SF 20 BB
7A9el: 43 82 AD EB SF Fk:l el3 4C 9E
7A98: AS 7D 20 22 84 A9 el0 8D 3E
7AAel: F0 SF BD FA BF AC FB 8F 0A
7AA8: D0 03 4C C9 7A BC 0F 90 A1
7AB0: AD 0D 90 F0 0C 20 6D B9 26
7ABB: 20 1E 89 20 46 B9 20 1E 2F
7AC0: B9 AD 06 90 F0 03 20 1A 9D
7ACS: 88 4C 1E S3 AD E3 SF Fel 1E
7ADel: 17 C9 kl3 Del 72 A9 01 BD FA
7AD8: E3 SF AD 08 BE Del 68 A9 0C
7AE0: 0S 1S 6D E2 SF BD E2 SF C3
7AE8: 4C B6 7C AD FB SF F0 39 55
7AF0: Ael FF CB B9 05 BE F0 2E SD
7AF8: 99 07 SF C9 20 D0 F3 CS FF
7Bel0: B9 05 BE C9 3D D0 03 4C 03
7BelS: E6 7C A2 00 BE li!F 90 8A 42
7810: 99 07 SF B9 05 BE F0 08 6F
7B1B: 9D 05 BE ES CB 4C 13 7B 9B
7B20: 9D 05 BE 4C C9 7A 20 7C B2
7B2S: 7F 20 1E 7F 4C C9 7A AD CE
7B30: 4C BE C9 40 B0 06 AD 4D 74
7B3S: BE EE FA BF 49 80 BD E9 DB
7B4el: SF 2el Cli! 7F 4C BE 7B A0 0C
7B48: 00 BC F0 SF B9 09 8E C9 52

252

B: How to Use LADS

7850: 41 90 03 EE F0 8F 99 4C A0
7858: BE C8 89 09 8E F0 16 99 BE
7860: 4C BE C9 41 90 03 EE F0 CD
7868: SF C8 89 09 BE F0 06 99 FE
7870: 4C BE 4C 69 78 88 8C EF 58
7878: 8F AD F1 SF D0 40 AD F0 AD
7880: SF Dlc'J AC A9 4C 85 F8 A9 8D
78SS: SE S5 FC A0 00 AD 4C 8E AF
7890: C9 30 80 07 18 E6 F8 90 E3
7898: 02 E6 FC B1 F8 F0 10 C9 92
78A0: 29 F0 0C C9 2C F0 08 C9 85
78A8: 20 F0 04 C8 4C 98 78 48 09
7880: 9S 48 A9 00 91 F8 20 95 8D
7888: 83 68 A8 68 91 F8 AD 4C 48
78C0: SE C9 23 F0 3F C9 2S F0 47
78C8: 17 AD E3 SF C9 08 F0 37 83
78D0: C9 03 D0 71 A9 08 18 6D A9
78D8: E2 SF 8D E2 BF 4C 86 7C 9C
78E0: AC EF 8F 89 4C BE C9 29 11
78E8: F0 10 AD E3 8F C9 01 D0 C6
78F0: 09 A9 10 18 6D E2 8F 8D FD
78FS: E2 SF AD E3 8F C9 06 F0 D9
7C00: 53 4C 78 7C 4C 96 7C AD 50
7C08: F8 SF D0 03 4C 78 7C 38 AE
7C10: AD E8 SF E5 FD 48 AD EC 84
7C18: 8F E5 FE 80 0E C9 FF F0 C5
7C20: 04 68 4C 04 7F 68 10 0C C8
7C2S: 4C 37 7C F0 04 68 4C 04 12
7C30: 7F 6S 10 03 4C 04 7F 3S DE
7C38: E9 02 SD E8 SF A9 00 BD C7
7C40: EC 8F 4C 78 7C AC EF SF DA
7C48: 88 89 4C BE C9 2C D0 04 08
7C50: C8 4C 00 7E AD E2 8F C9 SA
7C5S: 4C D0 03 4C S4 7C AD EC 2F
7C60: SF D0 59 AD E3 SF C9 09 55
7C6S: F0 52 C9 06 80 lc'JD C9 02 57
7C70: F0 09 A9 04 1S 6D E2 8F 65
7C7S: 8D E2 SF 20 61 88 20 87 D9
7C80: 88 4C E6 7C AC EF SF 89 73
7C88: 4C BE C9 29 D0 05 A9 6C 71
7C90: 8D E2 SF 4C E0 7C AD 4D 61
7C9S: SE C9 22 D0 06 AD 4E SE AE
7CA0: SD E8 SF AD E3 SF C9 01 1A
7CAS: D0 D1 A9 0S 1S 6D E2 SF FF
7C80: 8D •E2 SF 4C 78 7C 20 61 4F
7C88: 88 4C E6 7C AD E3 SF C9 93
7CC0: 02 F0 04 C9 07 D0 0C AD 55
7CCS: E2 SF 18 69 0S BD E2 SF 7C
7CD0: 4C E0 7C C9 06 80 09 AD 07
7CDS: E2 SF 1S 69 0C SD E2 SF AC

253

B: How to Use LADS

7CEel: 2el 61 88 2el A1 88 AD FB DB
7CE8: SF Del el3 4C A2 7D AD eiD 76
7CFel: 9el Del el3 4C A2 7D AD 0F el1
7CF8: 9el Del 3E AD el9 9el Fel 2A A7
7D00: A9 14 38 ES 24 8D FC SF 18
7D08: 2el 30 82 A2 e14 20 D3 81 63
7D1el: AC FC BF 1el eiS Ael el2 4C BE
7D18: 1C 7D A9 2el 2el FS 81 88 1C
7D2el: Del FA 2el 3el 82 A2 el1 2el eiA
7D28: CF 81 A9 14 85 24 A9 el7 F8
7D3el: 85 FB A9 BF 85 FC 2el eiD 88
7D38: 89 A9 1E 38 ES 24 8D FD 82
7D4el: SF AD el9 90 Fel 1F 2el 3el eiD
7D48: 82 A2 el4 20 D3 81 AC FD AB
7DSel: BF Fel eiA 3el 08 A9 2el 20 DA
7058: FS 81 88 Del FA 2el 3el 82 el8
7D6el: A2 el1 20 CF 81 A9 1E 85 62
7D68: 24 2el 7A 89 AD 07 9el Fl/.1 01
7D7el: ll C9 f2Jl D0 eiS A9 3C 4C 27
7078: 7C 7D A9 3E 20 FS 81 2el 26
7D8el: 9F 89 AD 10 9el F0 l3 2el F2
7D88: 1E 89 A9 38 20 F5 81 A9 63
7D9el: elel 85 FB A9 el2 85 FC 20 47
7D98: 0D 89 20 64 89 AD EB 8F 28
7DAel: Del el3 4C 8F 7A AD FB 8F 59
7DA8: Del 2C EE FB 8F 38 AS FD 58
7DBel: ED E4 SF 8D ll 9el AS FE BB
7DB8: ED E5 SF BD 12 9el AD E4 el2
7DCel: BF 85 FD AD E5 SF 85 FE F6
7DC8: 20 30 82 A9 el1 20 49 82 68
7DDel: 20 E9 80 4C 40 7A 20 30 87
7DD8: 82 A9 el1 2el 49 82 A9 02 48
7DEel: 2f('J 49 82 AD el9 90 Fel 15 EA
7DE8: 2el 30 82 A2 el4 20 D3 81 44
7DFel: A9 eiD 20 F5 81 20 3el 82 D6
7DF8: A9 el4 20 49 82 4C Del 03 4C
7Eelel: 89 4C BE C9 58 F0 62 88 2F
7Eel8: 88 89 4C BE C9 29 D0 03 C1
7E10: 4C E0 78 AD EC 8F D0 0F 0C
7E18: AD E3 SF C9 02 F0 4F C9 AF
7E20: 05 Fel 48 C9 01 F0 77 AD 4A
7E28: E3 SF C9 f2Jl Del eiC AD E2 39
7E30: 8F 18 69 18 8D E2 BF 4C 0D
7E38: E0 7C AD E3 8F C9 05 F0 57
7E4el: 08 A9 31 20 D4 7E 4C 55 62
7E48: 7E AD E2 8F 18 69 1C 8D 71
7E5el: E2 SF 4C Eel 7C 20 86 89 35
7E58: 2el 6D 89 A9 C8 85 FB A9 BA
7E6el: SF 85 FC 2el 0D 89 4C E6 36
7E68: 7C AD EC BF D0 33 AD E3 38

254

B: How to Use LADS

7E70: 8F C9 02 D0 0C A9 10 18 34
7E78: 6D E2 8F 8D E2 8F 4C 78 19
7E80: 7C C9 01 F0 10 C9 03 F0 F8
7E88: 0C C9 05 F0 08 A9 32 20 19
7E90: D4 7E 4C 55 7E A9 14 18 51
7E98: 6D E2 8F 8D E2 8F 4C 78 39
7EA0: 7C AD E3 SF C9 02 D0 0C C0
7EA8: A9 18 18 6D E2 8F 8D E2 AD
7E80: 8F 4C E0 7C C9 01 F0 10 80
7E88: C9 03 F0 0C C9 05 F0 08 86
7EC0: A9 33 20 D4 7E 4C 55 7E FE
7EC8: A9 1C 18 6D E2 8F BD E2 CE
7ED0: SF 4C E0 7C 8D FC BF BC 98
7ED8: FE BF BE FD 8F A9 BA 20 A3
7EE0: FS 81 68 AA 68 AB 98 48 50
7EE8: 8A 48 98 20 24 ED AD FC 83
7EF0: BF AC FE 8F AE FD BF 60 A6
7EF8: A0 00 98 99 05 BE CB C0 A7
7F00: FF D0 FB 60 20 64 89 20 1E
7F08: 86 89 20 6D 89 A9 37 85 6E
7F10: FB A9 SF 85 FC 20 0D 89 CD
7F18: 20 64 89 4C 78 7C A0 FF 45
7F20: CB 89 05 BE F0 56 C9 20 10
7F28: D0 F6 CB C8 BC FS SF 38 86
7F30: AS E8 ED FS BF 85 E8 AS 2A
7F38: EC E9 00 85 EC A0 00 89 24
7F40: 05 BE 49 80 91 E8 C8 89 1E
7F48: 05 BE C9 20 F0 05 91 E8 53
7F50: 4C 46 7F CB 89 05 BE C9 4C
7F58: 3D F0 32 88 AS FD 91 E8 35
7F60: CB AS FE 91 E8 AE FS SF 88
7F68: CA A0 00 BD 05 BE F0 08 1D
7F70: 99 05 BE EB CB 4C 68 7F A8
7F78: 99 05 BE 60 20 86 89 A9 35
7F80: 70 85 F8 A9 SF 85 FC 20 DF
7F88: 0D 89 4C 88 7F 88 BC F6 E3
7F90: SF AD F1 SF D0 17 CB CB 37
7F98: CB BC EA SF A9 05 18 6D 74
7FA0: EA SF 85 FB A9 BE 69 00 C3
7FA8: 85 FC 20 95 83 AC F6 BF 53
7FB0: AD EB SF 91 E8 AD EC BF 0C
7FB8: CB 91 E8 68 68 4C E6 7C 43
7FC0: AD FB SF 85 ED AD F9 SF C8
7FC8: 85 EE 20 CE 80 A9 FF BD 6F
7FD0: 0C 90 38 A5 EB ES ED AS D3
7FD8: EC ES EE 80 63 A2 00 38 BE
7FE0: AS ED E9 02 85 ED AS EE A9
7FE8: E9 00 85 EE A0 00 81. ED D2
7FF0: 30 0C AS ED D0 02 C6 EE A9
7FF8: C6 ED E8 4C EE 7F AS ED 67

255

B: How to Use LADS

S000: SD FF SF AS EE SD 00 90 52
S00S: 81 ED CD E9 SF F0 03 4C 4S
S010: 30 S0 ES BE EA 8F A2 01 28
8018: AD FA SF F0 04 CB 20 CE 02
8020: 80 CB B9 4C BE F0 53 C9 38
8028: 30 90 4F E8 Dl ED F0 Fl F7
8030: AD FF SF 85 ED AD 00 90 09
803S: 85 EE 20 CE 80 4C D2 7F 03
8040: AD 0C 90 30 01 60 AD F8 ll
8048: SF D0 02 F0 17 20 S6 S9 64
8050: 20 6D 89 20 lE 89 A9 60 BA
8058: 85 FB A9 SF 85 FC 20 0D B6
8060: 89 20 64 89 68 68 AD E2 76
8068: SF 29 lF C9 10 F0 filS AD FD
S070: 07 90 D0 03 4C E0 7C 4C BE
S078: 78 7C EC EA 8F F0 03 4C 35
S0S0: 30 S0 EE 0C 90 F0 03 20 C6
8088: D7 80 AC EA 8F AD FA 8F 92
8090: F0 01 CB Bl ED BD EB SF BB
8098: C8 Bl ED BD EC SF AD 07 09
80A0: 90 F0 filA C9 02 D0 lE AD 41
80AS: EC BF 8D E8 8F AD 06 90 44
S080: F0 l3 1S AD 04 90 6D E8 FS
S088: SF SD E8 8F AD 05 90 6p 68
80C0: EC 8F 8D EC SF AD F8 SF 57
80C8: F0 01 60 4C 30 80 AS ED 10
80D0: D0 02 C6 EE C6 ED 60 20 51
80D8: 86 89 A9 AA 85 FB A9 SF 5E
80E0: 85 FC 20 0D 89 20 64 89 D7
80E8: 60 20 30 82 A9 01 20 49 28
80F0: 82 A9 15 ss 2C A9 90 85 47
S0FS: 2D 20 8C 81 EE l3 90 60 87
8100: A9 27 85 2C A9 90 85 2D DC
8108: 20 BC 81 EE 14 90 60 A9 AA
8110: 00 A6 36 85 36 A9 Cl A4 sc
S11S: 37 85 37 A9 BA 20 ED FD 48
8120: A9 50 BD 79 05 AS 36 BD 0E
S128: 18 82 86 36 S4 37 60 A9 77
8130: 39 ss 2C A9 90 85 2D 20 66
BUS: 87 Sl 20 DC 03 85 2B 84 52
8140: 2A A0 08 B1 2A 60 BD 53 DD
8148: 90 A9 4B 85 2C A9 90 85 6E
8150: 2D 20 B7 81 60 AD l3 90 71
8158: F0 10 A9 SD 85 2C A9 90 A3
8160: 85 2D 21() B7 81 A9 00 8D 31
8168: l3 90 60 AD 14 90 F0 FA BF
8170: A9 6F 85 2C A9 90 85 2D SF
8178: 20 B7 81 A9 00 BD 14 90 33
8180: 60 A9 F0 BD 53 AA A9 FD A8
8188: BD 54 AA 60 A0 08 B1 2C 77

256

B: How to Use LADS

819121: 85 2A ca 81 2C 85 28 A9 ac
8198: 07 85 F8 A9 8F 85 FC A121 C7
81A0: 00 A9 A0 91 2A ca C0 1F 50
81A8: D0 F9 A0 121121 81 F8 09 8121 86
8180: 91 2A CB C4 F9 D0 FS 20 BB
8188: DC 03 85 2B 84 2A A0 00 sc
81C0: Bl 2C 91 2A CB C0 12 D0 BA
81C8: F7 A2 00 20 D6 03 60 8E 84
81D0: 81 90 60 SA BD 82 90 60 65
81D8: ac 84 90 BE FD 8F AD 81 49
81E0: 90 C9 01 D0 0C 2121 2F 81 ac
BlEB: 08 AC 84 90 AE FD 8F 28 69
81F0: 60 AC 84 90 60 8C 84 90 87
81F8: BD 83 90 AD 82 90 C9 02 7C
8200: D0 09 AD 83 90 20 46 81 80
8208: 4C Fl 81 AD 82 90 C9 04 A8
821121: D121 08 AD 83 90 09 80 20 F7
8218: 1210 C1 4C F1 81 AD 09 90 98
8220: D0 08 AD 83 90 09 80 20 47
8228: F0 FD AD 83 90 4C Fl 81 2E
8230: A9 00 BD 82 90 BD 81 90 32
8238: A9 FS BD 53 AA A9 81 BD 03
8240: 54 AA 60 AD 00 C0 C9 83 18
8248: 60 C9 01 D121 03 4C 55 81 92
8250: C9 02 D0 03 4C 68 81 4C 64
8258: 81 81 BD 83 90 A9 00 cs 59
8260: BB D0 lB A9 02 cs 89 D0 SF
8268: 15 A0 00 81 BB C9 20 D0 39
8270: 05 E6 BB 4C 68 82 C9 2F 85
8278: 90 1214 C9 3A 90 53 AD 00 D0
8280: 02 C9 41 D0 37 AD 01 02 A2
8288: C9 53 D0 30 AD 02 02 C9 A7
8290: 4D D0 29 AD 03 1212 C9 20 44
8298: D0 22 A0 00 89 04 02 C9 4E
82A0: 0121 F0 09 09 80 99 00 04 02
82AB: CB 4C 9C 82 A9 A0 99 00 E3
828121: 04 99 01 1214 99 02 04 68 C3
8288: 68 4C 00 7A AD 83 9121 C9 13
82C0: 3A 80 0D C9 20 D0 03 4C E3
82C8: Bl 00 38 E9 30 38 E9 D0 53
82D0: 60 A6 AF 86 69 A6 80 86 DB
82D8: 6A 18 20 0C DA 20 ES 82 83
82E0: 68 68 4C 6A D4 A0 00 84 12
82E8: 94 A9 02 85 95 81 88 91 81
82F0: 94 C8 C9 00 D0 F7 88 88 AB
82F8: 81 94 C9 20 F0 F9 C8 A9 E1
8300: 00 91 94 C8 C8 C8 C8 C8 4E
8308: 60 A9 SA 85 BB A9 82 85 5C
8310: 8C A9 4C 85 BA A9 FC 85 BD
8318: 73 A9 79 85 74 60 A0 00 31

257

B: How to Use LADS

8320: A2 FF EB 89 DD BC CD 05 F2
8328: BE F0 0A CB C8 CB E0 39 E4
8330: D0 F0 4C E8 7A C8 89 DD 6C
8338: 8C CD 06 BE F0 06 C8 CB 9C
8340: D0 E0 F0 EE CB 89 DD BC 6A
8348: CD 07 BE F0 05 CB D0 D2 98
8350: F0 E0 AD 08 BE C9 20 F0 08
8358: 04 C9 00 D0 D5 8D 85 8D 1F
8360: BD E3 BF 8C BD BD BC E2 05
B36B: BF 4C cc 7A A2 01 20 CF 84
B370: B1 A2 06 BE FD BF 20 DB D1
8378: 81 AE FD BF CA D0 F4 20 48
8380: D8 81 C9 2A F0 0E A9 26 69
8388: 85 F8 A9 BF 85 FC 20 0D EC
8390: 89 4C D6 7D 60 A0 00 81 59
B39B: F8 F0 04 cB 4C 97 B3 Be 38
B3A0: 23 BF BB A9 00 8D E8 SF 66
B3AB: BD EC BF A2 en BE FD BF 98
8380: 81 F8 29 0F 8D 21 SF 8D 43
8388: 24 BF A9 00 BD 22 BF BD ac
83C0: 25 8F CA F0 12 20 E7 83 08
83C8: AD 21 SF 8D 24 BF AD 22 96
83D0: BF 8D 25 8F 4C C2 83 EE 04
83D8: FD SF AE FD SF 20 0E S4 16
83E0: S8 CE 23 BF D0 CA 60 1S C7
83E8: 0E 21 8F 2E 22 8F 0E 21 A0
83F0: BF 2E 22 8F 18 AD 24 SF D7
83F8: 6D 21 8F 8D 21 8F AD 25 91
8400: 8F 6D 22 8F 8D 22 BF 0E 88
S408: 21 8F 2E 22 SF 60 18 AD 49
S410: 21 SF 6D E8 BF SD E8 SF 14
S41S: AD 22 BF 6D EC SF BD EC F6
B420: BF 60 20 FB 7E A0 00 8c 9F
8428: F1 8F 8c 10 90 8c 07 90 FS
8430: 8C 06 90 AD 08 90 D0 0C 36
8438: 20 DB 81 BD E6 BF 20 DB 1F
8440: 81 BD E7 SF 20 DB 81 C9 94
8448: 20 D0 0S 20 C6 85 68 6S 1E
8450: 4C SF 7A C9 20 4C 60 84 C6
845B: 20 DB 81 D0 03 4C C6 85 41
8460: C9 3A D0 03 4C 0A 85 C9 86
B468: 38 D0 73 8C FC BF AD 09 05
8470: 90 F0 55 8D 10 90 AD FC 9C
B478: BF F0 06 20 AB B4 4C D0 1()9
B4B0: 84 20 DB B1 F0 0E C9 7F D9
84B8: 90 03 20 1B B5 99 05 BE 48
8490: cB 4C 81 84 20 6D 89 20 73
849B: 1E 89 20 7A 89 20 64 89 DD
B4A0: A9 00 8D FC BF 4C D0 84 D3
B4AB: BD 10 90 8D FC SF A0 00 CE

258

B: How to Use LADS

8480: 20 DB 81 D0 07 99 00 02 DD
8488: AC FC BF 60 10 03 20 FS 12
84C0: 87 99 00 02 CB 4C 80 84 71
84C8: 20 DB 81 F0 03 4C CB 84 86
84D0: 20 C6 85 AD FC BF D0 05 F3
84D8: 68 68 4C SF 7A 60 C9 3E D9
84E0: F0 58 C9 3C F0 SF C9 28 F9
84E8: D0 03 EE 06 90 C9 2A D0 2A
84F0: 03 4C 4D 85 C9 2E F0 16 BF
84F8: C9 24 F0 15 C9 7F 90 03 CF
8500: 20 18 85 99 05 BE CB 4C A8
8508: 58 84 BD 08 90 60 4C 6A C8
8510: 86 99 05 BE CB 4C ES 85 17
8518: 38 E9 7F 8D F4 SF A2 FF AD
8520: CE F4 SF F0 08 EB 8D D0 01
8528: D0 10 FA 30 F3 EB 8D D0 91
8530: D0 30 07 99 05 BE CB 4C 6A
8538: 2D 85 29 7F 60 A9 02 BD 93
8540: 07 90 4C 58 84 A9 01 BD sc
8548: 07 90 4C 58 84 AD 07 90 83
8550: F0 20 A9 2A 99 05 BE CB 7A
8558: EE Fl SF AD 07 90 C9 01 33
8560: F0 08 AS FE BD E8 BF 4C 12
8568: 58 84 AS FD BD E8 BF 4C DC
8570: 58 84 20 58 84 AD F8 BF 84
8578: F0 08 A9 2A 20 FS 81 20 92
8580: 7A 89 20 64 89 AD Fl SF E8
8588: D0 20 A0 00 89 05 BE C9 E0
8590: 20 F0 04 CB 4C BC 85 CB SD
8598: 84 F8 A9 05 18 65 F8 85 3E
85A0: F8 A9 BE 69 00 85 FC 20 AC
85A8: 95 83 AD F8 SF F0 08 AD D2
8580: 08 90 F0 03 20 84 87 AD C2
8588: E8 SF 85 FD AD EC SF 85 F3
85C0: FE 68 68 4C SF 7A 99 05 DS
85C8: BE CB C0 FF D0 FB 99 05 ft:lB
85D0: BE 20 DB 81 20 DB 81 F0 86
85D8: 06 A9 00 BD 08 90 60 A9 2F
85E0: 01 BD EB BF 60 A2 00 2121 93
85E8: DB 81 F0 2C C9 3A F0 28 E2
85F0: C9 20 F0 F3 C9 38 F0 20 83
85F8: C9 2C F0 0F C9 29 F0 08 E2
8600: 9D F2 BE EB 99 05 BE CB 8F
8608: 4C E7 85 BE F2 SF 99 05 DC
8610: BE CB 20 2C 86 4C 58 84 F7
8618: BD FC SF A9 00 BE F2 8F 67
8620: 99 05 BE 2121 2C 86 AD FC E2
8628: BF 4C 58 84 A9 00 BD E8 18
8630: SF BD EC SF AA 0E E8 SF F3
8638: 2E EC SF 0E E8 SF 2E EC 51
8640: SF 0E E8 SF 2E EC 8F 0E 61

259

B: How to Use LADS

8648: EB SF 2E EC SF BD F2 BE AB
8650: C9 41 9fil fil2 E9 fil7 29 filF 91
8658: filD EB SF 8D EB SF EB EC filE
866fil: F2 SF Dfil Dl EE Fl SF A9 filA
8668: fill 6fil Cfil filfil Ffil filE AE FB 3F
867fil: SF Dfil 09 48 98 48 20 lE 63
8678: 7F 68 AS 68 99 fil5 BE CB Cl
868fil: 2fil DB 81 99 05 BE CB C9 58
8688: 42 Dfil 68 A9 0fil BD 01 90 SB
869fil: AD FB SF Ffil 17 SC FE SF EC
8698: AD filD 9fil Ffil filF 20 6D 89 3E
86Afil: 2fil lE 89 2fil 46 89 20 lE 2F
86A8: 89 AC FE SF 2el DB 81 99 7F
86Bfil: el5 8E CB C9 2fil Dfil FS 2el E9
8688: DB 81 99 fil5 BE C8 C9 22 63

, 86Cfil: Dfil 45 2fil DS 81 D0 fil3 4C BA
86C8: 99 87 C9 3A D0 fil3 4C 9C 29
86Dfil: 87 C9 38 D0 I(JC 2fil AS 84 3F
86D8: AE 09 9fil SE 10 9fil 4C 99 6F
86Eel: 87 C9 22 Del 03 4C C2 86 CA
86E8: AE FB SF D0 lil9 20 FF 88 9C
86Fel: 4C C2 86 4C 6A SA 99 el5 2el
86F8: BE AA 8C FE SF 2fil D7 88 AE
87filfil: AC FE SF CB 4C C2 86 A2 Cfil
870S: filfil SE fil2 9fil 9D lA 8F EB 61
S7lfil: AD fil2 90 D0 75 2fil DB 81 F4
8718: Ffil 43 C9 3A F0 3F C9 38 A0
8720: Del elC 20 AS 84 AE el9 9el AA
8728: BE 10 90 4C SD 87 8D 94 12
8730: BE AD FB SF D0 0D AD 94 15
8738: BE C9 2fil Dfil D3 20 FF 88 89
874fil: 4C 10 S7 AD 94 SE 99 05 5C
8748: BE CS C9 20 F0 lS C9 00 87
8750: F0 14 C9 3A F0 1fil 9D lA D6
8758: SF EB 4C 10 87 EE 02 90 80
8760: BD 95 BE 4C 2E 87 A9 1A 2F
8768: 85 FB A9 SF 85 FC 8C FE 9F
S77fil: SF 2fil 95 83 AE EB SF 2fil 9E
8778: D7 88 AC FE SF A9 00 A2 E0
S780: fil5 9D lA SF CA D0 FA 4C 91
8788: 10 87 AD FB SF Dfil 03 20 DC
8790: FF 88 AD 95 BE C9 3A F0 Dl
8798: 03 20 C6 85 BD 08 90 EE 08
87A0: 0F 90 68 68 AD FB SF Ffil sc
87A8: 08 AD filD 90 Ffil 03 4C 65 63
8780: 7D 4C SF 7A AD FB SF C9 71
87BS: fil2 D0 01 60 2fil 3fil 82 A2 BC
87C0: 02 20 D3 81 38 AD EB SF 48
87C8: ES FD BD E9 SF AD EC SF 37
87D0: ES FE BD EA SF A9 00 20 36

260

B: How to Use LADS

87DB: FS 81 AD E9 SF D0 03 CE 2C
87E0: EA SF CE E9 8F D0 EE AD 00
87E8: EA 8F D0 E9 20 30 82 A2 73
87F0: 01 20 CF 81 60 38 E9 7F 01
87F8: BD F4 SF A2 FF CE F4 SF DC
8B00: F0 0B EB 8D D0 D0 10 FA 69
BB0B: 30 F3 EB 8D D0 D0 30 07 58
BB10: 99 00 02 CB 4C 0A BB 29 7F
8B1B: 7F 60 A0 00 A2 00 89 05 A2
8820: BE C9 28 F0 04 CB 4C 1E 59
8828: 88 ca 89 05 8E 20 39 88 27
8830: 80 12 9D F2 BE EB 4C 29 DA
883B: BB C9 3A 80 06 38 E9 30 67
BB40: 3B E9 D0 60 A9 00 9D F2 B3
BB4B: BE A9 F2 BS F8 A9 BE 85 EA
8B50: FC 20 95 83 AD E8 SF BD 9C
BBSB: 04 90 AD EC BF BD 05 90 61
8860: 60 AD FB SF D0 04 20 FF sc
B868: BB 60 AD 0D 90 F0 11 20 E6
BB70: 30 B2 A2 01 20 CF 81 AE 90
BB78: E2 BF 20 27 B9 20 1E 89 E7
8BB0: AE E2 8F 20 D7 88 60 AD E4
BBBB: F8 BF D0 04 20 FF BB 60 48
8890: AD 0D 90 F0 06 AE E8 SF 2F
8898: 20 27 89 AE EB 8F 4C D7 AD
SBA0: BB AD F8 BF D0 07 20 FF BC
SBAB: 88 20 FF as 60 AD 0D 90 F2
8B80: F0 06 AE E8 SF 20 27 89 25
888S: AE E8 BF 20 D7 BB AD 0D 59
88C0: 90 F0 fOE AD 0E 90 F0 03 SA
SBCB: 20 lE 89 AE EC SF 20 27 9A
B8D0: 89 AE EC SF 4C D7 ss BE 4A
8BD8: EA BF AD 0A 90 F0 05 A0 BC
B8E0: 00 BA 91 FD AD 08 90 F0 46
88EB: 16 20 30 B2 A2 02 20 D3 6C
BBF0: S1 AD EA SF 20 FS S1 20 80
SSFB: 30 82 A2 01 20 CF Bl 18 82
8900: A9 01 65 FD 85 FD A9 00 2C
B90S: 65 FE 85 FE 60 A0 00 81 65
S910: F8 FeJ 0A 20 FS 81 20 99 30
8918: B9 CB 4C 0F 89 60 A9 20 DO
8920: 20 FS Bl 20 99 89 60 BE 35
8928: FD SF AD 0E 90 F0 08 SA 9D
8930: 20 51 BA 20 C2 89 AE FD 92
8938: SF 60 A9 00 20 24 ED 20 ED
B940: C2 B9 AE FD BF 60 AD 0E 34
B94S: 91il Flil lilE AS FE 20 51 SA Al
8951il: AS FD 20 51 BA 20 FS B9 19
S95B: 61il A6 FD AS FE 20 24 ED lilE
8960: 21il FS 89 60 A9 lilD 20 FS EF

261

8: How to Use LADS

B96B: B1 20 99 B9 60 AE E6 BF 28
B970: AD E7 BF 20 24 ED 20 28 BC
B97B: BA 60 A9 05 B5 F8 A9 BE 6C
B9B0: B5 FC 20 0D B9 60 A9 07 92
B9B8: 20 F5 B1 A9 12 20 F5 B1 72
B990: 20 7A B9 A9 0D 20 FS Bl 74
B99B: 60 AE F8 BF D0 01 60 AE F9
B9A0: 09 90 D0 01 60 BD FC BF 49
B9AB: 20 30 B2 A2 04 20 D3 B1 1C
8980: AD FC BF 20 F5 B1 20 30 F3
B98B: B2 A2 01 20 CF B1 AD FC 84
B9C0: SF 60 AE F8 SF D0 01 60 68
89C8: AE 09 90 D0 01 60 20 30 BE
89D0: 82 A2 04 20 D3 81 AD filE SE
B9D8: 90 F0 09 AD FD BF 20 51 2C
B9E0: BA 4C EC 89 A9 00 AE FD 28
89ES: SF 211l 24 ED 20 311l S2 A2 9S
S9FI1l: 01 211l CF B1 611l AE F8 SF E3
B9FB: D0 01 60 AE 09 90 D0 01 DB
8A00: 60 20 30 82 A2 04 20 D3 84
8A08: 81 AE 0E 90 F0 0D AS FE SA
8A10: 20 51 SA AS FD 20 51 8A D2
8A18: 4C 22 BA AS FE A6 FD 20 36
8A20: 24 ED 20 30 B2 A2 01 20 BA
SA2S: CF S1 60 AE F8 SF D0 01 3D
SA30: 60 AE 09 90 D0 01 60 20 86
8A38: 30 82 A2 04 20 D3 s ·1 AD 98
BA40: E7 SF AE E6 BF 20 24 ED A4
BA48: 20 30 82 A2 01 20 CF 81 9D
BA50: 60 48 29 0F AB 89 FS 8D 63
BA58: AA 68 4A 4A 4A 4A A8 89 51
8A60: F5 8D 20 F5 81 8A 20 F5 A3
8A68: 81 60 C9 46 D0 08 20 CD AS
BA70: SA 68 68 4C BF 7A C9 45 F5
BA7B: D0 06 20 26 88 4C 71 8A D8
8A80: C9 44 D0 03 4C 6F B8 C9 D6
BAB8: 50 D0 03 4C DS 88 C9 4E DD
BA90: D0 03 4C 16 BC C9 4F D0 84
8A98: 03 4C 01 ac c9 53 D0 03 68
8AA0: 4C AE ac c9 4S D0 03 4C 8D
8AA8: ca ac 99 05 BE 20 6D B9 22
BA80: 20 1E 89 20 46 B9 20 B6 AF
8A88: 89 20 7A 89 A9 ca as F8 F9
8AC0: A9 BF BS FC 20 0D 89 20 77
8AC8: 64 89 4C E8 B8 20 DB B1 9A
8AD0: C9 20 F0 03 4C CD SA A0 70
8ADB: 00 20 DB 81 C9 00 F0 0E 67
8AE0: C9 7F 90 03 20 18 BS 99 03
BAEB: 05 BE CB 4C D9 SA B4 F9 FD
8AF0: A0 00 89 05 BE F0 07 99 BD

262

B: How to Use LADS

8AF8: 07 8F C8 4C F2 8A AD F8 6C
8800: 8F D0 06 20 46 89 20 1E 8C
8808: 89 20 7A 89 20 64 89 20 99
8810: E9 80 A2 01 20 CF 81 20 04
8818: DB 81 20 DB 81 20 C6 85 2D
8821il: A2 lillil BE E8 SF 61il A9 2E 68
8828: 20 F5 81 A9 45 21il F5 81 AF
8830: A9 4E 20 F5 81 A9 44 20 6E
8838: F5 81 A9 21il 21il F5 81 20 DD
8841il: DB 81 21il CD 8A AD F8 SF 97
8848: Flil lil3 EE E8 SF EE F8 SF C4
8851il: 38 AS FD ED E4 SF 8D ll 1D
8858: 91il AS FE ED ES SF 8D 12 7A
8B61il: 90 AD E4 SF 85 FD AD E5 26
8868: 8F 85 FE 20 22 84 61il AD 1C
8871il: F8 8F Flil 1E 21il DB 81 99 6A
8878: lilS BE Alil lillil 21il DB 81 Flil 22
8881il: 14 C9 7F 91il lil3 21il 18 85 58
8888: 99 lilS BE 99 lil7 SF C8 4C 6D
8891il: 7C 88 4C E8 88 84 F9 21il 63
8898: 7A 89 21il 64 89 EE 108 91il 42
8BAiil: 21il 00 81 A2 02 21il D3 81 DB
8BA8: AD E4 8F 21il F5 81 AD E5 BA
8881il: 8F 21il F5 81 AD ll 91il 20 61
8888: FS 81 AD 12 91il 20 FS 81 74
88C0: 21il 31il 82 A2 01 21il CF 81 18
88C8: 21il C6 85 68 68 A2 lillil BE 35
88Diil: E8 SF 4C SF 7A AD F8 SF D4
S8D8: Flil 0E 21il lilF 81 EE lil9 91il 48
88Eiil: 20 31il S2 A2 lil1 21il CF S1 38
88E8: 21il DB 81 Flil lil7 C9 3A Flil 4A
88Fiil: 06 4C E8 88 21il C6 85 68 83
88F8: 68 A2 01il BE E8 SF 4C SF 83
8Ciillil: 7A A9 2E 21il FS 81 A9 4F Elil
SCiil8: 21il F5 81 21il 64 S9 A9 lil1 7E
SC10: SD lilA 90 4C ES 88 AD F8 16
8C18: SF Flil CD 21il DS S1 C9 50 A1
SC21il: Flil lilC C9 4F Flil 3A C9 53 3A
SC28: Flil 6A C9 48 Flil 4C A9 2E 4C
8C31il: 21il FS 81 A9 4E 20 FS 81 02
SC38: A9 50 21il FS 81 20 64 89 7C
SC41il: CE lil9 90 20 31il S2 A2 04 EB
8C48: 20 D3 S1 A9 0D 20 F5 81 Bi
SC50: A9 lil4 21il 49 S2 20 30 82 4F
8C58: A2 01 20 CF 81 4C E8 88 9E
8C61!1: A9 2E 20 FS 81 A9 4E 20 AC
8C68: FS 81 A9 4F 20 FS 81 20 03
8C70: 64 89 A9 00 BD lilA 90 4C 55
8C78: E8 88 A9 2E 21il FS 81 A9 86
SC80: 4E 21il F5 81 A9 48 21il F5 44

263

B: How to Use LADS

8C88: 81 20 64 89 A9 00 BD 0E 06
8C90: 90 4C EB 88 A9 2E 20 F5 17
8C98: 81 A9 4E 20 F5 81 A9 53 05
8CA0: 20 F5 81 20 64 89 A9 00 16
SCAB: BD 00 90 4C EB 88 A9 2E 99
8C80: 20 F5 81 A9 53 20 F5 81 AA
8C88: 20 64 89 AD F8 BF F0 05 0C
8CC0: A9 01 80 00 90 4C E8 88 84
8CC8: A9 2E 20 F5 81 A9 48 20 09
8CD0: F5 81 20 64 89 A9 01 80 12
8CD8: 0E 90 4C E8 88 4C 44 41 ac
8CE0: 4C 44 59 4A 53 52 52 54 DD
8CE8: 53 42 43 53 42 45 51 42 E5
8CF0: 43 43 43 40 50 42 4E 45 27
8CF8: 4C 44 58 4A 40 50 53 54 9F
8000: 41 53 54 59 53 54 58 49 96
8008: 4E 59 44 45 59 44 45 58 3C
8010: 44 45 43 49 4E 58 49 4E 50
8018: 43 43 50 59 43 50 58 53 A4
8020: 42 43 53 45 43 41 44 43 06
8028: 43 4C 43 54 41 58 54 41 FA
8030: 59 54 58 41 54 59 41 50 07
8038: 48 41 50 4C 41 42 52 48 99
8040: 42 40 49 42 50 4C 41 4E Al
8048: 44 4F 52 41 45 4F 52 42 06
8050: 49 54 42 56 43 42 56 53 F5
8058: 52 4F 4C 52 4F 52 4C 53 CE
8060: 52 43 4C 44 43 4C 49 41 62
8068: 53 4C 50 48 50 50 4C 50 78
8070: 52 54 49 53 45 44 53 45 4F
8078: 49 54 53 58 54 58 53 43 28
8080: 4C 56 4E 4F 50 01 05 09 AF
8088: 00 08 08 08 01 08 05 06 SF
8090: 01 02 02 00 00 00 02 00 F0
8098: 02 04 04 01 00 01 00 00 4A
8DA0: 00 00 00 00 00 00 08 08 03
8DA8: 01 01 01 07 08 08 03 03 7E
8080: 03 00 00 03 00 00 00 00 70
8088: 00 00 00 00 00 Al A0 20 88
80C0: 60 80 F0 90 Cl 00 A2 4C 42
80C8: 81 84 86 C8 88 CA C6 E8 09
8000: E6 C0 E0 El 38 61 18 AA E8
8008: AB 8A 98 48 68 00 30 10 36
8DE0: 21 01 41 24 50 70 22 62 22
BDEB: 42 DB 58 02 08 28 40 F8 E0
8DF0: 78 8A 9A 88 EA 30 31 32 82
8DF8: 33 34 35 36 37 38 39 41 13
8E00: 42 43 44 45 46 00 00 00 lE
8E08: 00 00 00 00 00 00 00 00 25
8El0: 00 00 00 00 00 00 00 00 20

264

B: How to Use LADS

8El8: 00 00 00 00 00 00 00 00 35
8E20: 00 00 00 00 00 00 00 00 30
8E28: 00 00 00 00 00 00 00 00 45
8E30: 00 0121 00 00 00 00 00 00 40
8E38: 00 00 00 00 00 00 00 00 55
8E40: 00 00 00 00 00 00 00 00 50
8E48: 00 00 00 00 00 00 00 00 65
8E50: 00 00 00 00 00 00 00 00 60
8E5B: 1210 00 00 00 00 00 00 1210 75
8E60: 00 00 00 00 00 00 00 00 70
8E68: 00 00 00 00 00 00 00 00 85
8E70: 00 00 00 00 00 00 00 00 80
8E78: 00 00 00 00 00 00 00 00 95
8E80: 00 00 00 00 00 00 00 00 90
8E88: 00 00 00 00 00 00 00 00 AS
8E90: 00 00 00 00 00 00 00 00 AD
8E98: 00 00 00 00 00 00 00 00 85
8EA0: 00 00 00 00 00 00 00 00 80
8EA8: 00 00 00 00 00 00 00 00 cs
8E80: 00 00 00 00 00 00 00 00 CD
8E88: 00 00 00 00 00 00 00 00 05
8EC0: 00 00 00 00 00 00 00 00 DO
8EC8: 00 00 00 00 00 00 00 00 ES
8ED0: 00 00 00 00 00 00 00 00 ED
8ED8: 00 00 00 00 00 00 00 00 FS
8EE0: 00 00 00 00 00 00 00 00 FD
8EE8: 00 00 00 00 00 00 00 00 06
8EF0: 00 00 00 00 00 00 00 00 0E
8EF8: 00 00 00 00 00 00 00 00 16
8F00: 00 00 00 00 00 00 00 00 lF
8F08: 00 00 00 00 00 00 00 00 27
8F10: 00 00 00 00 00 00 00 00 2F
8F18: 00 00 00 00 00 00 00 00 37
8F20: 00 00 00 00 00 00 4E 4F 28
8F28: 20 53 54 41 52 54 20 41 30
8F30: 44 44 52 45 53 53 00 20 36
8F38: 20 20 20 20 20 20 20 20 57
8F40: 2D 20 20 2D 20 20 20 20 SF
8F48: 20 2D 20 20 42 52 41 4E 10
8F50: 43 48 20 4F 55 54 20 4F A7
8F58: 46 20 52 41 4E 47 45 00 18
8F60: 55 4E 44 45 46 49 4E 45 03
8F68: 44 20 4C 41 42 45 4C 00 0F
8F70: 1D 1D 1D 10 10 1D 10 1D 8F
8F78: 1D 20 4E 41 48 45 44 20 24
8F80: 4C 41 42 45 4C 00 10 1D 6C
8F88: 10 1D 10 20 3C 3C 3C 3C AA
8F90: 3C 3C 3C 3C 20 44 49 53 20
8F98: 48 20 45 52 52 4F 52 20 C7
SF Mil 3E 3E 3E 3E 3E 3E 3E 3E BF

265

B: How to Use LADS

8FA8: 20 00 10 10 10 10 10 20 05
8FB0: 20 20 20 44 55 50 4C 49 C7
8FB8: 43 41 54 45 44 20 4C 41 25
8FC0: 42 45 4C 20 20 20 20 00 3C
8FC8: 10 10 10 10 10 20 20 20 24
8FD0: 20 53 59 4E 54 41 58 20 50
8FD8: 45 52 52 4F 52 20 20 20 09
8FE0: 20 00 00 00 00 00 00 00 10
8FE8: 00 !dill lll0 00 00 00 00 00 08
8FFI!l: 011l 00 00 00 00 00 00 00 10
8FF8: 00 00 00 00 00 00 00 00 18
9000: 00 00 00 00 00 00 00 00 21
9008: 00 011l 011l 00 00 00 00 00 29
9010: 00 00 00 00 00 01 00 01 36
9018: 00 00 01 06 02 20 93 00 AS
9020: 00 00 93 00 92 00 00 01 49
9028: 00 01 00 00 01 06 04 80 32
9030: 95 00 00 53 95 53 94 00 74
9038: 00 03 01 00 00 00 00 00 3A
9040: 00 00 00 00 00 00 93 00 88
9048: 92 00 91 04 01 00 00 00 20
9050: 00 00 lll0 00 00 00 00 53 C4
9058: 95 53 94 53 93 02 00 00 85
9060: 00 00 00 00 00 lll0 00 00 81
9068: 00 00 93 00 92 00 91 02 85
9070: 00 00 00 00 00 00 00 00 91
9078: 00 00 00 53 95 53 94 53 45
9080: 93 00 00 00 00 7F 7F 01 69

266

Modifying LADS:
Adding Error Traps,
RAM-Based Assembly,
and a Disassembler

Imagine how nice it would be if you could add any additional
commands to BASIC that you desired. You wouldn't just tem
porarily wedge the new commands into a frozen ROM BASIC.
Instead, you would simply define the new commands, and
they would then become a permanent part of your program
ming language.

This freedom to change a language is called extensibility.
It's one of the best features of Forth and a few other lan
guages. Extensibility opens up a language. It gives the pro
grammer easy access to all aspects of the programming tool.
LADS, too, is extensible since the internals of the assembler,
its source code files, are thoroughly commented in this book.
You can customize it at will, building in any features that you
would find useful.

After exploring the details of the LADS assembler and
using LADS to write your own machine language, you may
have thought of some features or pseudo-ops that you would
like to add. In this chapter, we'll show how to make several
different kinds of modifications. These examples, even if
they're not features of use to you, will demonstrate how to ex
tend and customize the language. We'll add some new error
traps, create a disassembler, and make a fundamental change
to LADS-the capability of assembling directly from RAM.
With the exception of the disassembler, all these modifications,
including RAMLADS, are made the same way regardless of
whether you are using the ProDOS or 3.3 operating system.

At the end of this chapter we'll cover the details of the
Apple LADS source code where it becomes highly specific to
the Apple and, thus, is of particular interest to programmers
wishing to accomplish input/output from within ML.

But first, let's see some examples of how to customize
LADS.

269

C: Modifying LADS

A Naked Mnemonic Error Trap
The original version of LADS notifies you of most serious er
rors: branch out of range, duplicated or undefined labels, naked
labels (labels without arguments), invalid pseudo-cps, no start
ing address, file not found on disk, and various syntax errors.
Other kinds of errors are forgiven by LADS since it can inter
pret what you meant to type in your source code. For example,
LADS can interpret what you meant when you type errors like
this:
100 INY #77; (Adding an argument to a one-byte opcode)

This source code will be correctly assembled. Also, if you
forget to leave a space between a mnemonic and its argument
(like LDA#lS), that sort of error will be trapped and an
nounced. However, to be on the safe side, generally keep your
commands right up against colons in this fashion: 100
INY:LDA #15.

However, the original LADS didn't have a built-in trap for
naked mnemonics. If you wrote

100 INC:INY:LDA #15; (that "INC" requires an argument)

the assembler would have crashed. No error message, no
warning, just a crash.

Programmers who tested the early versions of LADS
asked that this error be trapped. That is, if this mistake were
made while you were typing in an ML program's source code,
it shouldn't cause the assembler to go insane. You might want
to make the following two error-trap modifications a perma
nent part of LADS. To make any changes to LADS, you
change the source code, save the source code file , RENAME
LADS on the disk (you're creating a new version; you can DE
LETE the old version later if you wish), check to see that
DEFS contains a line 20 .D LADS (LOAD DEFS and check;
the .D NAME is necessary to create a disk version of some
thing), and finally type ASM DEFS. LADS will then create a
new version of itself which incorporates your changes.

ProDOS users must relocate LADS lower in memory
before attempting any modifications. The ProDOS Machine
Language Interface Tables must be located at $9100. Inserting
additional instructions and assembling may cause these tables
to overwrite code when the start address for the tables is de-

270

C: Modifying LADS

fined in line 858 of TABLES. Change line 10 in DEFS to
10 *= $7AOO

The ProDOS Loader (Program B-1) must also be modified.
Try changing the 31 in line 70 to a 51 to protect more
memory.

To expose naked mnemonic errors, a special trap can be
inserted into the Eva! subprogram:

1474 LOA LABEL+3:CMP #32:BEQ GVEG:JMP L700
1480 GVEG LOA LABEL+4,Y

After Eva! has determined (line 930 of Program D-2a) that
the mnemonic under evaluation does require an argument (it's
not like INY, which uses implied addressing and never has an
argument), Eva! then goes down to check to see if the argu
ment is a label or a number (line 1460).

Here's where we can check to see if the programmer for
got to give an argument. If the mnemonic is followed by a co
lon or a zero (end of logical line), that's a sure signal that the
argument has been left out. We can load in the character just
after the mnemonic (see line 1474, above). If there is a space
character (#32), all is well and we can continue (line 1480)
with our assembly. If not, we jump to L700, the error-reporting
routine which will print the error and ring the bell. Notice that
we also have to modify line 1480, giving it a label. That's be
cause we need to perform a branch test in line 1474 and have
to invent a label, GVEG, to which to branch.

A Trap for Impossible Instructions
Another programmer who tested LADS was just starting to
learn machine language. Unfamiliar with some of the
mnemonics and addressing modes, he once tried to assemble a
line like this:
100 LDA lS,Y

not knowing that zero page,Y addressing is a rare addressing
mode, exclusively reserved for only two mnemonics, LDX and
STX. But LADS didn't crash on this. Instead, it assembled an
LDA 15,X (the correct addressing mode, but fatal to his

271

C: Modifying LADS

particular program since he was trying to use the Y register as
an index).

This trap:

5280 L760 LDA BUFFER+2,Y:CMP #89:BNE ML760
5282 LDA OP:CMP #182:BEQ ML760
5283 JMP L680
5284 ML760 JMP TWOS

was inserted into LADS to make a harmless substitution, to
assemble an absolute,Y (at a zero page address). Thus, the
programmer's intent is preserved, but the illegal addressing
mode is replaced.

By the time Eval reaches this point, it has already filtered
out many other possible addressing modes. Eval knows that
the addressing mode is some form of ,X or ,Y and that it's zero
page. Eval first checks to see if we are dealing with an at
tempted ,Y addressing mode (CMP #89, theY character). If
not, we continue with the assembly (line 5280) by a BNE to
line 5284.

But if it is a ,Y, we check the opcode to see if it is LOX,
the only correct opcode for this addressing mode. If so, we
continue.

However, if it is some other mnemonic like LOA or STY,
this ,Y addressing mode is illegal and we make the adjustment
to absolute,Y by a JMP to the area of Eval where that address
ing mode is accomplished.

Most illegal addressing will be reported by LADS. Never
theless, if there's a peculiar error that you often make when
programming and LADS doesn' t alert you, just add an error
reporting trap or have the assembler automatically correct the
problem.

If you want to make LADS also calculate subtraction, make
the following changes to the source code and reassemble:

To Eval:

870 MX LDA PLUSFLAG:BNE MOWWA:LDA MINUSFLAG
890 MOWWA JSR MATH

To Array:

1170 BNE ARENW:LDA MINUSFLAG:BEQ AREND
1172 SEC:LDA RESULTsSBC ADDNUM:STA RESULT
1174 LDA RESULT+1:SBC ADDNUM+1:STA RESULT+1:JMP AREND
1180 ARENW CLC

272

To Math:

80 BEQ MATH2:CMP #45:BEQ MATH2

To Indisk:
91 STY MINUSFLAG
790 BNE COMM:INC PLUSFLAG

C: Modifying LADS

800 COMM CMP #171:BNE COMO:INC MINUSFLAG

To Tables:
721 MINUSFLAG .BYTE 0:

For ProDOS users, there is a special need for permitting
<LABEL and >LABEL within the .BYTE pseudo-op. This will
allow the programmer to stick in the required information
when making calls to the MLI routines . (See the description of
this technique at the end of this appendix.) This will make
MLI-dependent programs like ProDOS LADS relocatable. Cur
rently, ProDOS LADS freezes the MLI parameter list section of
the Tables subprogram by using the * = pseudo-op. After add
ing label names to that parameter list, you could then refer to
the addresses of the parameters by their labels rather than by
their actual memory addresses . This, then, would make it no
longer necessary to freeze the parameters and, thus, ProDOS
LADS could be easily relocated anywhere in memory.

To make the .BYTE pseudo-op recognize and evaluate
<LABEL or >LABEL, make the adjustments to the Indisk sub
program shown on page 274.

Remarkably Simple, Yet Radical, Change
Since LADS uses symbols instead of numbers, it's fairly easy
to change, to make it what you want it to be. What's more, all
the programs you write with LADS will also be symbolic and
easily changed. Let's make a radical change to LADS and see
how easy it is to profoundly alter the nature of the assembler.

As designed, LADS reads source code off a disk program
file . While this is convenient for very large programs like
LADS itself, which won't fit all at once in memory, it does
slow down assembly. Most of your ML programming will in
volve writing smaller subprograms, modules you will later link
together into a complete program. Any source code which will
fit in memory can be more conveniently tested and assembled
using the fast RAMLADS we'll create.

273

N
 "'' ~

3
4

2
5

D

E
X

:S
T

A

B
U

F
F

E
R

,X
:I

N
X

3

4
8

0

W
ER

K
2

LD
A

#

0
:S

T
A

B

U
F

F
E

R
,X

:L
D

A

N
U

B
U

F;

G
E

T

1S
T

C

H
A

R

IN

B
U

FF
E

R

3
4

8
5

C

M
P

#$
3B

:B
C

C

W
R

K
2:

JM
P

L
A

A
B

;
IS

IT

L

E
S

S

TH
A

N

A
S

C
II

FO

R

<

3
4

8
9

~
J
R
K
2

LD
A

#<

N
U

B
U

F;

PO
IN

T

TO

TH
E

A
S

C
II

N

U
M

B
ER

ST

O
R

E
D

IN

B

A
B

U
F

3
5

8
0

LD

X

#7

3
5

9
0

C

.L
EX

ST

A

N
U

B
U

F
,X

:S
T

A

B
U

F
F

E
R

,X

4
4

1
0

LA

A
B

CM

P
#

$
3

C
:B

E
Q

L

A
3:

L
D

A

#
2

:B
N

E

L
A

4
:L

A
3

LD

A

#
1

;
IS

IT

<

4

4
2

0

L
A

4
ST

A

B
Y

T
FL

A
G

:L
D

A

B
U

F
F

E
R

:O
R

A

#
$

8
0

:S
T

A

W
O

R
K

:J
SR

A

R
R

A
Y

:L
D

Y

Y
:J

M
P

R

E
E

N
T

E
R

('
) ~

0 a.

~

::J

(J
Q

I)>

0 V
l

C: Modifying LADS

Let's make LADS read its source code from within the
computer's RAM memory instead of from disk. This makes
two things possible: First, you can change source code, then
test it by a simple CALL. Second, tape drive users can use
LADS.

This version of LADS isn't functionally different from the
normal version since we'll still be reading through the same
source files-they'll just reside in RAM rather than on disk.
All the pseudo-ops will work the same way, but do not use
.FILE or .END, the disk-linking pseudo-ops. Simply end your
source code wherever it ends.

What's a radical change? You make a radical change
whenever you change * = $300 to * = 5000 which puts your
object code in an entirely new place in memory. You are mak
ing a small change at the beginning, the root, of your source
code. But, after making this change, the entire program is
assembled at address 5000 instead of address 768. The ef
fect-in the usual sense of the term-is quite radical. The ef
fort on your part, however, is rather minor. Likewise, we can
drastically alter the way LADS works by making a few minor
changes to the symbols in LADS.

Our goal is to make LADS read source code from memory
instead of from disk files. First, we need to add two new
pointers to the LADS zero page equates (in the Defs file). We
create PMEM. It will serve as a dynamic pointer. It will always
keep track of our current position in memory as we assemble
source code.

Just for background information, LADS normally relies on
the CHARIN routine in line 1040 of the Openl subprogram to
keep track of where we are in a file; whenever we call
CHARIN, it increments a pointer so that the next CHARIN
call will pull a new byte into A, the accumulator. But we're
going to be reading from memory, so we'll need to update our
own dynamic pointer. To create this pointer, we'll just type in
a new line in the Defs subprogram which can serve as our
pointer.

So, LOAD DEFS and add this new line:
157 PMEM = $E2

The other new pointer we need to define in zero page will
tell LADS where your BASIC RAM memory starts, where a
program in BASIC starts . We type this new line into Defs, too:

135 RAMSTART = $67

275

C: Modifying LADS

Here's what we've added to the Defs subprogram of Apple
LADS:

135 RAMSTART = $67; POINTER TO START OF RAM
MEMORY

157 PMEM = $E2; OUR DYNAMIC POINTER

One more change to Defs: We want to give our new version of
LADS a new name, so change line 20 to read
20 .D RAMLADS

That's all we're changing in Defs, so SAVE DEFS which
will replace the old DEFS and we're ready to move on. Now
LOAD OPENl.

A New CHARIN
In the OPEN1 file, we need to remove the CHARIN sub
routine itself. As LADS normally runs, it goes to the disk get
a-byte subroutine whenever CHARIN is invoked. This won't
work for memory-based source code. BASIC RAM cannot,
alas, be OPENed as if it were a file. So, since LADS is pep
pered with references to CHARIN, we can just undefine
CHARIN in the Open1 subprogram by putting a semicolon in
front of it. Change line 1040 to read
1040 ;CHARIN STY Y1

Recall that LADS will ignore anything on a line following
a semicolon. It's like REM. So, we can eliminate CHARIN by
just sticking a semicolon in front of it. Similarly, CHKIN is
scattered throughout LADS to reopen file 1, the read-code
from-disk file. We're not using file 1 in this version of LADS,
so we add a semicolon to its definition, too. Change line 930
to read
930 ;CHKIN STX OPNI

That's all for Open1, so SAVE OPEN1, replacing the older
version on the disk.

Now LOAD GETSA. Throughout LADS there are ref
erences to CHARIN and CHKIN. We need to write a new
CHARIN and CHKIN to replace the ones we just obliterated.
LADS will then have somewhere to go, something to do, as it
comes upon CHARINs or CHKINs throughout the code. We
do this by adding to the Getsa subprogram. Remove line 210
which would link us to the next file and add lines 220-660 to
Getsa as shown in Listing C-1.

276

N

'-
1

'-

1

Li
st

in
g

C
-1

2
2

0

:
M

EM
SA

R

E
PL

A
C

E
S

G
E

T
SA

2

7
0

M

EM
SA

LO

A

R
A

M
ST

A
R

T
:S

T
A

PM

E
M

:L
D

A

R
A

M
ST

A
R

T
+

1:
ST

A

PM
E

M
+l

2

8
0

LO

X

#3
:M

E
M

1
JS

R

C
H

A
R

IN
:D

E
X

:B
N

E

M
EM

l
3

0
0

JS

R

C
H

A
R

IN
:C

M
P

#$
2A

:B
E

Q

M
M

SA

3
1

0

LO
A

#<

M
N

O
ST

A
R

T
:S

T
A

T

E
M

P
:L

D
A

#>

M
N

O
ST

A
R

T
:S

T
A

T

E
M

P
+

l:
JS

R

PR
N

T
M

E
SS

3

2
0

JM

P
F

IN
:

G
O

BA

CK

TO

B
A

S
IC

M

O
D

E
3

3
0

M

M
SA

R

T
S

3
5

0

:
NE

W

C
H

A
R

IN

3
9

0

C
H

A
R

IN

IN
C

PM

EM
:B

N
E

IN
C

P
1

:I
N

C

PM
EM

+1

4
0

0

IN
C

P
1

ST
Y

Y

:L
D

Y

#
0

:L
D

A

(P
M

E
M

),
Y

:P
H

P
:L

D
Y

Y

:P
L

P
:R

T
S

;
SA

V
E

ST

A
T

U
S

R
E

G
IS

T
E

R

4
1

0

C
H

K
IN

R

T
S

:
R

E
PL

A
C

E
S

D
IS

K

R
O

U
T

IN
E

6

6
0

.F

IL
E

V

A
LD

EC

n ~

0 a..

~

::
l

O'
Q r)>

0 (J

l

C: Modifying LADS

Then SAVE GETSA.
Line 410 is just an RTS. It's a placebo. We never want to

reopen file 1 (CHKIN's normal job), so whenever LADS tries
to do that, we JSR/RTS and nothing happens. Something does
have to happen with CHARIN, however. CHARIN's job is to
fetch the next byte in the source code and give it to the accu
mulator. So this new version of CHARIN (390-400) increments
PMEM, our new RAM memory pointer, saves Y, loads the
byte, saves the status register, restores Y, restores the status
register, and returns. This effectively imitates the actions of the
normal disk CHARIN, except it draws upon RAM for source
code.

Here you can see one of those rare uses for PHP and
PLP. There are times when it's not enough to save the A, Y,
and X registers . This is one of those times. INDISK returns to
Eval only when it finds a colon (end of source instruction), a
semicolon (end of instruction, start of comment), or a zero
(end of BASIC program line, hence end of source instruction).
When we get a zero when we LDA, the zero flag will be set.
But the LDY instruction will reset the zero flag . So, to preserve
the effect of LDA on the zero flag, we PHP to store the flags
on the stack. Then, after the LDY, we restore the status of the
flags, using PLP before we return to the Indisk file . This way,
whatever effect the LDA had on the flags will be intact. Indisk
can thus expect to find the zero flag properly set if a particular
LDA is pulling in the final zero which signifies the end of a
line in the BASIC RAM source code.

After making these substitutions to LADS, we need to
make three final changes to remove the two references to
Open1 (the routine which opens a disk file for source code
reading) in the Eval subprogram. These references are at lines
350 and 4360. We can simply remove them from assembly by
putting a semicolon in front of them as we did earlier to re
move CHARIN and CHKIN. LOAD EVAL and change these
lines:

350 ;JSR OPENl
4360 ;JSR OPENl

Early in Eval, we have a JSR GETSA. This is the GET
Start-Address-from-disk routine. We want to change this to
JSR MEMSA. GETSA isn't needed. MEMSA will perform the
same job, but for memory-based source code instead of disk-

278

C: Modifying LADS

based source code. (We added the MEMSA routine to the
Getsa subprogram already.)

The first thing that MEMSA does is to put the start-of
BASIC-RAM pointer into PMEM (our dynamic pointer). This
positions us to the first byte in the source code. Then it pulls
off enough bytes to point to the * in the start address defi
nition in the source code. This is just what GETSA does for a
disk file. The rest of MEMSA is identical to GETSA.

So, we'll retype line 370:
370 SMORE JSR MEMSA

And then SAVE EVAL.

Second-Generation LADS
That's it. These few substitutions and LADS will read a source
file from RAM memory. You can still use .D NAME to create a
disk object code file. You can still send the object code dis
assembly to a printer with .P. All the other pseudo-ops (except
.FILE and .END which should not be used with RAMLADS) still
work fine. A radical change in ten minutes .

To create a RAMLADS: After you've made the above
changes to the source code (and saved them to disk), just load
in the normal disk version of LADS (if it's not in the computer
already), type ASM DEFS. LADS Sr. will grind out a brand
new baby called RAMLADS for you.

As always, when making a new version of your LADS assem
bler, be sure to direct object code to the disk (use the .D pseudo
op, not the .0) so that you won't overwrite the working LADS in
the computer. Also be sure you've given the new version a file
name that doesn't already exist on the disk. If you don't get a
RAMLADS, or if it doesn't work correctly, you might check to be
sure that your disk isn't full.

ProDOS users, change line 60 in Program B-1 to
60 PRINT CHR$(4);BRUN RAMLADS

Save this loader program with a new name and always
use this program to execute RAMLADS.

When testing a new version of LADS, BRUN is preferable
to BLOAD for pulling in the new version off the disk. This
will protect the LADS Wedge that controls the LADS
programming environment.

To use RAMLADS, just BRUN RAMLADS (except for
ProDOS users) and type in some source code:

279

C: Modifying LADS

10 *= $300
20 .s
30.0
40 LOA #$Cl:STA $0400
50 RTS

Then type ASM T (LADS doesn't need any particular file
name, but ASM requires an argument, something after the
ASM, even if it's only a space). You'll then see how fast
RAMLADS works. To try out this little test program (we
made it save the resulting ML routine to memory by using the
.0 pseudo-op), you can just CALL 768 and you'll see the let
ter A in the upper left of the screen.

Using RAMLADS is a very efficient way to create, test,
and modify ML programs. As this little example illustrates,
you can observe the results, make modifications (change line
40 to use #$C2 if you want to put a letter B on the screen),
add lines, and so on, and then almost instantly assemble and
test the new version. By this process, you can craft your ML
modules and, when you're satisfied, save them to disk.

A Disassembler
In a perfectly symmetrical universe, with a right hand for every
left, and a north pole for every south, you could transform an
assembler into a disassembler by just making it run backward.

Unfortunately, ours is not such a universe . Since LADS
turns source code into object code, it would seem possible to
tinker with it and adjust it a bit and make it turn object code
back into source code, to disassemble . Not so. This one isn't a
simple change. We have to link two new files onto LADS to
add a disassembler function: Dis and Dtables.

Personal Programming Style
The disassembler in the Apple monitor works well. Adding a
disassembler to LADS, however, serves as a good intermediate
level exercise. As it stands, you reassemble LADS with the
addition of the DIS and DTABLES files. You should lower the
* = starting address of LADS to make room for this new addi
tion. Also, make a note of the address of DIS which will appear
on the screen while your new version of LADS is assembling.
This address is where you will CALL to activate the dis
assembler. The version of DIS printed here can be stopped
only by hitting CONTROL-S or CONTROL-RESTORE.

280

C: Modifying LADS

DIS is an example of how a fairly complex ML program
can be constructed using LADS . The relatively few comments
reflect my personal style of programming. I find many of the
variable names are meaningful enough to make the code under
standable, especially since the purpose of the lookup tables in
Dtables is fairly easy to see.

The relatively few comments in the compressed code in
DIS also allow you to look at more source code instructions at
the same time on the screen. This can help during debugging
since you might be able to locate a fault in the overall logic of
a program more quickly. Nevertheless, many programmers
find such dense code hard to read, hard to debug, and gen
eral! y inefficient.

Obviously, you should write the kind of source code that
works for you. The degree of compression is a matter of
programming style and personal preference. Some program
ming teachers insist on heavy commenting and airy, de
compressed coding. Perhaps this emphasis is appropriate for
students who are just starting out with computing for the
same reasons that penmanship is stressed when students are
just starting to learn how to write. But you needn't feel that
there is only one programming style. There are many paths,
many styles .

How to Use the Disassembler
The disassembler in your Apple monitor is perfectly functional
for debugging purposes and, thus, adding this disassembler to
LADS is essentially an object lesson in one way of writing
fairly advanced ML. In practice, you'll probably do most of
your debugging by looking at the source code or printouts of
the object code from LADS. Disassembly, because it contains
the same information as the source code, but without com
ments, is a less useful debugging tool. However, if you have a
special interest in examining professional ML programs (where
you won't have access to the source code), you might want to
customize the LADS disassembler to suit your needs. Cus
tomizing LADS is an excellent way to increase your ML
programming abilities .

For convenience, DIS for 3.3 is set to start at the very end
of LADS's Tables subprogram (thus, at the very end of LADS).
However, the ProDOS version must not reside in high mem
ory, and so it should be assembled between DEFS and EVAL,

281

C: Modifying LADS

at the start of LADS. Also, ProDOS users who want to BRUN
DISLADS (the new LADS with the disassembler attached)
should include, as the first line in the Dis subprogram, the
command JMP SETUP so they will hook LADS into the
wedge. To use LADS, they would type ASM as usual. To ac
cess the disassembler, they would CALL to the start address of
DIS, plus three . In other words, if the DISLADS version were
assembled at $7500, the disassembler would be turned on by
CALL 29955 ($7503) .

The version of the disassembler printed here is fully func
tional, but you might want to make modifications. As printed,
it will ask for the decimal start address location in RAM of the
object code you want to see listed. Notice that the object code
must be residing in RAM to be disassembled. (It would be
simple, though, to make a disassembler which operated on
disk or tape code.) Then it will disassemble until you hit
CONTROL-S or CONTROL-RESTORE. You might want to
adjust it-you could have it assemble 20 instructions and then
halt until a key was pressed. Or you might want to make it
print disassemblies to the printer. Or it could ask for both
starting and ending addresses before it begins. To have the
disassembler you prefer, just modify the code.

The disassembler demonstrates compressed LADS source
code and it also shows how LADS itself can be expanded
while borrowing from existing LADS subroutines like
STOPKEY and PRNTNUM.

The source code for LADS itself in Appendix D is some
what artificial: Each line contains only one mnemonic fol
lowed by a description, a comment about the purpose of that
line. Normally, such extensive commentary will not be nec
essary, and many lines can contain multiple statements sepa
rated by colons. Dis is an example of LADS source code as
many programmers will probably write it.

To add the disassembler to 3.3 LADS, change the .END
DEFS at the end of the Tables subprogram in LADS to .FILE
DIS. This will cause the file for DIS to be assembled at the
end of LADS. DIS will link to DTABLES, which ends with
.END DEFS to permit the second pass through the combined
LADS/DIS code. You should also change line 20 in DEFS to
give a new name to the new LADS/DIS. Perhaps 20 .D
NEWLADS and add line 86 to Defs-86 PMEM = $E2.

282

C: Modifying LADS

For the ProDOS version, lower the start of LADS in line
10 of Defs to, say, * = $7500 . Then, change the last line in
DEFS to .FILE DIS; have the last line of DTABLES read .FILE
EVAL; and ASM DEFS. You'll also need to arrange to set aside
extra memory for the enlarged ProDOS LADS/DISASSEMBLER
you're trying to construct. The easiest way to do this is to
change the second number in the DATA statement at the end
of the LADS Loader program (Program B-1). Get into BASIC,
load Program B-1, make the change, and run. Then you can
safely start to assemble a new LADS at a new, lower location.
(For more information on the ProDOS LADS Loader program,
see the end of Appendix B.)

Keyboard Input
Let's briefly outline the structure and functions of the
disassembler. It starts off by printing its prompt message
called DISMESS (30). The actual message is located in line
710. PRNTMESS is a subroutine within LADS which prints
any message pointed to by the variable TEMP.

Then $3F, the ? symbol, is printed and STARTDIS (SO)
sets the hexflag up so that numbers will be printed in hexa
decimal. If you prefer decimal, LDA #0 and store it in
HXFLAG.

Now there 's an input loop to let the user input a decimal
start address, character by character. If a carriage return is de
tected (90), we leave the loop to process the number. The
number's characters are stored in the LABEL buffer and are
also printed to the screen as they are entered (100).

When we finish getting the input, the LADS VALDEC
routine changes the ASCII numbers into a two-byte integer in
the variable RESULT. We pick up the two-byte number and
store it in the variable SA which will be printed to the screen
as the address of each disassembled ·mnemonic.

Line 150 is a bit obscure. It wasn't originally written this
way, but testing revealed that the JSR GB in line 190 would
increment the start address right off the bat (before anything
was disassembled or printed). At the same time, putting that
increment lower in the main loop was inconvenient. So the
easiest thing was to simply accept a start address from the
user, then decrement it. The disassembler will start off with a
start address that is one lower than the user intends, but that
early increment will fix things up . Thus, the variable PMEM

283

C: Modifying LADS

will hold a number which is one lower than the variable SA.
Both these variables are keeping track of where in memory we
are currently disassembling. But we've got to distinguish in
this way between SA which prints to the screen and PMEM
which tells the computer the current location.

Battling Insects
This is a good place to observe that programming is never a
smooth trip from the original concept to the final product. No
programmer I've ever encountered is so well-prepared or
knowledgeable that he or she simply sits down and calmly
creates a workable program. If you find yourself scratching
your head, circling around a bug and not trapping it, spending
hours or days trying to see what could possibly be wrong
you're in good company. I've worked with some very experi
enced, very talented people and have yet to see someone fash
ion a program without snags. And the more sophisticated the
program, the more snags it has.

All that can be done, when you hit a snag, is to single
step through the offending area of your program, or set BRK
traps, or puzzle over the source code, or try making some ten
tative reassemblies (not knowing for sure if your changes will
have any salutary effect), or sometimes even toss out an entire
subroutine and start over.

For example, I wrote the rough draft, the first draft of this
disassembler, in about two hours. I didn't have the final ver
sion working until I'd spent two full days battling bugs. Some
were easy to fix, some were monsters. It took about ten min
utes to cure that problem with the start address being one too
high. But it took hours to locate an error in the disassembler
tables, DTABLES.

After the user has input the start address, TEMP is made
to point to the LABEL buffer and VALDEC is invoked.
VALDEC leaves the res.ult of an ASCII-to-integer conversion
in the RESULT variable . That number is stored in PMEM and
SA (140-150) . One final adjustment restores SA to the original
number input by the user. SA will only print addresses
onscreen; PMEM is the real pointer to the current address dur
ing disassembly. The decrementing of PMEM, made necessary
by that JSR GB early in the main loop, is not necessary for SA.
(SA is not incremented by the GB subroutine.)

284

C: Modifying LADS

GETBYTE: The Main loop
Now we arrive at the main loop. GETBYTE (190) first tests to
see if the user wants to stop disassembly via the STOPKEY
subroutine (in the Eval subprogram within LADS). Then the
GB subroutine (690) raises the memory pointer PMEM and
fetches a byte from memory. This byte is saved in the FILEN
buffer and will act as an index, a pointer to the various tables
in the Dtables subprogram. For purposes of illustration, let's
assume that the byte we picked up held the number 1. One is
the opcode for ORA (indirect,X) . We can trace through the main
loop of DIS and see what happens when DIS picks up a 1.

The 1 is transferred to the Y register (200), and we then
load whatever value is in MTABLE + 1 since we LOA MTABLE, Y
and Y holds a 1. This turns out to be the number 2, signifying
that we've come upon the second opcode (if the opcodes are
arranged in ascending order). Notice that BNE will make us
skip over the next couple of lines. Anytime we pull a 0 out of
MTABLE it means that there is no valid opcode for that num
ber, and we just print the address, the number, and a question
mark ($3F) . Then we raise the printout address pointer with
INCSA and return to fetch the next byte (210-220).

However, in our example, we did find something other
than a 0 in MTABLE. We've got a valid opcode. Now we have
to find out its addressing mode and print a one- or two-byte
argument, depending on that addressing mode. Is it immediate
addressing like LDA #15 (one-byte argument) or absolute
addressing like LDA 1500 (two-byte argument)?

Having found a valid opcode, we now extract the mne
monic from WORDTABLE and print it out (240-330). First, we
multiply our number from MTABLE by 3 since each mne
monic has three letters. The number we found in MTABLE
was a 2, so we have a 6 after the multiplication. That means
that our mnemonic will start in the sixth position within
WORDTABLE. We add 6 to the address of WORDTABLE
(280-290) and leave the variable PARRAY pointing at the first
letter 0 in WORDTABLE.

Now the SA (current disassembly address) is printed
onscreen with PRNTSA and a space is printed (300). We then
print ORA ons·creen,, one letter at a time (310-330), and print
another space. Now we're ready to figure out the addressing
mode.

285

C: Modifying LADS

Addressing Type
We had previously saved our original byte (the number 1 in
our example) in FILEN (190). We now retrieve it, pull out the
position value from MTABLE (getting the number 2), and load
in the addressing mode type from TYPETABLE (see lines
360-410 in the Dtables subroutine listing at the end of this
chapter). It turns out that the number 2 we're using in our ex
ample will pull out a number 4 from TYPETABLE. The num
ber 4 identifies this as an indirect X addressing mode.

Between lines 380 and 410 we have a simple decision
structure, much like BASIC's ON-GOTO structure. In our ex
ample, the CMP #4 in line 390 will now send us to a routine
called DINDX which handles indirect X addressing.

DINDX (460) takes advantage of several routines which
print symbols to the screen for us: LEPAR prints a left paren
thesis; DOONE fetches and prints the next number in RAM
memory (the argument for the s:urrent mnemonic); COMX
prints a comma and an X; and RIPAR finishes things off with
a right parenthesis . Now we have something like this
onscreen:

0360 ORA (12,X)

so our disassembly of this particular instruction is complete.
We JMP to ALLDONE (600) and print a carriage return and
start the main loop over again to disassemble the next
mnemonic.

Other mnemonics and other addressing modes follow a
similar path through DIS as they are looked up in Dtables and
then printed out.

Special 1/0 Notes
Finally, here are some general comments about what's Apple
specific in LADS. This will be of interest to those programmers
who are planning to write sophisticated software which needs
to access the disk.

LADS works on virtually any 6502 computer and there
are versions of it for Atari and Commodore computers in
my Second Book of Machine Language. However, disk access is
computer-specific and it's in the Open1 subprogram of LADS
where most of the changes need to be made to LADS to trans
late it to another machine. A similar translation was needed
when moving from DOS 3.3 to ProDOS. First, we'll look at
DOS 3.3 LADS input/output techniques and then ProDOS.

286

N

0
0

'I

P
ro

gr
am

 C
-1

.
D

is
-T

h
e
 D

is
as

se
m

bl
er

1

9

;
D

IS

-
-

D
IS

A
SS

E
M

B
L

E
R

3

9

LD
A

t<

D
IS

M
E

S
S

:S
T

A

T
E

M
P:

L
D

A

t>
D

IS
M

E
S

S
:S

T
A

T

E
M

P
+

1
:J

S
R

PR

N
T

M
E

SS

4
9

JS

R

PR
N

T
C

R
:L

D
A

#

$
3

F
:J

S
R

P

R
IN

T

5
9

S

T
A

R
T

D
IS

LD

A

#
1

:S
T

A

H
X

FL
A

G
:L

D
Y

#

9
:S

T
Y

Y

6

9

D
TM

0
LD

A

4
9

1
6

8
;

-
-

G
ET

ST

A
R

T

A
D

D
R

E
SS

(D

E
C

IM
A

L
)

7
9

LO

O
PX

LD

A

4
9

1
5

2
:B

P
L

LO

O
PX

8

9

CM
P

#
$

8
D

;
C

A
R

R
IA

G
E

R

ET
U

R
N

9

9

B
EQ

DM

O
1

9
9

LD

Y

Y
:S

T
A

L

A
B

E
L

,Y
:J

S
R

P

R
IN

T

1
1

9

IN
Y

:S
T

Y

Y
:J

M
P

D

TM
0

1
2

0

DM
O

LD
X

Y

:D
E

X
:D

E
C

L

A
B

E
L

,X
:L

D
Y

Y

:L
D

A

#
0

:S
T

A

L
A

B
E

L
,Y

:J
S

R

PR
N

T
C

R

1
3

9

LD
A

#<

L
A

B
E

L
:S

T
A

T

E
M

P:
L

D
A

t>

L
A

B
E

L
:S

T
A

T

E
M

P
+

1
:J

S
R

V

A
LD

EC

1
4

0

LD
Y

R

E
S

U
L

T
:S

T
Y

PM

EM

1
5

0

ST
Y

S

A
:L

D
A

R

E
S

U
L

T
+

I:
S

T
A

S

A
+

1:
S

T
A

PM

EM
+1

1

6
0

;

NO
W

A

D
JU

S
T

PR

IN
T

E
D

A

D
D

R
E

SS

(S
A

)
U

P
BY

1

(L
O

W
ER

ED

IN

L
IN

E

1
2

0
)

1
7

0

IN
C

S

A
:B

N
E

G

E
T

B
Y

T
E

:I
N

C

SA
+1

1

8
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-

PU
L

L

IN

A
 B

Y
TE

A

N
D

SE

E

IF

IT

IS

A
 V

A
L

ID

O
PC

O
D

E
1

9
0

G

E
T

B
Y

T
E

JS

R

S
T

O
P

K
E

Y
:J

S
R

G

B
:S

T
A

F

IL
E

N
;(

S
A

V
E

A

S
IN

D
E

X
)

2
9

0

T
A

Y
:L

D
A

M

T
A

B
L

E
,Y

:B
N

E

D
M

O
R

E
:J

SR

P
R

N
T

S
A

:J
S

R

PR
N

T
SP

A
C

E

2
1

0

LD
X

F

IL
E

N
:L

D
A

#

0
:J

S
R

PR

N
T

N
U

M
:J

SR

PR
N

T
SP

A
C

E

2
2

0

LD
A

#

$
3

F
:J

S
R

P

R
IN

T
:J

S
R

IN

C
S

A
:J

M
P

A

L
L

D
O

N
E

;
N

O
T

A
 V

A
L

ID

O
PC

O
D

E

2
3

0

;
C

O
N

T
IN

U
E

O

N
,

FO
U

N
D

A

 V
A

L
ID

O

P
C

O
D

E
--

--
-

2
4

0

D
M

O
RE

ST

A

W
O

R
K

:L
D

Y

#
0

:S
T

Y

P
A

R
R

A
Y

+
1:

A
S

L
:S

T
A

PA

R
R

A
Y

:R
O

L

PA
R

R
A

Y
+1

2

5
0

;

M
U

L
T

IP
L

Y

Y

BY

T
H

R
E

E

2
6

0

LD
A

W

O
R

K
:C

L
C

:A
D

C

PA
R

R
A

Y
:S

T
A

PA

R
R

A
Y

:L
D

A

#0
:A

D
C

P

A
R

R
A

Y
+

1:
S

T
A

PA

R
R

A
Y

+1

2
7

0

;
A

D
D

T

H
IS

TO

W

O
R

D
TA

B
LE

2

8
0

C

L
C

:L
D

A

#<
W

O
R

D
T

A
B

L
E

:A
D

C

PA
R

R
A

Y
:S

T
A

PA

R
R

A
Y

2

9
0

LD

A

#>
W

O
R

D
T

A
B

L
E

:A
D

C

P
A

R
R

A
Y

+
1:

S
T

A

PA
R

R
A

Y
+1

3

0
0

JS

R

P
R

N
T

S
A

:J
S

R

PR
N

T
SP

A
C

E

3
1

0

LD
Y

#

0
:L

D
A

(P

A
R

R
A

Y
),

Y
:J

S
R

P

R
IN

T
:I

N
Y

n ~

0 Q
.. ~

::J

()
Q

 :; 0 (J
l

~

3
2

0

LO
A

(P

A
R

R
A

Y
),

Y
:J

S
R

P

R
IN

T
:I

N
Y

oo

3

3
0

LO

A

(P
A

R
R

A
Y

),
Y

:J
S

R

P
R

IN
T

:J
S

R

PR
N

T
SP

A
C

E

3
4

0

LO
Y

F

IL
E

N
:L

D
A

M

T
A

B
L

E
,Y

:
0

M
EA

N
S

NO

A
R

G
U

M
E

N
T

(I
N

D
IR

E
C

T

O
R

A

C
C

U
M

U
LA

TO
R

M

O
D

E
S)

3

5
0

T

A
Y

:D
E

Y
:L

D
A

T

Y
P

E
T

A
B

L
E

,Y
:B

N
E

B

R
A

N
C

H
ES

3

6
0

JS

R

IN
C

S
A

:J
M

P

A
LL

D
O

N
E

3
7

0

B
R

A
N

C
H

ES

LO
A

T

Y
P

E
T

A
B

L
E

,Y

3
8

0

C
M

P
t1

:B
E

Q

D
IM

M
ED

3

9
0

C

M
P

#2
:B

E
Q

D

A
B

SO
L

:C
M

P
#

3
:B

E
Q

D

Z
E

R
O

:C
M

P
#4

:B
E

Q

D
IN

D
X

:C
M

P
#5

:B
E

Q

D
IN

D
Y

4

0
0

C

M
P

#6
:B

E
Q

D

Z
E

R
O

X
:C

M
P

#
7

:B
E

Q

D
A

B
SO

L
X

:C
M

P
#B

:B
E

Q

D
A

B
SO

L
Y

:C
M

P
#

9
:B

E
Q

D

R
EL

4

1
0

C

M
P

#
1

0
:B

E
Q

JD

JU
M

P
IN

D

4
2

0

JS
R

D

O
O

N
E

:J
S

R

C
O

M
X

:J
M

P
A

L
L

D
O

N
E

:
FA

L
L

-T
H

R
O

U
G

H

TO

T
Y

PE

1
1

(Z

E
R

O
,X

)
4

3
0

D

IM
M

ED

LO
A

t"

#
:J

S
R

P

R
IN

T
:J

S
R

D

O
O

N
E

:J
M

P
A

L
L

D
O

N
E

:
IM

M
E

D
IA

T
E

(T

Y
P

E

1
)

4
4

0

D
A

B
SO

L

JS
R

D

O
T

W
O

:J
M

P
A
L
L
D
O
~
E
:
J
D
J
U
M
P
I
N
D

JM
P

D
JU

M
PI

N
D

;A
B

SO
L

U
T

E

(T
Y

P
E

2

)
4

5
0

D

Z
E

R
O

JS

R

D
O

O
N

E
:J

M
P

A
L

L
D

O
N

E
:

ZE
R

O

PG
.

(T
Y

P
E

3

)
4

6
0

D

IN
D

X

JS
R

L

E
P

A
R

:J
S

R

D
O

O
N

E
:J

S
R

C

O
M

X
:J

SR

R
IP

A
R

:J
M

P

A
L

L
D

O
N

E
:

IN
D

.X

(T
Y

P
E

4

)
4

7
0

D

IN
D

Y

JS
R

L

E
P

A
R

:J
S

R

D
O

O
N

E
:J

S
R

R

IP
A

R
:J

S
R

C

O
M

Y
:J

M
P

A
L

L
D

O
N

E
:

IN
D

.
Y

(T

Y
P

E

5
)

4
8

0

D
ZE

R
O

X

JS
R

D

O
O

N
E

:J
S

R

C
O

M
X

:J
M

P
A

L
L

D
O

N
E

:
ZE

R
O

X

(T

Y
P

E

6
)

4
9

0

D
A

B
SO

LX

JS
R

D

O
T

W
O

:J
SR

C

O
M

X
:J

M
P

A
L

L
D

O
N

E
:

A
B

SO
L

U
T

E

X

(T
Y

P
E

7

)
5

9
0

D

A
B

SO
LY

JS

R

D
O

T
W

O
:J

SR

C
O

M
Y

:J
M

P
A

L
L

D
O

N
E

:
A

B
SO

L
U

T
E

Y

(T

Y
P

E

8
)

5
1

0

D
R

E
L

JS

R

G
B

:B
P

L

R
E

L
P

L
:

R
E

L
A

T
IV

E

(T
Y

PE

8
)

5
2

0

ST
A

W

O
R

K
:L

D
A

t$

F
E

:S
E

C
:S

B
C

W

O
R

K
:S

T
A

W

O
R

K
+1

5

3
0

S

E
C

:L
D

A

S
A

:S
B

C

W
O

R
K

+1
:S

T
A

W

O
RK

5

4
0

LO

A

S
A

+
1:

S
B

C

#
$

0
0

:T
A

X
:J

S
R

PR

N
TN

U
M

5

5
0

LO

X

W
O

R
K

:J
SR

PR

N
T

N
U

M
:J

SR

IN
C

S
A

:J
S

R

IN
C

S
A

:J
M

P

A
LL

D
O

N
E

5
6

0

R
E

L
P

L

C
L

C
:A

D
C

SA

:A
D

C

#
2

:S
T

A

W
O

R
K

:L
D

A

#0
:A

D
C

SA

+1

5
7

0

T
A

X
:J

S
R

PR

N
TN

U
M

5

8
0

LO

X

W
O

R
K

:J
SR

PR

N
T

N
U

M
:J

SR

IN
C

S
A

:J
S

R

IN
C

S
A

:J
M

P

A
LL

D
O

N
E

5
9

0

D
JU

M
PI

N
D

JS

R

L
E

P
A

R
:J

S
R

D

O
T

W
O

:J
SR

R

IP
A

R
:J

M
P

A

L
L

D
O

N
E

:
IN

D
.

JU
M

P
(T

Y
P

E

1
0

)
6

0
0

A

LL
D

O
N

E
JS

R

PR
N

T
C

R
:L

D
X

B

A
B

FL
A

G
:C

PX

#
1

:B
C

C

A
L

L
D

1:
P

L
A

:P
L

A
:J

M
P

F

IN

6
1

0

A
L

L
D

1
JM

P
G

E
T

B
Y

T
E

6

2
0

D

O
O

N
E

JS
R

G

B
:T

A
X

:L
D

A

t0
:J

S
R

PR

N
T

N
U

M
:J

SR

IN
C

S
A

:J
S

R

IN
C

S
A

:R
T

S

D

~

0 0
.

~

::I

O
Q

r-)>

0 V

l

6
3

0

D
O

TW
O

JS

R

G
B

:P
H

A
:J

S
R

G

B
:T

A
X

:L
D

A

•0

6
4

0

JS
R

P

R
N

T
N

U
M

:P
L

A
:T

A
X

:J
S

R

P
R

N
T

N
U

M
:J

S
R

IN

C
S

A
:J

S
R

IN

C
S

A
:J

S
R

IN

C
S

A
:R

T
S

6

5
0

CO

M
X

LO

A

#
1

7
2

:J
S

R

P
R

IN
T

:L
D

A

#
2

1
6

:J
S

R

P
R

IN
T

:R
T

S

6
6

0

CO
M

Y

LO
A

#

1
7

2
:J

S
R

P

R
IN

T
:L

D
A

#

2
1

7
:J

S
R

P

R
IN

T
:R

T
S

6

7
0

L

E
PA

R

LO
A

#

1
6

8
:J

S
R

P

R
IN

T
:R

T
S

6

8
0

R

IP
A

R

LO
A

#

1
6

9
:J

S
R

P

R
IN

T
:R

T
S

6

9
0

G

B
IN

C

PM
EM

:B
N

E
D

IN
C

P
1

:I
N

C

PM
E

M
+

1;
R

E
PL

A
C

E
S

C
O

N
V

E
N

T
IO

N
A

L

C
H

A
R

IN
/D

IS
K

7

0
0

D

IN
C

P
1

ST
Y

Y

:L
D

Y

#
0

:L
D

A

(P
M

E
M

),
Y

:P
H

P
:L

D
Y

Y

:P
L

P
:R

T
S

;
SA

V
E

ST

A
T

U
S

R
E

G
IS

T
E

R

7
1

0

D
IS

M
E

S
S

.B

Y
T

E

"D
IS

A
SS

E
M

B
L

Y

ST
A

R
T

A

D
D

R
E

SS

(D
E

C
IM

A
L

)"
:

.B
Y

T
E

0

7
2

0

.F
IL

E

D
T

A
B

L
E

S

P
ro

gr
am

 C
-2

.
D

ta
bl

es

1
0

;

"D
T

A
B

L
E

S
"

T
A

B
L

E
S

FO
R

D

IS
A

SS
E

M
B

L
E

R

2
0

3

0

;
TA

B
LE

O

F
2

5
6

P

O
S

S
IB

L
E

V

A
L

U
E

S
(S

O
M

E

A
R

E
V

A
L

ID

A
D

D
R

E
SS

IN
G

M

O
D

ES
)

4
0

;

5
0

M

TA
B

LE

.B
Y

T
E

1

2
0

0
0

3
4

0
5

6
7

0
0

8
9

0
6

0

.B
Y

T
E

1

0

1
1

0

0
0

1
2

1

3

0
1

4

1
5

0

0
0

1
6

1

7

0
7

0

.B
Y

T
E

1

8

1
9

0

0
2

0

21

22

0
2

3

2
4

25

0

2
6

2

7

28

0
8

0

.B
Y

T
E

2

9

3
0

0

0
0

3
1

32

0

33

3
4

0

0
0

3
5

3

6

0
9

0

.B
Y

T
E

3

7

3
8

0

0
0

3
9

4

0

0
4

1

4
2

4

3

0
4

4

4
5

4

6

0
1

0
0

.B

Y
T

E

4
7

4

8

0
0

0
4

9

50

0
5

1

5
2

0

0
0

53

5
4

0

1
1

0

.B
Y

T
E

5

5

56

0
0

0
57

58

0

5
9

6

0

6
1

0

6
2

6

3

6
4

0

1
2

0

.B
Y

T
E

6

5

66

0
0

0
6

7

68

0
6

9

7
0

0

0
0

71

72

0
1

3
0

.B

Y
T

E

0
73

0

0
7

4

7
5

76

0

7
7

0

7
8

0

7
9

8

0

8
1

0

1
4

0

.B
Y

T
E

8

2

8
3

0

0
8

4

8
5

86

0

8
7

8

8

8
9

0

0
9

0

0
0

1
5

0

.B
Y

T
E

9

1

9
2

9

3

0
9

4

95

9
6

0

9
7

9

8

9
9

0

1
0

0

1
0

1

1
0

2

0
~

1
6

0

.B
Y

T
E

1

0
3

1

0
4

0

0
1

0
5

1

0
6

1

0
7

0

1
0

8

1
0

9

1
1

0

0
1

1
1

1

1
2

~

1
7

0

.B
Y

T
E

1

1
4

1

1
5

0

0
1

1
6

1

1
7

1

1
8

0

1
1

9

1
2

0

1
2

1

0
1

2
2

1

2
3

1

1
3

0

1
2

4

0

n ~

0 a..

~

::
I

()
Q

I I~

~

1
8

0

.B
Y

T
E

1

2
5

1

2
6

0

0
0

1
2

7

1
2

8

0
1

2
9

1

3
0

0

0
0

1
3

1

1
3

2

0
o

1
9

0

.B
Y

T
E

1

3
3

1

3
4

0

0
1

3
5

1

3
6

1

3
7

0

1
3

8

1
3

9

1
4

0

0
1

4
1

1

4
2

1

4
3

0

2
0

0

.B
Y

T
E

1

4
4

1

4
5

0

0
0

1
4

6

1
4

7

0
1

4
8

1

4
9

0

0
0

1
5

0

1
5

1

0
2

1
0

2

2
0

:

TA
B

LE

O
F

M
N

EM
O

N
IC

S
(T

IE
D

TO

TH

E
N

U
M

B
ER

S
IN

T

A
B

L
E

A

B
O

V
E)

2

3
0

2

4
0

W

O
R

D
TA

B
LE

.B

Y
T

E

"X
X

X
B

R
K

O
R

A
O

R
A

A
SL

PH
PO

R
A

A
SL

O
R

A
A

SL
B

PL
O

R
A

O
R

A
A

SL

2
5

0

.B
Y

T
E

"C

L
C

O
R

A
O

R
A

A
SW

SR
A

N
D

B
IT

A
N

D
R

O
L

PL
PA

N
D

R
O

L
B

IT

2
6

0

.B
Y

T
E

"A

N
D

R
O

L
B

M
IA

N
D

A
N

D
R

O
L

SE
C

A
N

D
A

N
D

R
O

L
R

T
IE

O
R

2

7
0

.B

Y
T

E

"E
O

R
L

SR
PH

A
E

O
R

L
SR

JM
PE

O
R

L
SR

B
V

C
E

O
R

E
O

R
L

SR
C

L
IE

O
R

2

8
0

.B

Y
T

E

"E
O

R
L

SR
R

T
SA

D
C

A
D

C
R

O
R

PL
A

A
D

C
R

O
R

JM
PA

D
C

R
O

R
B

V
SA

D
C

2

9
0

.B

Y
T

E

"A
D

C
R

O
R

SE
IA

D
C

A
D

C
R

O
R

ST
A

ST
Y

ST
A

ST
X

D
E

Y
T

X
A

ST
Y

ST
A

3

0
0

.B

Y
T

E

"S
T

X
B

C
C

ST
A

ST
Y

ST
A

ST
X

T
Y

A
ST

A
T

X
SS

T
A

L
D

Y
L

D
A

L
D

X

3
1

0

.B
Y

T
E

"L

D
Y

LD
A

LD
X

TA
Y

LD
A

TA
X

LD
Y

LD
A

LD
X

B
C

SL
D

A
LD

Y
LD

A
LD

X

3
2

0

.B
Y

T
E

"C

L
V

L
D

A
T

SX
L

D
Y

L
D

A
L

D
X

C
PY

C
M

PC
PY

C
M

PD
E

C
IN

Y
C

M
PD

E
X

C
PY

C
M

PD
E

C

3
3

0

.B
Y

T
E

"B

N
E

C
M

PC
M

PD
E

C
C

L
D

C
M

PC
M

PD
E

C
C

PX
SB

C
C

PX
SB

C
IN

C

3
4

0

.B
Y

T
E

"I

N
X

SB
C

N
O

PC
PX

SB
C

IN
C

B
E

Q
SB

C
SB

C
IN

C
SE

D
SB

C
SB

C
IN

C

3
5

0

:
3

6
0

:

TA
B

LE

O
F

M
O

D
E

T
Y

PE
S

(T
IE

D

TO

TH
E

N
U

M
B

ER
S

IN

M
TA

B
LE

A

B
O

V
E

)
3

7
0

:

3
8

0

:
(T

Y
PE

0

=
IM

P
L

IE
D

)
(1

=

IM
M

E
D

IA
T

E
)

(2

=
A

B
S

O
L

U
T

E
)

(3

=
Z

E
R

O

P
G

.)

3
9

0

:
(T

Y
PE

4

=

IN
D

IR
E

C
T

X

)

(5

=

IN
D

IR
E

C
T

Y

)
(6

=

ZE

R
O

X

)
(7

=

A

B
SO

LU
TE

X

)
4

0
0

:

(T
Y

PE

8
=

A

B
SO

LU
TE

Y

)

(9

=

R
E

L
A

T
IV

E
)

4
1

0

:
(T

Y
PE

1

0

=

JM
P

IN
D

IR
E

C
T

)
(1

1

=

ZE
R

O

Y
)

4
2

0

4
3

0

T
Y

PE
T

A
B

L
E

.B

Y
T

E

0
4

3
3

0
1

0
2

2
9

4
4

0

.B
Y

T
E

5

6
6

0
8

7
7

2
4

3
4

5
0

.B

Y
T

E

3
3

0
1

0
2

2
2

9
5

4
6

0

.B
Y

T
E

6

6
0

8
7

7
0

4
3

3
4

7
0

.B

Y
T

E

0
1

0
2

2
2

9
5

6
6

("
) ~

0 Q
..

~

::::J

Q'
Q s;: 0 (J

l

N

\0

.....
.

4
8

0

.B
Y

T
E

0

8
7

7
0

4
3

3
0

1
0

1
0

4

9
0

.B

Y
T

E

2
2

9
5

6
6

0
8

7
7

4
3

3
5

0
0

.B

Y
T

E

3
0

0
2

2
2

9
5

6
6

5
1

0

.B
Y

T
E

1

1

0
8

0
7

l
4

1
3

3
5

2
0

.B

Y
T

E

3
0

l
0

2
2

2
9

5
6

5
3

0

.B
Y

T
E

6

1
1

0

8
0

7
7

8
1

4
5

4
0

.B

Y
T

E

3
3

3
0

1
0

2
2

2
9

5
5

0

.B
Y

T
E

5

6
6

0
8

7
7

1
4

3
5

6
0

.B

Y
T

E

3
3

0
1

~

2
2

2
9

5
5

7
0

.B

Y
T

E

6
6

0
8

7
7

5
8

0

.E
N

D

D
E

FS

n ~

0 0
.

~

:::J

0
0

 I~

C: Modifying LADS

DOS 3.3
The Apple doesn't have the convenience of Kernal routines to
access DOS, so special routines had to be written which could
directly access the DOS file manager routines. This takes place
in the Openl subprogram, and is discussed below.

Also, because the Applesoft tokenize routine takes the
spaces out of the text, it was necessary (if we wanted LADS
source code to be entered by the user in the BASIC format) to
put a wedge into Apple's CHRGET routine to intercept the
BASIC tokenize routine . Also, the wedge includes a routine
that puts the filename of the program you want to assemble to
the top of the screen where LADS expects to find it.

Apple Disk Access
The Apple DOS file manager is the part of DOS that handles
all file input and output to the disk. It calls RWTS
(Read/Write to Track/Sector) and is called from the command
interpreter. The command interpreter sends control bytes to
the file manager through the file manager parameter list. You
can access the file manager directly by sending it the param
eters it requires.

To get the address of the parameter field you JSR to
$03DC. This loads the accumulator with the high byte and the
Y register with the low byte of the parameter field. You can
then store these to a zero page location for easy transfer of the
parameters.

Table C-1. Apple File Manager Parameter List

Parameter
2 3/4 5 6 7 8 9/10 11 13/14 15/16 17/18

OPEN 1
CLOSE 2
DELETE 5
CATALOG 6
LOCK 7
UNLOCK 8
RENAME 9 * *
I NIT 11 157 .. * *
VERIFY 12 * * *

292

C: Modifying LADS

Parameter
2 3/4 5/6 7/8 9/10 11 13/14 15/16

READ 1 Byte 3 1 • • • •
READ Range 3 2 * * * * *
POSITION an 3 3 * * * * * *
READ 1 Byte

POSITION an 3 4 * * * * * * * READ Range

WRITE 1 Byte 4 1 * * * *
WRITE Range 4 2 * * * * *
POSITION an 4 3 * • * • • * WRITE 1 Byte

POSITION an 4 4 * * * * * * * WRITE Range

POSITION 10 • * * *

Note: The numbers in the leftmost column represent
the opcode; the numbers across the top of this chart
represent byte positions relative to the start of the
parameter list. Asterisks signify that a byte is required
for the operation listed. A blank space means that this
parameter can be ignored. Nevertheless, the byte po
sitions must be maintained. For example, to DELETE,
you do not need to worry about the second, third, or
fourth bytes-anything can be in them-but they must
exist. The first byte must contain a five, and the fifth
through the eighteenth bytes must be set up as de
scribed below.

17/18

•
*

•

*

•
*

*

*

The parameters are expained in sections. The first section
tells you about all the opcodes except for the read, write, and
positions opcodes, because they are slightly different from the
rest. The second section tells you about the read, write, and
position opcodes; the third, about the last set of parameters
that is common to all opcodes.

The first byte of the parameter field is the opcode type .
This parameter can be in the range of 1 to 12.

293

C: Modifying LADS

The second parameter is used only with the INIT
opcodes. If you are using a 48K Apple, the correct value for
this parameter is 157.

The third and fourth parameters are used with the OPEN
and RENAME opcodes. Together they hold the record length
of a random access file. If you are not using a random access
file, you should have a zero in both of these locations. With
the RENAME opcode, these bytes hold the address of the new
name.

The fifth byte holds the volume number. The sixth byte
holds the drive number. The seventh byte holds the slot num
ber. The eighth byte holds the file type.

The ninth and tenth bytes hold the address of the file
name. The filename must be stored in the address pointed to
by these bytes. It must be padded with spaces.

This section explains the read, write, and position
opcodes.

The first byte holds the opcode. The second byte holds
the subcode.

The next four bytes are used only when you require a po
sition command. The third and fourth bytes hold the record
number. The fifth and sixth bytes hold the byte offset. To re
position the pointer in an open file, you can use these bytes to
calculate a new position. The new position is equal to the
length of the file specified in the open opcode times the record
number plus the byte offset.

The seventh and eighth bytes hold the length of the range
of bytes. This is used only when reading or writing a range.

When reading or writing a range of bytes, the ninth and
tenth bytes hold the start address of the range. If you are
reading or writing only one byte, then the ninth byte holds
the byte you read or the byte you are going to write.

The following are parameters for all the opcodes.
The eleventh byte is the error byte. It should be checked

each time after you access the file manager. The errors are as
follows:

294

0: NO ERROR
2: INVALID OPCODE
3: INVALID SUBCODE
4: WRITE PROTECTED
5: END OF DATA
6: FILE NOT FOUND
7: VOLUME MISMATCH
8: I/0 ERROR
9: DISK FULL

10: FILE LOCKED

C: Modifying LADS

The twelfth byte is unused. The thirteenth and fourteenth
bytes are used for the address of the work area buffer. This is
a 45-byte buffer in one of the DOS buffers.

The fifteenth and sixteenth bytes hold the address of the
trackjsector list sector buffer. This is a 256-byte buffer in one
of the DOS buffers.

The seventeenth and eighteenth bytes hold the address of
the data sector buffer. This is another 256-byte buffer in one
of the DOS buffers.

Once you have sent the correct parameters, you can call
the file manager by a JSR to $03D6. You must specify if you
want to create a new file on disk if the one you are accessing
doesn ' t exist. This is done by loading the X register with a
zero. If you don't want to create a new file, you can load the X
register with a one. If you don't want to create a new file and
you try to access a file that doesn't exist, you will receive an
error number 6 in byte 11 of the parameter field.

Apple LADS uses the routines in the file manager that
read or write one byte from or to the disk at a time. The gen
eral routine to transfer the parameters from Tables to the file
manager can be found between lines 810 and 920 in the
Open1 listing. This is called from the individual subroutines
for opening, closing, reading, and writing. The OPEN routines
require a filename. Lines 580-800 handle the transfer of the
filename from the filename buffer to the specific buffer.

There is also a check to see whether a file about to be
opened has been opened previously. This was needed because
you cannot close a file unless it was previously opened. This is
handled in the close routine (370-570).

The PRINT routine handles all output, and the CHARIN
. routine handles all input. There is one input and one output

295

C: Modifying LADS

channel, and all input and output must be handled through a
channel. The bytes which govern this event are set in the
CHKIN and CHKOUT routine . The CHKIN routine (930-940)
sets all input to come from that file. The CHKOUT routine
(950-1030) sets all output to go to that file . The PRINT routine
(1170-1430) and the CHARIN routine (1040-1160) check to see
what channel is currently open, then go to that routine.

The BASIC wedge (1700-2530) handles the tokenizing of .
the BASIC text. It checks to see if the text pointer is at $200
(the input buffer). If not, it goes to the normal GETCHR rou
tine. Otherwise, it checks to see if the first character is a num
ber. If so, it goes to the insert line routine, and if not, it checks
for the characters ASM. If that is found, the wedge concludes
its work by putting the filename at the top of the screen and
jumping to the start of LADS.

The insert line routine gets the line number, then jumps
to the Apple tokenize routine, which loads the Y register with
the length of the line plus six and then jumps to the normal
line insert and tokenize routine.

The last subroutine in Open 1 is the first thing that is
called when you BRUN LADS. It initializes the wedge and
sets HIMEM to the start of LADS.

Special ProDOS Notes
Like the DOS 3.3 operating system, ProDOS maintains a file
buffer at the top of free RAM, just above where BASIC stores
strings. This is where we want to locate LADS itself-above
the ProDOS file buffer, but beneath ProDOS itself. This is
accomplished by moving the file buffer downward before
loading LADS. On the disk, there is a BASIC program, Pro
gram B-1, which POKEs a short ML program into memory.
The ML program is CALLed and it causes ProDOS to lower
the file buffer location. The ML program loads the accu
mulator with 31, to request 31 pages of memory (a page is 256
bytes, so we're requesting nearly 8K). Next, this little ML pro
gram CALLs the GETBUFR routine located at $BE38, and then
~e are .returned to,BASIC mode. Unlike the DOS 3.3 version
of LADS, the ProDOS version does not have to change
HIMEM (the location in zero page which tells the computer
the address of the highest available RAM memory). The
GETBUFR routine changes HIMEM for us when it relocates
the file buffer location. ·

296

C: Modifying LADS

All requests for disk operations through ProDOS are
made by calling its "Machine Language Interface," (MLI), lo
cated at $BFOO. MLI is defined as a label in LADS: MLI =

$BFOO. Then, whenever you JSR MLI, you must follow this
instruction (in the source code) with the call number and a
pointer to a list of parameters. These three bytes are inserted
into the source code itself by using the .BYTE pseudo-op. You
will find several examples of this somewhat unusual technique
in the source code listings for the Open 1 subprogram (Appen
dix D).

These three bytes are inserted immediately following JSR
MLI. While an ML program is running, the MLI itself will ad
just the computer's stack so that the RTS instruction (at the
end of the MLI subroutine) will correctly return control to six
bytes beyond the JSR MLI instruction (this will cause the com
puter to skip over the three-bytes holding the call number and
pointer) .

There are a total of 24 MLI calls available; LADS makes
use of 9 of them. These calls, and the format of their param
eter lists, are thoroughly described in Apple's ProDOS Tech
nical Reference Manual.

The first MLI call used by LADS is called ONLINE (call
number $C5). This will fetch the volume name of the disk
which is currently in the default drive. (That would be the
disk most recently accessed prior to assembling.) ProDOS then
stores the volume name in a location pointed to by this func
tion's parameter list, called OLINLIST. The volume name is
then used when you call SETPREFIX ($C6). SETPREFIX causes
that volume to become the default volume for all subsequent
disk operations. The parameter list for SETPREFIX is
PREFLIST.

To open a disk file, f,or either reading or writing, LADS
first calls OPEN ($C8), using OPENLIST. If the requested file
is not located on the disk, a call to CREATE ($CO) using
CRELIST will make a new file on the disk. If LADS is opening
a " file number 2" (LADS's name for an object code file cre
ated by using the .D pseudo-op), LADS must make two more
MLI c:alls. SETEOF ($DO) makes sure that the file is empty by
setting its end-of-file pointer to the first byte in the file. Then,
a call to SE~FILEINFO ($C3) establishes the starting address

297

C: Modifying LADS

of the object code, storing it in the file 's auxiliary file type.
The call to SETEOF uses SEOFLIST as its parameter list. The
call to SETFILEINFO uses INFOLIST.

LADS accomplishes its actual file input and output by
using the READ and WRITE MLI calls. These calls can transfer
any number of bytes, but LADS does all of its 1/0 one byte at
a time. The parameter list for both of these calls is RWLIST.
Finally, files are closed by calling CLOSE with CLOSLIST as
the parameter list.

298

LADS Source Code
The source code for LADS is divided into 13 sections, each of
which accomplishes a particular task for the assembler. The
DOS 3.3 version is listed, and any modifications required for
ProDOS follow each section. If you are interested in studying
or customizing the assembler, here is a brief overview of func
tions of the various sections:

• Defs. All the labels for zero-page pointers and ROM routines
used by the assembler are defined here.

• Eval. The main routine. Most other sections of the assembler
are called from within Eva! to perform their various services.
Eval starts assembly (line 30) and ends assembly (line 4260).
In between, Eval takes each line of source code apart,
determining the intended addressing mode.

• Equate. Builds the database of labels during the assembler's
first pass through the source code.

• Array. Searchs through the label database on the second
pass and locates a label name and its numeric value.

• Openl. Opens communication channels to disk and printer
so that source code can be read from disk, and object code
stored to disk or sent to printer.

• Findmn. A search routine to look through the list of 6502
mnemonics (in Tables below) to find the correct opcode.

• Getsa. Locates the start address as the first thing in the
source code.

• Valdec. Transforms ASCII numerals from the source code
into integers . Thus, the characters 2 5 become the number 25
after Valdec finishes with them.

• Indisk. The main input routine. Each line of source code is
brought in, analyzed in various ways, and prepared for Eva!.

• Math. Handles the + pseudo-op.
• Printops. Keeps track of our location within the object code

and formats screen and printer output in various ways.
• Pseudo. Handles all pseudo-ops except + and .BYTE.
• Tables. LADS's internal database. Contains lookup tables of

mnemonics, opcodes, and addressing-mode categories. In
cludes flags, pointers, error messages, and registers used by
various routines.

301

w

0 N

P
ro

g
ra

m
 D

-1
 a.

 D
ef

s

1
0

*=

$7

9F
D

2

0

.D

LA
D

S
3

0

.N
O

4

0

;A
P

P
L

E

V
E

R
SI

O
N

5

0

;
"D

E
F

S
"

E
Q

U
A

T
E

S
A

N
D

D

E
F

IN
IT

IO
N

S

6
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

M
A

C
H

IN
E

S

P
E

C
IF

IC

ZE
R

O

PA
G

E
E

Q
U

A
T

E
S

-
-
-
-
-
-
-
-
-
-
-

7
0

BM

EM
TO

P
=

 $
4

C
;

B
A

S
IC

'S

TO
P

O
F

M
EM

O
RY

P

O
IN

T
E

R

8
0

T

X
T

PT
R

=

 $
B

8
;

P
O

IN
T

E
R

TO

N

EX
T

B
Y

TE

O
F

T
E

X
T

8

5

FN
A

M
EL

EN

=

 $
F

9
;

LE
N

G
TH

O

F
F

IL
E

N

A
M

E
9

0

C
H

R
G

ET

=
 $

B
l;

G

ET

N
EX

T
B

Y
TE

O

F
TE

X
T

9
5

PR

G
EN

D

=

 $
A

F
;

PO
IN

T
E

R

TO

EN
D

O

F
PR

O
G

R
A

M

1
0

0

H
IG

H
D

S
=

 $
9

4
;

H
IG

H

D
E

S
T

IN
A

T
IO

N

O
F

B
LO

C
K

T

R
A

N
SF

E
R

U

T
IL

IT
Y

{B

L
T

U
)

1
1

0

V
A

R
TA

B

=
 $

6
9

;
V

A
R

IA
B

L
E

TA

B
LE

PO

IN
T

E
R

1

3
0

C

U
R

PO
S

=
 3

6
;

P
O

S
IT

IO
N

O

F
C

U
R

SO
R

ON

A

 G
IV

E
N

SC

R
EE

N

L
IN

E

1
4

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

LA
D

S
IN

T
E

R
N

A
L

ZE

R
O

PA

G
E

E
Q

U
A

T
E

S
-
-
-
-
-
-
-
-
-
-
-

1
5

0

TE
M

P
=

 $
F

B
:S

A

=

 $
FD

:M
E

M
T

O
P

=
 $

E
B

:P
A

R
R

A
Y

=

 $
E

D

1
5

5

PA
RM

=

 $
2A

:F
M

O
P

=

 $
2C

1

6
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

M
A

C
H

IN
E

S
P

E
C

IF
IC

RO

M

EQ
U

A
TE

S
-
-
-
-
-
-
-
-
-
-
-

1
7

0

T
O

B
A

SI
C

=

 $
3

D
0

;
GO

BA

CK

TO

B
A

S
IC

1

7
5

B

A
B

U
F

=
 $

0
2

0
0

;
B

A
S

IC
'S

IN

PU
T

B

U
FF

E
R

1

8
0

K

EY
W

D
S

=
 $

D
0D

0;

ST
A

R
T

O

F
K

EY
W

O
RD

TA

B
LE

IN

B

A
S

IC

1
9

0

O
U

TN
U

M

=
 $

E
D

2
4

;
P

R
IN

T
S

O

U
T

A

{M
S

B
),

X

(L

S
B

)
N

U
M

BE
R

2
0

0

CS
W

D

=

 $
A

A
53

;
A

D
D

R
E

SS

O
F

C
H

A
R

A
C

TE
R

O

U
T

PU
T

R

O
U

T
IN

E

2
1

0

C
O

U
T

=
 $

F
D

F
0

;
O

U
TP

U
T

O
N

E
B

Y
TE

2

4
0

L

IN
G

E
T

=

 $
D

A
0C

;
G

ET

L
IN

E

N
U

M
B

ER

FR
O

M

T
X

T
P

T
R

IN

T
O

L

IN
N

U
M

2

5
0

L

IN
IN

S

=

 $
D

46
A

;
IN

S
E

R
T

B

A
S

IC

L
IN

E

IN
T

O

B
A

S
IC

TE

X
T

2
8

0

SC
R

E
E

N

=
 $

0
4

0
0

;
A

D
D

R
E

SS

O
F

1S
T

B

Y
TE

O

F
SC

R
E

E
N

RA

M

6
4

0

.F
IL

E

EV
A

L

0 I)>

0 V
l

V
l

0 c ..., (
j

(t
) n 0 Q
..

(t
)

P
ro

gr
am

 D
-1

 b
.

D
ef

s,
 P

ro
 D

O
S

 C
ha

ng
es

4
0

;A

P
P

L
E

PR

O
D

O
S

V
E

R
SI

O
N

2

0
0

CS

W
D

=

 $
B

E
3

0
;

A
D

D
R

ES
S

O
F

C
H

A
R

A
C

TE
R

O

U
TP

U
T

R
O

U
T

IN
E

2

9
0

M

LI

=
 $

B
F

0
0

;P

R
O

D
O

S
M

A
C

H
IN

E
LA

N
G

U
A

G
E

IN
T

E
R

FA
C

E

P
ro

gr
am

 D
-2

a.
 E

va
l

1
0

;

"E
V

A
L

"
M

A
IN

E

V
A

L
U

A
T

IO
N

R

O
U

T
IN

E

(S
IM

P
L

E

A
SS

E
M

B
L

E
R

)
2

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
5

SE

T
U

P
JM

P
E

D
IT

S
U

;
ST

A
R

T

TH
E

W
ED

G
E

3
0

ST

A
R

T

LD
A

t0

4

0

LO
Y

t5

0

5
0

ST

R
T

L
P

ST
A

O

P
,Y

;
-
-

LO
O

P
TO

C

L
E

A
R

FL

A
G

S
6

0

D
EY

7

0

B
N

E
S

T
R

T
L

P
;

-
-
-
-
-
-
-
-

8
0

LD

A

#<
S

T
A

R
T

;
ST

O
R

E
B

O
TT

O
M

O

F
LA

D
S

IN
T

O

TO
P

O
F

A
R

R
A

Y
/M

E
M

O
R

Y
.

PR
O

T
E

C
T

IT

.
9

0

ST
A

M

EM
TO

P
1

0
0

ST

A

B
M

EM
TO

P
1

1
0

ST

A

A
R

R
A

Y
TO

P
1

2
0

LD

A

#>
S

T
A

R
T

1

3
0

ST

A

M
EM

TO
P+

1
1

4
0

ST

A

B
M

EM
TO

P+
1

1
5

0

ST
A

A

R
R

A
Y

T
O

P
+

1
;-

--
--

--
-

1
6

0

LD
A

t1

;
-
-

SE
T

D

E
FA

U
L

T
S

-
-

1
7

0

;
H

ER
E

Y
O

U

CA
N

SE

T

A
N

Y

A
D

D
IT

IO
N

A
L

D

E
FA

U
L

T
S

Y
O

U

W
IS

H

1
8

0

ST
A

H

X
FL

A
G

;
TU

R
N

O

N

H
EX

L

IS
T

IN
G

FL

A
G

1

9
0

ST

M
e

LO
A

S

C
R

E
E

N
,Y

;
-
-

G
E

T

SO
U

R
C

E
F

IL
E

N

A
M

E
~

2
0

0

CM
P

#$
A

0
w

2

1
0

B

EQ

ST
M

1;

C
H

EC
K

FO

R

A
N

O
TH

ER

B
LA

N
K

0 r)>

0 (J
l

(J
l

0 c ., 1"1

(!
) n 0 0.
..

(!
)

~

2
5

e
ST

M
3

ST
A

F

IL
E

N
,Y

;
ST

O
R

E
C

H
A

R
A

C
T

E
R

IN

F

IL
E

N

A
M

E
B

U
FF

E
R

~

2
6

e
IN

Y

2
7

0

JM
P

S
T

M
0;

G

ET

A
N

O
TH

ER

C
H

A
R

A
C

TE
R

2

8
e

S
T

M
l

ST
A

F

IL
E

N
,Y

;
C

H
EC

K

FO
R

2N

D

B
LA

N
K

2

9
e

IN
Y

3

0
0

LO

A

S
C

R
E

E
N

,Y

3
1

0

CM
P

i$
A

0
;

IF

N
O

SE

C
O

N
D

B

LA
N

K

SP
A

C
E

3

2
0

B

N
E

S
T

M
0;

TH

EN

G
O

B

A
C

K

FO
R

M

O
R

E
N

A
M

E
(M

IG
H

T

B
E

2
W

O
R

D
S)

3

3
0

D

EY

3
4

0

ST
Y

FN

A
M

E
L

E
N

;
ST

O
R

E

F
IL

E

N
A

M
E

LE
N

G
TH

3

5
0

JS

R

O
P

E
N

l;

O
PE

N

R
EA

D

F
IL

E

(S
O

U
R

C
E

C

O
D

E
F

IL
E

O

N

D
IS

K
)

3
6

0

:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

R
E

-E
N

T
R

Y

PO
IN

T

FO
R

PA

SS

2
-
-
-
-
-
-
-

3
7

0

SM
O

R
E

JS
R

 G
E

T
SA

;
PO

IN
T

D

IS
K

F
IL

E

TO

1S
T

C

H
A

R
A

C
TE

R

IN

SO
U

R
C

E

C
O

D
E

38
11

1
LO

A

#
0

3

9
0

ST

A

E
N

D
FL

A
G

;
S

E
T

L

A
D

S
-I

S
-O

V
E

R

FL
A

G

TO

D
O

W
N

4

0
0

JS

R

IN
D

IS
K

;
G

ET

A

SI
N

G
L

E

L
IN

E

O
F

SO
U

R
C

E
C

O
D

E
4

1
0

LO

A

P
A

S
S

;
IF

2N

D

PA
SS

4

2
0

B

N
E

S
T

A
R

T
L

IN
E

;
TH

EN

JU
M

P
O

V
ER

P

R
IN

T
IN

G

O
F

L
A

D
S

N
A

M
E

4
3

0

JS
R

PR

N
T

C
R

;
P

R
IN

T

C
A

R
R

IA
G

E

R
ET

U
R

N

4
4

0

LO
A

#

2
3

0
;

P
R

IN
T

B

LO
C

K

G
R

A
PH

IC
S

SY
M

B
O

L
4

5
0

JS

R

P
R

IN
T

4

6
0

LO

A

i7
6

;
L

47

11
1

JS
R

P

R
IN

T

4
8

0

LO
A

i6

5
;

A

4
9

0

JS
R

P

R
IN

T

5
0

0

LO
A

#

6
8

;
D

5

1
0

JS

R

P
R

IN
T

52

11
1

LO
A

#

8
3

;
S

5
3

0

JS
R

P

R
IN

T

5
4

0

JS
R

PR

N
T

C
R

;
A

N
O

TH
ER

C

A
R

R
IA

G
E

R

ET
U

R
N

5

5
0

C

K
H

EX

LO
A

H

E
X

FL
A

G
;

IF

ST
A

R
T

A

D
D

R
E

SS

N
U

M
B

ER

IS

H
E

X
,

IT
'S

A

LR
EA

D
Y

T

R
A

N
SL

A
T

E
D

9 I >

0 (J
)

(J
)

0 c: .., n (!
) n 0 0.
..

(!
)

V
J

0 (J
l

5
6

0

B
N

E
ST

A
R

1
5

7
0

LO

A

t<
L

A
B

E
L

;
IN

TH

E
LA

B
EL

B

U
FF

E
R

IS

SO

M
E

T
H

IN
G

L

IK
E

:
*=

8

6
4

5

8
0

ST

A

T
E

M
P;

PU

T
TH

E
A

D
D

R
E

SS

O
F

TH
E

B
U

FF
E

R

IN
T

O

TH
E

P
O

IN
T

E
R

C

A
LL

ED

TE
M

P
5

9
0

LO

A

#>
L

A
B

E
L

6

0
0

ST

A

T
E

M
P+

1
6

1
0

JS

R

V
A

L
D

E
C

;
TU

R
N

A

S
C

II

N
U

M
B

ER

IN
T

O

A
 T

W
O

-B
Y

T
E

IN

T
E

G
E

R

IN

"R
E

S
U

L
T

"
6

2
0

ST

A
R

1
LO

A

R
E

SU
L

T
;

-
-

ST
O

R
E

O

B
JE

C
T

C

O
D

E
'S

ST

A
R

T
IN

G

A
D

D
R

E
SS

IN

S

A
,T

A

6
3

0

ST
A

SA

6

4
0

ST

A

TA

6
5

0

LO
A

R

E
SU

L
T

+1

6
6

0

ST
A

S

A
+

1
6

7
0

ST

A

T
A

+
1

6
8

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

EN
TR

Y

P
O

IN
T

FO

R

EA
C

H

N
EW

L

IN
E

O

F
SO

U
R

C
E

C
O

D
E

6
9

0

S
T

A
R

T
L

IN
E

JS

R

ST
O

PK
E

Y
:L

D
A

E

N
D

FL
A

G
:B

E
Q

E

V
IN

D
:J

M
P

F

IN
!;

EN

D

LA
D

S
A

SS
E

M
B

L
Y

IF

7

0
0

i

E
IT

H
E

R

TH
E

ST
O

P
(B

R
E

A
K

)
K

EY

IS

PR
E

SS
E

D

O
R

IF

'rH

E

EN
D

FL
A

G

IS

U
P

.
7

1
0

7

2
0

E

V
IN

D

JS
R

IN

D
IS

K
;

O
T

H
E

R
W

IS
E

G

O

TO

PU
LL

IN

A

L

IN
E

FR

O
M

SO

U
R

C
E

C
O

D
E

7
3

0

LD
A

#

0

7
4

0

ST
A

E

X
P

R
E

S
S

F
;

SE
T

DO

W
N

TH
E

FL
A

G

TH
A

T
S

IG
N

A
L

S

A
 L

A
B

EL

A
R

G
U

M
EN

T
L

IK
E

LO

A

P
7

5
0

ST

A

B
U

FL
A

G
;

SE
T

DO

W
N

TH
E

FL
A

G

TH
A

T
SI

G
N

A
L

S

O
R

(

D
U

R
IN

G

A
R

R
A

Y

C
H

E
C

K
.

7
6

0

LD
Y

P

A
S

S
;O

N

PA
SS

1

,
W

E
D

O
N

'T

P
R

IN
T

L

IN
E

N

U
M

B
E

R
S,

A

D
D

R
.

O
R

A
N

Y
T

H
IN

G

E
L

SE
.

7
7

0

B
N

E
M

O
R

EE
V

7

8
0

JM

P
M

O
E4

7

9
0

M

O
R

EE
V

ST

Y

L
O

C
FL

A
G

;
ZE

R
O

A

D
D

R
E

SS
-T

Y
PE

L

A
llE

L

FL
A

G

(L
IK

E
:

LA
B

EL

!N
Y

)
8

0
0

i

T
H

IS

IS

FO
R

TH

E
IN

L
IN

E

SU
B

R
O

U
T

IN
E

B

EL
O

W
.

8
1

0

LO
A

S

F
L

A
G

;
SH

O
U

LD

W
E

P
R

IN
T

TO

TH

E
SC

R
E

E
N

8

2
0

B

EQ

M
X

;
IF

N

O
T

,
S

K
IP

T

H
IS

PA

R
T

8

3
0

JS

R

P
R

N
T

L
IN

E
;

P
R

IN
T

L

IN
E

N

U
M

B
ER

8

4
0

JS

R

PR
N

T
SP

A
C

E
;

P
R

IN
T

SP

A
C

E

8
5

0

JS
R

PR

N
T

SA
;

P
R

IN
T

PC

(P

R
O

G
R

A
M

C

O
U

N
T

E
R

).
"S

A
"

IS

TH
E

V
A

R
IA

B
L

E
.

8
6

0

JS
R

PR

N
T

SP
A

C
E

0 r-)>

0 (J
)

(J
)

0 c .., ("
'l ell
 n 0 0.
.

ell

~

8
7

0

M
X

LO
A

P

L
U

S
F

L
A

G
;

DO

W
E

H
A

V
E

A
 +

PS

E
U

D
O

O

P
~

8
8

0

B
EQ

M

O
E

4;

IF

N
O

T
S

K
IP

8

9
0

JS

R

M
A

TH
;

IF

S
O

,
H

A
N

D
LE

IT

IN

SU

B
PR

O
G

R
A

M

"M
A

T
H

"
9

0
0

M

O
E4

JM

P
FI

N
D

M
N

;
LO

O
K

U

P
M

N
EM

O
N

IC

(O
R

,
N

O
T

F
IN

D
IN

G

O
N

E
,

IT
'S

A

L

A
B

E
L

)
9

1
0

;

-
-
-
-
-
-
-
-

EV
A

LU
A

TE

A
R

G
U

M
EN

T
9

2
0

EV

A
R

LO

A

T
P

9

3
0

B

EQ

T
P

1J
M

P
;

C
H

EC
K

T

Y
P

E
,

IF

1
,

NO

A
R

G
U

M
EN

T
9

4
0

CM

P
#

3
;

IF

N
O

T
T

Y
PE

3

,
TH

EN

C
O

N
T

IN
U

E

E
V

A
L

U
A

T
IO

N

9
5

0

B
N

E
EV

G
O

9

6
0

LO

A

#
1

;
O

T
H

E
R

W
IS

E
,

R
E

PL
A

C
E

3

W
IT

H

1
IN

T

P
(T

Y
P

E
)

9
7

0

ST
A

T

P
9

8
0

LO

A

L
A

B
E

L
+

3;

IS

T
H

E
R

E

SO
M

E
T

H
IN

G

(N
O

T

A

Z
E

R
O

)
IN

4T

H

P
O

S
IT

IO
N

9

9
0

B

N
E

EV
G

O
;

EV
G

O

=

A
R

G
U

H
EN

T
(I

F

N
O

T
,

T
H

E
R

E
'S

N

O

A
R

G
U

M
E

N
T

,I
T

'S

IM
P

L
IE

D

1
0

0
0

LO

A

#
8

;
O

T
H

E
R

W
IS

E
,

R
A

IS
E

O

P
(O

PC
O

D
E

)
BY

8

1
0

1
0

C

L
C

1

0
2

0

A
D

C

O
P

1
0

3
0

ST

A

O
P

1
0

4
0

T

P
1J

M
P

JM

P
T

P
1

;
A

N
D

JU

M
P

TO

T
Y

PE

1
(S

IN
G

L
E

B

Y
T

E

T
Y

P
E

S
)

1
0

5
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
1

0
6

0

E
Q

L
A

B
E

L

LO
A

P

A
S

S
;

M
O

E4

FO
U

N
D

IT

TO

B

E
A

 L
A

B
E

L
,

N
O

T
A

 M
N

EM
O

N
IC

1

0
7

0

B
EQ

E

Q
L

A
B

1;

O
N

PA

SS

1
W

E
D

O
N

'T

C
A

R
E

W
H

IC
H

K

IN
D

O

F
L

A
B

E
L

IT

IS

SO

W

E
1

0
8

0

LO
Y

#

2
5

5
;

G
O

DO

W
N

A
N

D

ST
O

R
E

IT

IN

T

H
E

A

R
R

A
Y

(V

IA

E
Q

L
A

B
1)

1

0
9

0

EV
X

1
IN

Y
;

B
U

T
O

N

PA
SS

2

,
W

E
N

EE
D

TO

D

E
C

ID
E

IF

IT

'S

A

PC

A
D

D
R

E
SS

T

Y
PE

1

1
0

0

LO
A

L

A
B

E
L

,Y
;

L
A

B
E

L

(L
IK

E
:

L
A

B
E

L

IN
Y

)
O

R

A
N

EQ

U
A

TE

T
Y

PE

(L
A

B
E

L
=

1

5
)

1
1

1
0

B

EQ

G
O

N
O

A
R

;
SO

IN

T

H
IS

LO

O
P

W
E

LO
O

K

FO
R

A

B

LA
N

K

W
H

IL
E

ST

O
R

IN
G

TH

E
1

1
2

0

ST
A

F

IL
E

N
,Y

;
LA

B
EL

N

A
M

E
IN

TH

E
"F

IL
E

N
"

B
U

F
F

E
R

.
F

W
E

F
IN

D

A

0

,
IT

'S

1
1

3
0

CM

P
#

3
2

;
A

N

A
K

ED

L
A

B
E

L

(N
O

A

R
G

U
M

EN
T

TO

IT
)

W
H

IC
H

C

A
U

SE
S

U
S

TO

P
R

IN
T

1

1
4

0

B
N

E
E

V
X

1;
0U

T

TH
A

T
E

R
R

O
R

M

ES
SA

G
E

(A
T

N

O
A

R
,

IN

E
Q

U
A

T
E

).
O

T
H

E
R

W
IS

E
,

W
E

F
IN

D

A

1
1

5
0

IN

Y
;

B
LA

N
K

A

N
D

FA

L
L

TH

R
O

U
G

H

TO

T
H

IS

L
IN

E
.

1
1

6
0

LO

A

L
A

B
E

L
,Y

;
W

E
R

A
IS

E

Y

BY

1
A

N
D

C

H
EC

K

FO
R

A

N

=

S
IG

N
.

1
1

7
0

CM

P
#

$
3

0

9 :; 0 V
l

V
l

0 c:

(
j

(!
) n 0 a..

(!
)

1
1

8
0

B

N
E

N
O

T
E

Q
;

IF

N
O

T
,

IT
'S

A

PC

A

D
D

R
E

SS

T
Y

PE

(S
O

SE

T

L
O

C
FL

A
G

)
1

1
9

0

JM
P

IN
L

IN
E

;
IF

SO

,W
A

S
=

 T
Y

PE

SO

IG
N

O
R

E

IT

(O
N

PA

SS

2
)

-
-
-
-
-
-
-
-
-
-

1
2

0
0

N

O
TE

Q

LO
X

#

0

1
2

1
0

ST

X

L
O

C
FL

A
G

;
(S

H
O

W
S

PR
IN

T
O

U
T

TO

DO

T

H
IS

T

Y
PE

O

F
LA

B
EL

O

N

S
C

R
E

E
N

/P
R

IN
T

E
R

)
1

2
2

0

T
X

A
;

PU
T

A

ZE
R

O

IN

A
T

TH
E

EN
D

O

F
TH

E
LA

B
EL

N

A
M

E
(A

S
A

D

E
L

IM
IT

E
R

)
1

2
3

0

ST
A

F

IL
E

N
,Y

;
NO

W

W
E

H
A

V
E

TO

M
O

V
E

T
H

E

A
R

G
U

M
EN

T
PO

R
T

IO
N

O

F
T

H
IS

L

IN
E

1

2
4

0

EV
X

5
LO

A

L
A

B
E

L
,Y

;
O

V
ER

TO

TH

E
ST

A
R

T

O
F

TH
E

"L
A

B
E

L
"

B
U

FF
E

R

FO
R

FU

R
T

H
E

R

1
2

5
0

B

EQ

E
V

X
4;

A

N
A

L
Y

SI
S

(0

D
E

L
IM

IT
E

R

H
E

R
E

)
1

2
6

0

ST
A

L

A
B

E
L

,X
;

W
E

CA
N

IG

N
O

R
E

TH

E
PC

L

A
B

E
L

(T

H
IS

IS

PA

SS

2
),

B

U
T

W
E

1
2

7
0

IN

X
;

N
EE

D

TO

EV
A

LU
A

TE

TH
E

R
E

ST

O
F

TH
E

L
IN

E

FO
LL

O
W

IN
G

TH

A
T

L
A

B
E

L
.

1
2

8
0

IN

Y

1
2

9
0

JM

P
E

V
X

5
;-

--
--

--
--

--
--

--
--

--
1

3
0

0

E
V

X
4

ST
A

L

A
B

E
L

,X

1
3

1
0

JM

P
M

O
E

4;

JU
M

P
TO

C

O
N

T
IN

U
E

E

V
A

L
U

A
T

IO
N

1

3
2

0

G
O

N
O

A
R

JS

R

N
O

A
R

;
P

R
IN

T

N
O

A

RG
U

M
EN

T
M

ES
SA

G
E

(A

S
P

R
IN

G
B

O
A

R
D

);
--

--
--

--
--

1
3

3
0

E

Q
L

A
B

1
JS

R

E
Q

U
A

T
E

;
PU

T
L

A
B

E
L

A

N
D

IT

S

V
A

LU
E

IN
T

O

TH
E

A
R

R
A

Y

(P
A

S
S

1

)
1

3
4

0

JM
P

M
O

E
4;

C

O
N

T
IN

U
E

E

V
A

L
U

A
T

IO
N

1

3
5

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

T
R

A
N

SL
A

T
E

A

R
G

U
M

EN
T

L
A

B
E

L
S

IN
T

O

N
U

M
B

ER
S

1
3

6
0

EV

EX
LA

B

LO
A

B

U
FF

E
R

;
IS

T

H
IS

1S

T

C
H

A
R

A
C

TE
R

A

L
PH

A
B

E
T

IC

(>
6

4
)

1
3

7
0

CM

P
#

6
4

1

3
8

0

B
C

S
E

V
E

1;

IF

S
O

,
GO

DO

W
N

TO

FI
N

D

IT
S

V

A
L

U
E

.
1

3
9

0

LO
A

B

U
F

F
E

R
+

1;

IF

N
O

T
,

IT

M
U

ST

H
A

V
E

B
EE

N

A

(
O

R

SY

M
B

O
L

1
4

0
0

IN

C

B
U

FL
A

G
;

TO

T
E

L
L

A

R
R

A
Y

TH

A
T

(
O

R

W

AS

FO
U

N
D

(A

N
D

TO

IG

N
O

R
E

TH

EM
)

1
4

1
0

E

V
E

1
EO

R

#
$

8
0

;
SE

T

7T
H

B

IT

IN

1S
T

C

H
A

R
.

(T
O

M

A
TC

H

A
R

R
A

Y

ST
O

R
A

G
E

M

ET
H

O
D

)
1

4
2

0

ST
A

W

O
RK

;
SA

V
E

IT

H

ER
E

T
E

M
PO

R
A

R
IL

Y

TO

C
O

M
PA

R
E

W
IT

H

A
R

R
A

Y

W
O

R
D

S
1

4
3

0

JS
R

A

R
R

A
Y

;
E

V
A

L
.

E
X

P
R

E
S

S
IO

N

L
A

B
E

L
,

S
H

IF
T

E
D

1S

T

C
H

A
R

.
1

4
4

0

JM
P

L
3

4
0

;
T

H
E

N

C
O

N
T

IN
U

E

O
N

W

IT
H

E

V
A

L
U

A
T

IO
N

(A

F
T

E
R

V

A
LU

E
IS

IN

"R

E
S

U
L

T
")

1

4
5

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-

IS

A
R

G
U

M
EN

T
N

U
M

ER
IC

O

R

A
 L

A
B

E
L

1

4
6

0

EV
G

O

LO
Y

#0

w

1

4
7

0

ST
Y

E

X
P

R
E

S
S

F
;

TU
R

N

O
FF

TH

E
"
IT

'S

A

L
A

B
E

L
"

FL
A

G

~

1
4

8
0

LO

A

L
A

B
E

L
+

4,
Y

;
C

H
EC

K

5T
H

C

H
A

R
.

(L
O

A

N
A

M
E

O
R

LO
A

2

5
)

(T
H

E

"N
"

O
R

"2
")

0 I)>

0 V
l

V
l

0 c .., ("
) ro n 0 Q
.. ro

~

1
4

9
0

CM

P
#

6
5

;
IF

L

E
S

S

TH
A

N

65

(A
S

C
II

FO

R

"A
")

TH

EN

IT
'S

A

N

U
M

BE
R

oo

1
5

0
0

B

C
C

E

V
M

02
A

1

5
1

0

IN
C

E

X
P

R
E

S
S

F
;

>
65

=

A

L
PH

A
B

E
T

IC

A
RG

(L

A
B

E
L

)
SO

R

A
IS

E

T
H

IS

FL
A

G

1
5

2
0

E

V
M

02
A

ST

A

B
U

F
F

E
R

, Y
;

ST
O

R
E

1

S
T

C

H
A

R
.

O
F

A
R

G
U

M
EN

T
IN

"B

U
F

F
E

R
"

B
U

F
F

E
R

1

5
3

0

IN
Y

1

5
4

0

LD
A

L

A
B

E
L

+
4,

Y
;

LO
O

K

A
T

2N
D

C

H
A

R
.

IN

TH
E

A
R

G
U

M
EN

T
1

5
5

0

B
EQ

E

V
M

03
;

IF

Z
E

R
O

,
W

E
'R

E

A
T

TH
E

EN
D

SO

M

O
V

E
ON

1

5
6

0

ST
A

B

U
F

F
E

R
,Y

;
O

T
H

E
R

W
IS

E
,

ST
O

R
E

2N

D

C
H

A
R

.
1

5
7

0

CM
P

#
6

5
;

IF

LO
W

ER

TH
A

N

6
5

,
D

O
N

'T

R
A

IS
E

L

A
B

E
L

-A
R

G
U

M
E

N
T

FL

A
G

1

5
8

0

B
C

C

E
V

M
02

1

5
9

0

IN
C

E

X
P

R
E

S
S

F
;

IF

H
IG

H
E

R
,

D
O

R

A
IS

E

IT

1
6

0
0

EV

M
02

IN

Y
;

NO
W

M

O
V

E
R

ES
T

O
F

A
RG

U
M

EN
T

U
P

TO

"B
U

F
F

E
R

"
B

U
FF

E
R

1

6
1

0

LD
A

L

A
B

E
L

+
4,

Y
;

L
O

O
P

TO

M
O

V
E

TH
E

A
R

G
U

M
EN

T
IN

T
O

TH

E
B

U
F

F
E

R

1
6

2
0

B

EQ

E
V

M
03

;
EV

M
03

TA

K
ES

O

V
ER

A

FT
E

R

EN
D

O

F
A

RG
U

M
EN

T
IS

R

EA
C

H
ED

1

6
3

0

ST
A

B

U
F

F
E

R
,Y

1

6
4

0

JM
P

E
V

M
02

;
R

ET
U

R
N

FO

R

M
O

RE

A
R

G
U

M
EN

T
C

H
A

R
A

C
T

E
R

S.

1
6

5
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
6

6
0

EV

M
03

D

EY

1
6

7
0

ST

Y

A
R

G
S

IZ
E

;
R

EM
EM

B
ER

N

U
M

B
ER

O

F
C

H
A

R
A

C
TE

R
S

IN

A
R

G
U

M
EN

T
1

6
8

0

LD
A

H

E
X

FL
A

G
;

IF

IT
'S

H

EX
,

IN
D

IS
K

SU

B
PR

O
G

R
A

M

A
LR

EA
D

Y

TR
A

N
SL

A
TE

D

IT

FO
R

U

S
1

6
9

0

B
N

E
L

3
4

0
;

SO

G
O

O

N

TO

EV
A

LU
A

TE

A
D

D
R

ES
S

M
O

D
E.

1

7
0

0

LD
A

E

X
P

R
E

S
S

F
;

IF

IT
'S

A

 L
A

B
E

L

(N
O

T
A

 N
U

M
B

ER
)

TH
EN

G

O

TO

TH
E

R
O

U
T

IN
E

1

7
1

0

B
N

E
E

V
E

X
L

A
B

;
W

H
IC

H

EV
A

LU
A

TE
S

E
X

PR
E

SS
IO

N

(A
R

G
U

M
EN

T)

L
A

B
E

L
S

,
"E

V
E

X
L

A
B

"
1

7
2

0

;
-
-
-
-
-
-
-
-
-
-

C
A

LC
U

LA
TE

A

R
G

U
M

E
N

T
'S

V

A
LU

E
(I

F

IT
'S

A

D

EC
IM

A
L

N
U

M
B

ER
)

1
7

3
0

LD

A

#<
B

U
F

F
E

R
;

M
A

K
E

"T
E

M
P"

P

O
IN

T
E

R

P
O

IN
T

TO

"B

U
F

F
E

R
"

1
7

4
0

ST

A

TE
M

P
1

7
5

0

LO
A

#>

B
U

F
F

E
R

1

7
6

0

ST
A

T

E
M

P+
1

1
7

7
0

LO

Y

#
0

1

7
8

0

LD
A

B

U
F

F
E

R
;

IS

1S
T

C

H
A

R
A

C
TE

R

H
IG

H
E

R

TH
A

N

4
8

(A

S
C

II

FO
R

TH

E
N

U
M

B
ER

Z

E
R

O
)

1
7

9
0

CM

P
#

4
8

0 r-)>

0 V
l

V
l

0 c: .., (
j ro (
)

0 Q
..

ro

w

0 \(
)

1
8

0
0

1

8
1

0

1
8

2
0

1

8
3

0

1
8

4
0

1

8
5

0

1
8

6
0

1

8
7

0

1
8

8
0

1

8
9

0

1
9

0
0

1

9
0

5

1
9

0
7

1

9
1

0

1
9

2
0

1

9
3

0

1
9

4
0

1

9
5

0

1
9

6
0

1

9
7

0

1
9

8
0

1

9
9

0

2
0

0
0

2

0
1

0

2
0

2
0

2

0
3

0

2
0

4
0

2

0
5

0

2
0

6
0

2

0
7

0

2
0

8
0

 B
C

S
M
C
A
L
~

IF

SO
,

S
K

IP

T
H

IS

PA
R

T
C
L
C
~

IF

N
O

T
,

TH
E

1S
T

C

H
A

R
A

C
TE

R

M
U

ST

B
E

#

O
R

(

..
..

.
SO

W

E
N

EE
D

TO

IN

C

T
E
M
P
~

M
A

K
E

"T
E

M
P"

PO

IN
T

1

C
H

A
R

A
C

TE
R

H

IG
H

E
R

IN

"B

U
F

F
E

R
"

TO

BC
C

M
C
A
L
~

A
V

O
ID

H

A
V

IN
G

TH

E
A

S
C

II

TO

IN
T

E
G

E
R

SU

B
R

O
U

T
IN

E

T
H

IN
K

TH

A
T

TH
E

IN
C

T
E
M
P
+
l
~

N
U

M
B

ER

ST
A

R
T

S
W

IT
H

A

O
R

(
-
-
-

TH
A

T
W

O
U

LD

M
ES

S
T

H
IN

G
S

U
P

.
M

CA
L

LO
A

(
T
E
M
P
)
,
Y
~

NO
W

LO

O
K

FO

R

TH
E

EN
D

O

F
TH

E
N

U
M

B
ER

:
-
-
-
-
-
-
-
-
-
-

B
EQ

M
C
A
L
l
~

IT

C
O

U
LD

EN

D

W
IT

H

A
 0

(D

E
L

IM
IT

E
R

)
O

R
CM

P
#
4
1
~

W
IT

H

A

)
L

E
FT

PA

R
E

N
T

H
E

SI
S

O
R

B
EQ

M

C
A

L
l

CM
P

#
4
4
~

W
IT

H

A

,
CO

M
M

A
(A

S
IN

:
1

5
,Y

)
O

R

BE
Q

M

C
A

L1

CM
P

#
3
2
~

W
IT

H

B
LA

N
K

SP

A
C

E
(A

S
IN

:
#1

5
;C

O
M

M
EN

T)

B
EQ

M

C
A

L
l

I
N
Y
~

IF

W
E

'V
E

N

O
T

Y
ET

FO

U
N

D

O
N

E
O

F
T

H
E

SE

4
T

H
IN

G
S,

C

O
N

T
IN

U
E

L

O
O

K
IN

G

JM
P

M
C

A
L

;-
--

--
--

--
--

--
--

--
--

--
--

--
--

-
M

C
A

Ll

P
H
A
~

SA
V

E
A

C
C

U
M

U
LA

TO
R

TY

A

PH
A

;S
A

V
E

Y

 R
E

G
IS

T
E

R
(B

Y

N
O

W
,

Y

IS

P
O

IN
T

IN
G

A

T
TH

E
SP

A
C

E

JU
S

T

A
FT

E
R

TH

E
i)

LO

A

#
0

;
PU

T
D

E
L

IM
IT

E
R

ZE

R
O

IN

T
O

B

U
FF

E
R

JU

S
T

FO

LL
O

W
IN

G

N
U

M
B

ER
.

ST
A

(T

E
M

P)
 I

y
JS

R

V
A
L
D
E
C
~
G
O

TO

TH
E

A
S

C
II

-N
U

M
B

E
R

-T
O

-I
N

T
E

G
E

R
-N

U
M

B
E

R
-I

N
-"

R
E

S
U

L
T

"
R

O
U

T
IN

E

PL
A

;
R

E
ST

O
R

E

TH
E

A
 A

N
D

Y

 R
E

G
IS

T
E

R
S

TA

Y

PL
A

ST

A

(T
E

M
P

)
I
Y

;
R

E
ST

O
R

E

A

II

I
II

O

R

I
I
)

II

TO

TH

E
B

U
FF

E
R

(F

O
R

TH

E
A

D
D

R
.

A
N

A
L

Y
SI

S)

;-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

A
N

A
LY

ZE

TH
E

A
R

G
U

M
EN

T
TO

D

ET
ER

M
IN

E
A

D
D

R
E

SS
IN

G

M
O

D
E

(T
H

IS

E
SS

E
N

T
IA

L
L

Y

A
M

O
U

N
TS

TO

M

O
D

IF
Y

IN
G

TH

E
O

R
IG

IN
A

L

O
PC

O
D

E
TO

R

E
FL

E
C

T

TH
E

C
O

R
R

EC
T

A
D

D
R

E
SS

IN
G

M

O
D

E.

A
D

JU
ST

M
E

N
T

S
TO

TH

E
O

PC
O

D
E

"O
P

"
A

PP
E

A
R

FR

O
M

H

ER
E

O
N

R

A
TH

ER

FR
E

Q
U

E
N

T
L

Y
.

T
H

E
IR

L

O
G

IC

W
IL

L

N
O

T
B

E
E

X
PL

A
IN

E
D

.
D

O
IN

G

4
,8

,1
6

,
O

R

24

TO

A
N

"O

P
"

IS

B
A

SE
D

O

N

T
H

E
IR

R

E
L

A
T

IO
N

S
H

IP
S

W

IT
H

IN

TH
E

O
PC

O
D

E
T

A
B

L
E

).

0 I)>

0 (J
)

(J
)

0 c:,

('
l

rt
l n 0 0.
..

rt
l

w

>
--

'
0

2
0

9
0

2

1
0

0

L
3

4
0

LO

A

B
U

F
F

E
R

:
1S

T

C
H

A
R

.
O

F
TH

E
A

R
G

U
M

EN
T

(T
H

E

"#
"

IN

LO
A

#

1
5

)
2

1
H

l
C

M
P

#
3

5

2
1

2
0

B

EQ

JI
M

M
E

D
:

#S
Y

M
B

O
L

FO

U
N

D

(S
O

IM

M
E

D
IA

T
E

M

O
D

E
).

B
R

A
N

C
H

TO

SP

R
IN

G
B

O
A

R
D

2

1
3

0

CM
P

#
4

0
:

IS

IT

A

"
("

L

E
F

T

P
A

R
E

N
T

H
E

S
IS

.
IF

SO

,
G

O

TO

IN
D

IR
E

C
T

A

D
D

R
.

2
1

4
0

B

EQ

IN
D

IR

2
1

5
0

LO

A

T
P

:
IS

IT

A

 R
E

L
A

T
IV

E

A
D

D
R

.
M

O
D

E
(L

IK
E

B

N
E

,
B

E
Q

).

2
1

6
0

CM

P
#8

2

1
7

0

B
EQ

R

E
L

:
IF

S

O
,

GO

TO

W
H

ER
E

TH
EY

A

R
E

H
A

N
D

L
E

D
.

2
1

8
0

C

M
P

#
3

:
A

D
D

8

TO

O
P

A
T

T
H

IS

PO
IN

T

IF

IT
'S

A

 T
Y

PE

3
2

1
9

0

B
N

E
EV

M
05

2

2
0

0

LO
A

#8

2

2
1

0

C
LC

2

2
2

0

A
D

C

O
P

2
2

3
0

ST

A

O
P

2
2

4
0

JM

P
T

P
l:

A

N
D

JU

M
P

TO

TH
E

SI
N

G
L

E

B
Y

TE

T
Y

PE
S

(I
M

P
L

IE
D

A

D
D

R
E

SS
IN

G
)

2
2

5
0

IN

D
IR

LO

Y

A
R

G
S

IZ
E

:
H

A
N

D
LE

IN

D
IR

E
C

T

A
D

D
R

E
S

S
IN

G
--

--
--

--
--

--
--

--
--

-
2

2
6

0

LO
A

B

U
F

F
E

R
,Y

:
LO

O
K

A

T
T

H
E

L

A
ST

C

H
A

R
A

C
TE

R

IN

TH
E

A
R

G
U

M
EN

T.

2
2

7
0

C

M
P

#
4

1
:

IS

IT

A

"
)"

L

E
F

T

PA
R

E
N

T
H

E
SI

S
2

2
8

0

B
EQ

M

IN
D

IR
:

IF

SO
,

H
A

N
D

LE

TH
A

T
T

Y
P

E
.

2
2

9
0

LO

A

T
P

2
3

0
0

C

M
P

#
1

:
IF

T

Y
PE

1

,
A

D
D

1

6

A
T

T
H

IS

P
O

IN
T

TO

O

PC
O

D
E

2
3

1
0

B

N
E

M
IN

D
IR

2

3
2

0

LO
A

#

1
6

2

3
3

0

C
LC

2

3
4

0

A
D

C

O
P

2
3

5
0

ST

A

O
P

2
3

6
0

M

IN
D

IR

LD
A

T

P
:

TY
PE

6

IS

A
 J

U
M

P
IN

ST
R

U
C

T
IO

N

2
3

7
0

CM

P
#6

2

3
8

0

B
EQ

JJ

U
M

P
:

SO

GO

TO

TH
E

JU
M

P-
H

A
N

D
L

IN
G

R

O
U

T
IN

E

2
3

9
0

JM

P
TW

O
S:

O

T
H

E
R

W
IS

E
,

IT

M
U

ST

BE

A

2-
B

Y
T

E

T
Y

PE

SO

P
R

IN
T

/P
O

K
E

IT

.:
--

--
--

-

0 r- >

0 (
/)

(
/)

0 c ("
)

(1
)

(
)

0 Q
..

(1
)

2
4

0
0

2

4
1

0

2
4

2
0

2

4
3

0

2
4

4
0

2

4
5

0

2
4

6
0

2

4
7

0

2
4

8
0

2

4
9

0

2
5

0
0

2

5
1

0

2
5

4
0

2

5
5

0

2
5

6
0

2

5
7

0

2
5

8
0

2

5
9

0

2
6

0
0

2

6
1

0

2
6

2
0

2

6
3

0

2
6

4
0

2

6
5

0

2
6

6
0

2

6
7

0

2
6

9
0

2

7
0

0

2
7

1
0

(j

.)

2
7

2
0

.....

...
2

7
3

0

.....
...

JI
M

M
E

D

JM
P

IM
M

E
D

;
SP

R
IN

G
B

O
A

R
D

TO

IM

M
E

D
IA

T
E

M

O
D

E
T

Y
P

E
S

.
;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
A

N
D

LE

R
E

L
A

T
IV

E

A
D

D
R

E
SS

(B

N
E

)
T

Y
PE

S
R

E
L

LD

A

P
A

S
S

;
O

N

PA
SS

1

,
D

O
N

'T

B
O

T
H

E
R

,
JU

S
T

IN

C
R

E
A

SE

PC

BY

2
B

N
E

M
R

EL

JM
P

TW
O

S
M

R
EL

S

E
C

;
O

N

PA
SS

2

,
SU

B
T

R
A

C
T

PC

FR

O
M

A

R
G

U
M

EN
T

TO

G
ET

R

E
L

.
B

R
A

N
C

H

LD
A

R

E
SU

L
T

SB

C

SA

PH
A

;
SA

V
E

LO
W

B

Y
TE

A

N
SW

ER

LD
A

R

E
SU

L
T

+1

SB
C

SA

+1

B
C

S
FO

R
;

IF

A
R

G
U

M
EN

T
>

C

U
R

R
EN

T
P

C
,

TH
EN

IT

'S

A

B
R

A
N

C
H

FO

R
W

A
R

D

CM
P

#
$

F
F

B

EQ

M
PX

S
PL

A

JM
P

D
O

B
ER

R

M
PX

S
PL

A
;

O
T

H
E

R
W

IS
E

,
C

H
EC

K

FO
R

O

U
T

O
F

R
A

N
G

E
B

R
A

N
C

H

A
T

T
E

M
PT

B

PL

B
E

R
R

;
O

U
T

O
F

R
A

N
G

E
(P

R
IN

T

ER
R

O
R

M

E
SS

A
G

E

"B
E

R
R

")

JM
P

R
EL

M
;

A
N

D

JU
M

P
TO

R

EL

C
O

N
C

L
U

SI
O

N

R
O

U
T

IN
E

FO

R

B
EQ

M

PX
S1

;
C

H
EC

K

FO
R

W
A

R
D

B

R
A

N
C

H

O
U

T
O

F
R

A
N

G
E

PL
A

JM

P
D

O
B

ER
R

M

PX
S1

PL

A

B
PL

R

EL
M

;
W

IT
H

IN

R
A

N
G

E
--

--
--

--
--

--
--

--
B

E
R

R

JM
P

D
O

B
E

R
R

;
P

R
IN

T

"B
R

A
N

C
H

O

U
T

O
F

R
A

N
G

E"

ER
R

O
R

M

ES
SA

G
E

R
EL

M

SE
C

SB

C

#
2

;
C

O
R

R
EC

T
FO

R

TH
E

FA
C

T

TH
A

T
B

R
A

N
C

H
ES

A

R
E

C
A

LC
U

LA
TE

D

FR
O

M

TH
E

ST
A

R

E
SU

L
T

;
IN

ST
R

U
C

T
IO

N

FO
LL

O
W

IN
G

T

H
E

M
:

B
N

E
L

O
O

P:
L

D
A

1

5

W
O

U
LD

B

E
LD

A

#
0

;
C

A
LC

U
LA

TE
D

FR

O
M

TH

E
PC

O

F
TH

E
LD

A

1
5

ST

A

R
E

SU
L

T
+1

JM

P
TW

O
S;

NO

W

G
O

TO

TH

E
2-

B
Y

T
E

P

R
IN

T
/P

O
K

E

(W
IT

H

C
O

R
R

EC
T

A
R

G
U

M
EN

T)

0 I)>

0 V
l

V
l

0 c ""''

('"
'I ro n 0 Q
.. ro

(.
;)

.....

.
N

2

7
4

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

C
O

N
T

IN
U

E

A
D

D
R

.
M

O
D

E
A

N
A

L
Y

SI
S

2
7

5
0

EV

M
05

LD

Y

A
R

G
S

IZ
E

2

7
6

0

D
EY

2

7
7

0

LD
A

B

U
F

F
E

R
,Y

;
LO

O
K

A

T
L

A
ST

C

H
A

R
A

C
TE

R

O
F

A
R

G
U

M
EN

T
2

7
8

0

CM
P

#
4

4
;

IF

IT
'S

N

O
T

A

CO
M

M
A

,
TH

EN

T
H

IS

M
U

ST

B
E

A
 J

U
M

P
IN

ST
R

U
C

T
IO

N

2
7

9
0

B

N
E

JJ
U

M
P

;
SO

GO

TO

TH

E
JU

M
P-

H
A

N
D

L
IN

G

R
O

U
T

IN
E

2

8
0

0

IN
Y

2

8
1

0

JM
P

X
Y

T
Y

PE
;

O
T

H
E

R
W

IS
E

,
IT

M

U
ST

B

E
A

,X

O

R

,Y

T

Y
P

E
;-

--
--

--
--

--
--

--
2

8
2

0

JJ
U

M
P

LD
A

O

P
;

H
A

N
D

LE

JM
P

M
N

EM
O

N
IC

2

8
3

0

CM
P

#
7

6
;

IF

TH
E

O
PC

O
D

E
IS

N
'T

7

6
,

IT
'S

N

O
T

A
 J

U
M

P
2

8
4

0

B
N

E
M

EV
;

SO

LO
O

K

FO
R

SO

M
E

T
H

IN
G

E

L
SE

2

8
5

0

JM
P

JU
M

P
;

NO
W

SP

R
IN

G
B

O
A

R
D

TO

TH

E
JU

M
P-

H
A

N
D

L
IN

G

R
O

U
T

IN
E

.-
--

--
--

--
-

2
8

6
0

M

EV

LD
A

R

E
S

U
L

T
+

1;

IF

H
IG

H

B
Y

TE

O
F

R
E

SU
L

T

IS
N

'T

ZE
R

O

(Z
E

R
O

PG

.
A

D
D

R
)

2
8

7
0

B

N
E

P
R

E
P

T
H

R
E

E
S

;
TH

EN

G
O

TO

TH

E
3-

B
Y

T
E

IN

S
T

R
U

C
T

IO
N

S

(L
IN

E

4
0

0
)

2
8

8
0

LD

A

T
P

;
O

T
H

E
R

W
IS

E
,

IT
'S

ZE

R
O

PA

G
E

M
O

D
E

2
8

8
5

CM

P
#

9
:B

E
Q

PR

E
PT

H
R

E
E

S
2

8
9

0

CM
P

#
6

;
IF

H

IG
H

E
R

TH

A
N

T

Y
PE

6

,
IT

'S

AN

O
R

D
IN

A
R

Y

2-
B

Y
T

E

T
Y

PE

2
9

0
0

B

C
S

TW
O

S;

SO

GO

T
H

E
R

E
.

2
9

1
0

CM

P
#

2
;

IF

T
Y

PE

2
,

A
LS

O

G
O

T

H
E

R
E

.
2

9
2

0

B
EQ

TW

O
S

2
9

3
0

LD

A

#
4

;
O

T
H

E
R

W
IS

E
,

A
D

D

4
TO

O

PC
O

D
E

A
N

D

FA
L

L

TH
R

O
U

G
H

IN

T
O

TW

O
-B

Y
TE

T

Y
PE

2

9
4

0

C
LC

2

9
5

0

A
D

C
O

P
2

9
6

0

ST
A

O

P
2

9
7

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
B

Y
TE

T

Y
PE

S
(L

IK
E

LD

A

1
2

)
2

9
8

0

TW
O

S
JS

R

FO
R

M
A

T
;

P
R

IN
T

/P
O

K
E

O

PC
O

D
E

2
9

9
0

JS

R

P
R

IN
T

2
;

TH
EN

P

R
IN

T
/P

O
K

E

A
R

G
U

M
EN

T
3

0
0

0

JM
P

IN
L

IN
E

;
A

N
D

FI

N
A

L
L

Y

PR
E

PA
R

E

TO

FE
T

C
H

N

EW

L
IN

E

O
F

SO
U

R
C

EC
O

D
E

(2
0

0
0

)
3

0
1

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
A

N
D

LE

JM
P

3
0

2
0

JU

M
P

LD
Y

A

R
G

S
IZ

E
;

IS

IT

JM
P

1
5

0
0

O

R
JM

P
(1

5
0

0
)

3
0
3
~

LD
A

B

U
F

F
E

R
,Y

;
A

"
)"

A

T
TH

E
EN

D

PR
O

V
ES

IT

'S

A
N

IN

D
IR

E
C

T

JU
M

P
SO

0 ')>

0 V
l

V
l

0 c: .., n ro n 0 C
l. ro

c...
>

c...
>

3
0

4
0

CM

P
#

4
1

3

0
5

0

B
N

E
JU

M
O

3

0
6

0

LO
A

#

1
0

8
;

W
E

M
U

ST

C
H

A
N

G
E

TH
E

O
PC

O
D

E
FR

O
M

7

6

TO

1
0

8

3
0

7
0

ST

A

O
P

3
0

8
0

JU

M
O

JM

P
T

H
R

E
E

S;

T
R

E
A

T

IT

A
S

A
 N

O
R

M
A

L
3-

B
Y

T
E

IN

S
T

R
U

C
T

IO
N

3

0
9

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

IM
M

E
D

IA
T

E

A
D

D
R

E
SS

IN
G

(#

T

Y
PE

)
3

1
0

0

IM
M

ED

LO
A

B

U
FF

E
R

+1

3
1

1
0

CM

P
#

"
"
;

IS

T
H

IS

A
 C

H
A

R
A

C
TE

R

LO
A

D

PS
E

U
D

O
-O

P
L

IK
E

:
LO

A

#
"A

3

1
2

0

B
N

E
IM

M
ED

X

3
1

3
0

LO

A

B
U

F
F

E
R

+
2;

IF

S

O
,

PU
T

TH

E
A

S
C

II

C
H

A
R

.
IN

T
O

"R

E
S

U
L

T
"

(A
R

G
U

M
EN

T)

3
1

4
0

ST

A

R
E

SU
L

T

3
1

5
0

IM

M
ED

X

LO
A

T

P
3

1
6

0

CM
P

#1

3
1

7
0

B

N
E

TW
O

S;

IF

IT
'S

T

Y
P

E

1
,

A
D

JU
ST

O

PC
O

D
E

BY

A
D

D
IN

G

8
TO

IT

.
3

1
8

0

LO
A

#8

3

1
9

0

C
L

C
:A

D
C

O

P
:S

T
A

O

P
3

2
0

0

JM
P

TW
O

S
3

2
1

0

;-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
B

Y
TE

T

Y
PE

S
3

2
2

0

T
P

1
JS

R

FO
R

M
A

T;

JU
S

T

PO
K

E
O

PC
O

D
E

FO
R

T

H
E

S
E

,
T

H
E

R
E

'S

N
O

A

R
G

U
M

EN
T

3
2

3
0

JM

P
IN

L
IN

E
;

(L
IN

E

1
0

0
0

)
3

2
4

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
B

Y
TE

T

Y
P

E
S

3

2
5

0

PR
E

PT
H

R
E

E
S

LO
A

T

P
;

SE
V

E
R

A
L

O

PC
O

D
E

A
D

JU
ST

M
E

N
T

S
(B

A
SE

D

O
N

T

Y
P

E
)

3
2

6
0

CM

P
t2

3

2
7

0

B
EQ

PT

T

3
2

8
0

CM

P
#

7
;

(L
IN

E

4
3

0
)

3
2

9
0

B

N
E

PT
1

3
3

0
0

PT

T

LO
A

O

P
3

3
1

0

C
LC

3

3
2

0

A
D

C
t8

3

3
3

0

ST
A

O

P
3

3
4

0

JM
P

T
H

R
E

E
S

0 r)>

0 V
l

C
Jl

0 c: (
j

(t
l n 0 a..

(t
l

V
J
..
~

3
3

5
0

3

3
6

0

3
3

7
0

3

3
8

0

3
3

9
0

3

4
0

0

3
4

1
0

3

4
2

0

3
4

3
0

3

4
4

0

3
4

5
0

3

4
6

0

3
4

7
0

3

4
8

0

3
4

9
0

3

5
0

0

3
5

1
0

3

5
2

0

3
5

3
0

3

5
4

0

3
5

5
0

3

5
6

0

3
5

7
0

3

5
8

0

3
5

9
0

3

6
0

0

3
6

1
0

3

6
2

0

3
6

3
0

3

6
4

0

3
6

5
0

P
T

1
CM

P
#6

B

C
S

T
H

R
E

E
S

LO
A

O

P
C

L
C

A

O
C

#

1
2

ST

A

O
P

T
H

R
E

E
S

JS
R

FO

R
M

A
T

;
P

R
IN

T
/P

O
K

E

O
PC

O
D

E
JS

R

P
R

IN
T

3;

P
R

IN
T

/P
O

K
E

2

B
Y

T
E

S
O

F
TH

E
A

R
G

U
M

EN
T

(3
0

0
0

)
;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

PR
E

PA
R

E

TO

G
ET

A

 N
EW

L

IN
E

;P

R
IN

T

M
A

IN

IN
P

U
T

A

N
D

C

O
M

M
EN

TS
,

TH
EN

TO

ST

A
R

T
L

IN
E

IN

L
IN

E

LD
A

P

A
S

S
;

O
N

PA

SS

1
,

IG
N

O
R

E
T

H
IS

W

H
O

LE

PR
IN

T
O

U
T

T

H
IN

G
.

B
N

E
N

LO
X

1
JM

P
JS

T

N
LO

X
1

LD
A

S

F
L

A
G

;
L

IK
E

W
IS

E
,

IF

SC
R

E
E

N
FL

A
G

IS

D

O
W

N
,

IG
N

O
R

E
.

B
N

E
N

LO
X

JM

P
JS

T

N
LO

X

LD
A

L

O
C

FL
A

G
;

A
N

Y

PC

A
D

D
R

E
SS

L

A
B

E
L

TO

PR

IN
T

B

N
E

PR
M

M
X

1;

N
O

LO

C

TO

P
R

IN
T

(R

V
S

FL
A

G

U
SA

G
E

,
FO

R

S
P

E
E

D
)

LO
A

P

R
IN

T
F

L
A

G
;

P
R

IN
T

TO

P

R
IN

T
E

R

B
EQ

PR

M
M

LO

A

#
2

0

SE
C

SB

C

ST
A

JS

R

LO
X

JS

R

LO
Y

B

PL

LO
Y

C
U

R
PO

S;

A
;

M
O

V
E

C
LR

C
H

N
;

t4

C
H

K
O

U
T

A
 PR

X
M

1
t2

JM

P
PR

M
LO

P

SU
B

T
R

A
C

T

C
U

R
R

EN
T

C
U

R
SO

R

P
O

S
IT

IO
N

T

H
E

C

U
R

SO
R

TO

20

T
H

CO

LU
M

N

O
N

TH

E
SC

R
E

E
N

PR

E
PA

R
E

P

R
IN

T
E

R

TO

P
R

IN
T

B

LA
N

K
S

0 r-)>

0 V
l

V
l

0 c ""' rl (I
) (
)

0 Q
..

(I
)

3
6

6
0

PR

X
M

1
LO

A

#
3

2

3
6

7
0

PR

M
LO

P
JS

R

P

R
IN

T
;-

--
--

--
--

--
--

--
-

P
R

IN
T

B

LA
N

K
S

TO

P
R

IN
T

E
R

3

6
8

0

D
EY

3

6
9

0

B
N

E
PR

M
L

O
P;

P

R
IN

T

M
O

RE

B
LA

N
K

S
TO

P

R
IN

T
E

R
;-

--
--

--
--

--
--

-
-

3
7

0
0

JS

R

C
L

R
C

H
N

;
R

E
ST

O
R

E

N
O

R
M

A
L

I/
O

3

7
1

0

LO
X

#

l
3

7
2

0

JS
R

C

H
K

IN

3
7

3
0

PR

M
M

LO

A

#
2

0
;

PU
T

2
0

IN

T
O

C

U
R

R
EN

T
SC

R
E

E
N

C

U
R

SO
R

P

O
S

IT
IO

N

3
7

4
0

ST

A

C
U

R
PO

S
3

7
5

0

LO
A

#

<
F

IL
E

N
;

PO
IN

T

"T
E

M
P

"
TO

PC

A

D
D

R
E

SS

L
A

B
E

L

FO
R

PR

IN
T

O
U

T

3
7

6
0

ST

A

TE
M

P
3

7
7

0

LO
A

#

>
F

IL
E

N

3
7

8
0

ST

A

T
E

M
P+

1
3

7
9

0

JS
R

PR

N
T

M
E

SS
;

P
R

IN
T

L

O
C

A
T

IO
N

L

A
B

E
L
;-

-
-
-
-
-
-
-
-
-

3
8

0
0

PR

M
M

X
1

LO
A

#

3
0

;
M

O
V

E
C

U
R

SO
R

TO

30

T
H

CO

LU
M

N

3
8

1
0

SE

C

3
8

2
0

SB

C

C
U

R
PO

S
3

8
3

0

ST
A

X

;
SA

V
E

O

FF
SE

T

FR
O

M

C
U

R
R

EN
T

P
O

S
IT

IO
N

(3

0
-P

O
S

IT
IO

N
)

FO
R

PR

IN
T

E
R

3

8
6

0

LO
A

P

R
IN

T
F

L
A

G
;

DO

W
E

N
EE

D

TO

P
R

IN
T

B

LA
N

K
S

TO

T
H

E

P
R

IN
T

E
R

3

8
7

0

B
EQ

PR

M
M

FI
N

3

8
8

0

JS
R

C

L
R

C
H

N
;

A
LE

R
T

P
R

IN
T

E
R

TO

R

E
C

E
IV

E

B
LA

N
K

S
3

8
9

0

LD
X

#

4

3
9

0
0

JS

R

C
H

K
O

U
T

3
9

1
0

LD

Y

X

3
9

2
0

B

EQ

PX
M

X
;

H
A

N
D

LE

N
O

B

LA
N

K
S

(I
G

N
O

R
E

)
3

9
3

0

B
M

I
PX

M
X

;
H

A
N

D
LE

TO

O

M
A

N
Y

B

LA
N

K
S

(>
1

2
7

)
(I

G
N

O
R

E
)

3
9

4
0

LO

A

#
3

2

3
9

5
0

PR

M
LO

PX

JS
R

P

R
IN

T
;

P
R

IN
T

B

LA
N

K
S

TO

PR
IN

T
E

R

FO
R

F

O
R

M
A

T
T

IN
G

--
--

--
--

3
9

6
0

D

EY

~

3
9
7
~

B
N

E
PR

M
L

O
PX

;
P

R
IN

T

M
O

RE

B
L

A
N

K
S

--
--

--
--

-
~

3
9

8
0

PX

M
X

JS

R

C
L

R
C

H
N

;
R

E
ST

O
R

E

N
O

RM
A

L
I/

O

0 r)>

0 (j
)

(j
)

0 c ""
'I n ro n 0 0
.

ro

w

.....
..

0
'-

3
9

9
0

LD

X

#
l

4
0

0
0

JS

R

C

H
K

I
N

;-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
0

0
3

PR

M
M

FI
N

LO

A

#
3

0

4
0

0
6

ST

A

C
U

R
PO

S;

S
E

T

SC
R

E
E

N

C
U

R
SO

R

P
O

S
IT

IO
N

TO

3

0

4
0

1
0

JS

R

P
R

N
T

IN
P

U
T

;
P

R
IN

T

M
A

IN

IN
P

U
T

B

U
FF

E
R

(B

U
L

K

O
F

SO
U

R
C

E

L
IN

E
)

4
0

2
0

LD

A

B
Y

T
FL

A
G

;
IS

T

H
E

R
E

A

<

O

R

>

PS
E

U
D

O
-O

P
TO

PR

IN
T

-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
0

3
0

B

EQ

PR
X

M
;

H
A

N
D

LE

<
 A

N
D

>

4

0
4

0

C
M

P
#

1
;

1
IN

B

Y
T

FL
A

G

M
EA

N
S

<

4
0

5
0

B

N
E

M
O

S
4

0
6

0

LD
A

#

6
0

4

0
7

0

JM
P

PR
M

O

4
0

8
0

M

O
S

LO
A

#

6
2

;
P

R
IN

T

>

4
0

9
0

PR

M
O

JS

R

P
R

IN
T

4

1
0

0

JS
R

P

T
P

1
;

P
R

IN
T

>

O

R

<
.

P
T

P
1

IS

TO

P
R

IN
T

E
R

--
--

--
--

--
4

1
1

0

PR
X

M

LD
A

B

A
B

FL
A

G
;

IS

TH
ER

E
A

N
Y

CO

M
M

EN
T

TO

P
R

IN
T

(S

O
M

E
T

H
IN

G

F
O

L
L

O
W

IN
G

;)

4
1

2
0

B

EQ

R
E

T
T

X
;

IF

N
O

T
,

S
K

IP

T
H

IS
.

4
1

3
0

JS

R

PR
N

T
SP

A
C

E
;

P
R

IN
T

A

 S
P

A
C

E
--

--
--

--
P

R
IN

T

CO
M

M
EN

TS

F
IE

L
D

--
--

--
--

--
4

1
4

0

LD
A

#

5
9

;
P

R
IN

T

A

SE
M

IC
O

L
O

N

4
1

5
0

JS

R

P
R

IN
T

4

1
6

0

LD
A

#<

B
A

B
U

F;

P
O

IN
T

"T

E
M

P"

TO

TH
E

C
O

M
M

EN
TS

B

U
FF

E
R

"B

A
B

U
F

"
4

1
7

0

ST
A

TE

M
P

4
1

8
0

LD

A

#>
B

A
B

U
F

4
1

9
0

ST

A

T
E

M
P+

l
4

2
0

0

JS
R

PR

N
T

M
E

SS
;

P
R

IN
T

W

H
A

T
'S

IN

TH

E
C

O
M

M
EN

TS

B
U

FF
E

R

4
2

1
0

R

E
T

T
X

JS

R

PR
N

T
C

R
;

PR
IN

T

C
A

R
R

IA
G

E

R
ET

U
R

N

4
2

2
0

LD

A

EN
D

FL
A

G
;

IF

EN
D

FL
A

G

IS

U
P

,
JU

M
P

TO

T
H

E

SH
U

TD
O

W
N

R

O
U

T
IN

E

4
2

3
0

B

N
E

F
IN

!
4

2
4

0

JS
T

JM

P
S

T
A

R
T

L
IN

E
;

O
T

H
E

R
W

IS
E

GO

BA

CK

U
P

TO

G
ET

TH

E
N

EX
T

SO
U

R
C

E
L

IN
E

.
4

2
5

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

T
H

E

EN
D

O

F
A

PA

SS

(1

O
R

2

)
4

2
6

0

F
IN

!
LD

A

PA
SS

4

2
7

0

B
N

E
F

IN
;

IF

IT
'S

PA

SS

2
,

SH
U

T

E
V

E
R

Y
T

H
IN

G

D
O

W
N

.

0 ')>

0 V
l

V
l

0 c .., ("
')

([
) n 0 0
..

([

)

(.
;.

)
.....

.
'-

1

4
2

8
0

IN

C

P
A

S
S

:
O

T
H

E
R

W
IS

E
,

C
H

A
N

G
E

PA
SS

1

TO

PA
SS

TW

O

(I
N

TH

E
F

L
A

G
)

4
2

8
2

S

E
C

:
SA

V
E

TH
E

LE
N

G
TH

O

F
T

H
E

C

O
D

E
4

2
8

3

LO
A

S

A
:

FO
R

T

H
E

T

H
IR

D

A
N

D

FO
U

R
TH

4

2
8

4

SB
C

T

A
:

B
Y

T
E

S
O

F
TH

E
B

IN
A

R
Y

4

2
8

5

ST
A

L

E
N

PT
R

:
F

IL
E

C

R
EA

TE
D

B

Y

TH
E

4
2

8
6

LO

A

S
A

+
l:

.o

 P
SE

U
D

O
P

4
2

8
7

SB

C

T
A

+
l

4
2

8
8

ST

A

L
E

N
P

T
R

+
l

4
2

9
0

LO

A

T
A

:
PU

T
T

H
E

O

R
IG

IN
A

L

ST
A

R
T

A

D
D

R
.

IN
T

O

TH
E

PC

PR
O

G
RA

M

C
O

U
N

TE
R

(S

A
)

4
3

0
0

ST

A

SA

4
3

1
0

LO

A

T
A

+
l

4
3

2
0

ST

A

S
A

+
l

4
3

3
0

JS

R

C
L

R
C

H
N

:
R

E
ST

O
R

E

O
R

D
IN

A
R

Y

I
/O

 C
O

N
D

IT
IO

N
S

4
3

4
0

LO

A

#1

4
3

5
0

JS

R

C
L

O
SE

:
C

L
O

SE

IN
PU

T

F
IL

E

4
3

6
0

JS

R

O
P

E
N

l:

O
PE

N

IN
PU

T

F
IL

E

(P
O

IN
T

IT

TO

TH

E
1S

T

B
Y

TE

IN

T
H

E

F
IL

E
)

4
3

7
0

JM

P

SM
O

R
E:

PA

SS

1
F

IN
IS

H
E

D
,

ST
A

R
T

P

A
S

S

2
(E

N
T

R
Y

P

O
IN

T

FO
R

P

A
S

S

2

)
-
-
-
-
-
-

4
3

8
0

4

3
9

0

:-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

SH
U

T

DO
W

N
LA

D
S

O
PE

R
A

T
IO

N
S

A
N

D

R
ET

U
R

N

TO

B
A

SI
C

-
-
-
-
-
-

4
4

0
0

F

IN

JS
R

C

L
R

C
H

N
:

R
ES

TO
R

E
N

O
R

M
A

L
I/

0

4
4

1
0

LO

A

U

4
4

2
0

JS

R

C
L

O
SE

:
C

L
O

SE

SO
U

R
C

E
C

O
D

E
IN

PU
T

F

IL
E

4

4
3

0

LO
A

#2

4

4
4

0

JS
R

C

L
O

SE
:

C
L

O
SE

O

B
JE

C
T

C

O
D

E
O

U
TP

U
T

F
IL

E

(I
F

A

N
Y

)
4

4
5

0

LO
A

P

R
IN

T
F

L
A

G
:

IS

TH
E

P
R

IN
T

E
R

A

C
T

IV
E

4

4
6

0

B
EQ

F

IN
F

IN
:

IF

N
O

T
,

JU
S

T

R
ET

U
R

N

TO

B
A

S
IC

4

4
7

0

JS
R

C

L
R

C
H

N
:

O
T

H
E

R
W

IS
E

SH

U
T

DO

W
N

P
R

IN
T

E
R

,
G

R
A

C
E

FU
L

L
Y

.
4

4
8

0

LO
X

#4

4

4
9

0

JS
R

C

H
K

O
U

T
4

5
0

0

LO
A

U

3
:

BY

P
R

IN
T

IN
G

A

 C
A

R
R

IA
G

E

R
ET

U
R

N

4
5

1
0

JS

R

P
R

IN
T

0 r)>

0 (J
)

V
l

0 c r:l ro n 0 0.
.. ro

w

4
5

2
0

JS

R

C
LR

C
H

N

.....
.

oo

4
5

3
0

LO

A

t4

4
5

4
0

JS

R

C
L

O
SE

4

5
5

0

F
IN

F
IN

JM

P
T

O
B

A
S

IC
;

R
ET

U
R

N

TO

B
A

SI
C

4

5
6

0

4
5

7
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

,X

O
R

,Y

A

D
D

R
E

SS
IN

G

T
Y

PE

4
5

8
0

X

Y
TY

PE

LO
A

B

U
F

F
E

R
,Y

;
LO

O
K

A

T
L

A
ST

C

H
A

R
.

IN

A
RG

U
M

EN
T

4
5

9
0

CM

P
#

8
8

;
IS

IT

A

N

X

4
6

0
0

B

EQ

L
7

2
0

4

6
1

0

D
E

Y
;

O
T

H
E

R
W

IS
E

,
LO

O
K

A

T
TH

E
3R

D

C
H

A
R

.
FR

O
M

EN

D

O
F

A
R

G
U

M
EN

T
4

6
2

0

D
EY

4

6
3

0

LO
A

B

U
F

F
E

R
,Y

;
IS

IT

A

"
)"

L

E
F

T

PA
R

E
N

T
H

E
SI

S
4

6
4

0

CM
P

t4
1

4

6
5

0

B
N

E
Z

E
R

O
Y

;
IF

N

O
T

,
IT

'S

N
O

T
A

N

IN
D

IR
E

C
T

A

D
D

R
.

M
OD

E
4

6
6

0

JM
P

IN
D

IR
;

IF

S
O

,
IT

IS

A

N

IN
D

IR
E

C
T

A

D
D

R
E

SS
IN

G

M
O

D
E

4
6

7
0

ZE

R
O

Y

LD
A

R

E
S

U
L

T
+

1;

C
H

EC
K

H

IG
H

B

Y
TE

O

F
R

E
SU

L
T

(Z

E
R

O

P
G

.
O

R
N

O
T)

4

6
8

0

B
N

E
L

6
8

0
;

ZE
R

O

Y

T
Y

PE

4
6

9
0

LO

A

T
P

;
A

D
JU

ST

O
PC

O
D

E
B

A
SE

D

O
N

T

Y
PE

4

7
0

0

CM
P

#2

4
7

1
0

B

EQ

L
7

3
0

4

7
2

0

CM
P

#5

4
7

3
0

B

EQ

L
7

3
0

4

7
4

0

CM
P

U

4
7

5
0

B

EQ

L
7

6
0

4

7
6

0

L
6

8
0

LO

A

T
P

4
7

7
0

CM

P
U

4

7
8

0

B
N

E
L

6
9

0

4
7

9
0

LO

A

O
P

4
8

0
0

C

LC

4
8

1
0

A

D
C

#
2

4

4
8

2
0

ST

A

O
P

0 r-)>

0 V
l

V
l

0 c:: .., n (!
) n 0 Q
..

(!
)

w

.....
.

\0

4
8

3
0

JM

P
T

H
R

E
E

S
4

8
4

0

L
6

9
0

LD

A

T
P

4

8
5

0

CM
P

#5

4
8

6
0

B

EQ

M
6

4
8

7
0

LD

A

#
$

3
1

4

8
8

0

JS
R

P

4
8

9
0

JM

P
L

7
0

0

4
9

0
0

M

6
LD

A

O
P

4
9

1
0

C

LC

4
9

2
0

A

D
C

#
2

8

4
9

3
0

ST

A

O
P

4
9

4
0

JM

P
T

H
R

E
E

S
4

9
5

0

;-
-
-
-
-
-
-
-
-
-
-

P
R

IN
T

A

SY

N
TA

X

ER
R

O
R

M

ES
SA

G
E

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
9

6
0

L

7
0

0

JS
R

E

R
R

IN
G

;
R

IN
G

ER

R
O

R

B
E

L
L

A

N
D

TU

R
N

O

N

R
E

V
E

R
SE

C

H
A

R
A

C
TE

R
S

4
9

7
0

JS

R

P
R

N
T

L
IN

E
;

P
R

IN
T

L

IN
E

N

U
M

B
ER

4

9
8

0

LD
A

#<

M
E

R
R

O
R

;
PO

IN
T

"T

E
M

P"

TO

SY
N

TA
X

ER

R
O

R

M
E

SS
A

G
E

4

9
9

0

ST
A

TE

M
P

5
0

0
0

LD

A

#>
M

ER
R

O
R

5

0
1

0

ST
A

T

E
M

P+
1

5
0

2
0

JS

R

PR
N

T
M

E
SS

;
P

R
IN

T

TH
E

M
ES

SA
G

E
5

0
3

0

JM
P

IN
L

IN
E

;
GO

TO

TH

E
G

E
T

-T
H

E
-N

E
X

T
-L

IN
E

R

O
U

T
IN

E

5
0

4
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

C
O

N
T

IN
U

E

A
N

A
L

Y
S

IS

O
F

A
D

D
R

.
5

0
5

0

L
7

2
0

LD

A

R
E

S
U

L
T

+
1;

M

A
K

E
FU

R
T

H
E

R

A
D

JU
ST

M
E

N
T

S
TO

O

PC
O

D
E

5
0

6
0

B

N
E

L
7

8
0

;
N

O
T

ZE
R

O

PA
G

E
5

0
7

0

L
7

3
0

LD

A

T
P

5
0

8
0

CM

P
#2

5

0
9

0

B
N

E
L

7
4

0

5
1

0
0

LD

A

#
1

6

5
1

1
0

C

LC

5
1

2
0

A

D
C

O
P

5
1

3
0

ST

A

O
P

M
OD

E
0

I
0

0 r-)>

0 V
l

V
l

0 c: rl

(!
l n 0 0.
..

(!
l

w

51
41

1:
'

JM
P

TW

O
S

0
N

0

51
51

1:
'

L
74

1a

CM
P

#
l

I
51

61
1:

'
B

E
Q

L

7
5

9

)>

5
1

7
0

C

M
P

#
3

0 V

l
5

1
8

0

B
E

Q

L
7

5
9

V

l
5

1
9

0

C
M

P
#

5

0 c::

.5
2.

00

B
E

Q

L
1

5
9

""" ('")

5
2

1
0

L

7
5

0

LO
A

#

$
3

2

(t
l

5
2

2
0

JS

R

P
n

5
2

3
0

JM

P

L
7

0
0

0 a.

5

2
4

0

L
7

5
9

LO

A

#
2

0

(t
l

5
2

5
0

C

L
C

5

2
6

0

A
O

C

O
P

5
2

7
0

S

T
A

O

P
5

2
8

0

L
7

6
0

JM

P
TW

O
S

5
2

9
0

L

7
8

0

LO
A

T

P

5
3

0
0

C

M
P

t2

5
3

1
0

B

N
E

L

7
9

0

5
3

2
0

L

O
A

#

2
4

5

3
3

0

C
L

C

5
3

4
0

A

O
C

O

P
5

3
5

0

S
T

A

O
P

53
61

1:
'

JM
P

T

H
R

E
E

S
53

71
1:

'
L

 7
9

0

CM
P

U

5
3

8
0

B

E
Q

L

8
0

9

5
3

9
0

C

M
P

t3

5
4

0
0

B

E
Q

L

8
0

9

54
11

1:
'

C
M

P
#

5

5
4

2
0

B

E
Q

L

8
0

9

5
4

3
0

L

8
0

0

LO
A

#

$
3

3

5
4

4
0

JS

R

P

w

N

.

54
51

!1

54
61

!1

54
71

!1

54
81

!1

54
91

!1

55
1!1

1!1

55
11

!1

55
21

!1

55
31

!1

55
41

!1

55
51

!1

55
61

!1

55
71

!1

55
81

!1

55
91

!1

56
1!1

1!1

56
11

!1

56
21

!1

56
31

!1

56
41

!1

56
51

!1

56
61

!1

56
71

!1

56
81

!1

56
91

!1

57
1!1

1!1

57
11

!1

57
21

!1

57
31

!1

57
41

!1

57
51

!1

JM
P

L
7

0
0

L

8
0

9

LO
A

#

2
8

C

LC

A
D

C

O
P

ST
A

O

P
JM

P
T

H
R

E
E

S;

EN
D

O

F
A

D
D

R
.

M
O

D
E

E
V

A
L

U
A

T
IO

N
S

A
N

D

A
D

JU
ST

M
E

N
T

S

;-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

E
R

R
O

R

R
E

PO
R

T
IN

G

FO
R

D

E
B

U
G

G
IN

G

(P
R

IN
T

S

P
C

)
P

ST
A

A

;
W

H
EN

Y

O
U

IN

SE
R

T

A

"J
S

R

P
"

IN
T

O

Y
O

U
R

SO

U
R

C
E

C
O

D
E

,
T

H
IS

R

O
U

T
IN

E

ST
Y

Y

;
W

IL
L

P

R
IN

T

TH
E

PC

FR
O

M

W
H

IC
H

Y

O
U

JS

R
'E

D
.

ST
X

X

;
A

FT
E

R

A
N

R

T
S

,
T

H
IS

W

IL
L

R

EV
EA

L
TH

E
JS

R

A
D

D
R

.
LO

A

#$
B

A
;

P
R

IN
T

A

 G
R

A
PH

IC
S

SY
M

B
O

L
TO

S

IG
N

A
L

TH

A
T

TH
E

PC

IS

TO

FO
LL

O
W

JS

R

P
R

IN
T

P

L
A

;
SA

V
E

TH
E

R
T

S
A

D
D

R
ES

S
(T

O

K
EE

P
TH

E
ST

A
C

K

IN
T

A
C

T
)

T
A

X

PL
A

TA

Y

TY
A

PH

A

TX
A

PH

A

TY
A

JS

R

O
U

TN
U

M
;

P
R

IN
T

TH

E
PC

A

D
D

R
E

SS
.

LO
A

A

;
R

E
ST

O
R

E

TH
E

R
E

G
IS

T
E

R
S

.
LO

Y

Y

LO
X

X

R

T
S

;-
--

--
--

--
--

--
--

--
--

--
--

--
-

C
LE

A
N

LA
B

LO

Y

#I
ll;

F

IL
L

S

M
A

IN

IN
PU

T

B
U

FF
E

R

("
L

A
B

E
L

")

W
IT

H

Z
E

R
O

.
C

LE
A

N
S

1
T

.
TY

A

C
LE

M
O

R
E

ST
A

L

A
B

E
L

,Y

0 r-)>

0 V
l

V
l

0 c: .., n (t
) n 0 a
.

(t
)

w

N

N

5
7

6
0

IN

Y

5
7

7
0

C

PY

#
2

5
5

5

7
8

0

B
N

E
C

LE
M

O
R

E
5

7
9

0

R
TS

5

8
0

0

·--

--
--

--
--

--
--

--
--

--
--

--
--

'
5

8
1

0

D
O

B
ER

R

JS
R

PR

N
T

C
R

;
P

R
IN

T

"B
R

A
N

C
H

O

U
T

O
F

R
A

N
G

E"

ER
R

O
R

M

ES
SA

G
E

5
8

2
0

JS

R

E
R

R
IN

G

5
8

3
0

JS

R

P
R

N
T

L
IN

E
;

P
R

IN
T

TH

E
L

IN
E

N

U
M

B
ER

5

8
4

0

LO
A

#<

M
B

O
R

;
P

O
IN

T

"T
E

M
P"

TO

TH

E
ER

R
O

R

M
E

SS
A

G
E

"M

B
O

R
"

5
8

5
0

ST

A

T
E

M
P;

(M

E
SS

A
G

E

B
R

A
N

C
H

O

U
T

O
F

R
A

N
G

E,

M
B

O
R

)
5

8
6

0

LO
A

#>

M
B

O
R

5

8
7

0

ST
A

T

E
M

P+
1

5
8

8
0

JS

R

PR
N

T
M

E
SS

;
P

R
IN

T

TH
E

M
ES

SA
G

E
5

8
9

0

JS
R

PR

N
T

C
R

;
P

R
IN

T

A

C
A

R
R

IA
G

E

R
ET

U
R

N

A
N

D

5
9

0
0

JM

P
TW

O
S;

B

U
N

G
LE

A

S
A

N

O
R

D
IN

A
R

Y

2-
B

Y
T

E

E
V

E
N

T

5
9

1
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

5
9

2
0

.F

IL
E

EQ

U
A

TE

P
ro

gr
am

 D
-2

b
.

E
va

l,
P

ro
D

O
S

C
ha

ng
es

D
E

L
E

T
E

TH

E
FO

LL
O

W
IN

G

L
IN

E
S

FR

O
M

PR

O
G

R
A

M

D
-2

A
:

2
8

0

TO

3
3

0

4
2

8
2

TO

4

2
8

8

A
N

D

R
EP

LA
C

E
L

IN
E

3

4
0

W

IT
H

:
3

4
0

ST

M
1

ST
Y

FN

A
M

E
L

E
N

;
ST

O
R

E

F
IL

E

N
A

M
E

LE
N

G
TH

(T
O

K

E
E

P
PC

C

O
R

R
E

C
T

)

0 r)>

0 V
l

V
l

0 c:: .., ('"
') ro n 0 Q
.. ro

P
ro

g
ra

m
 D

-3
.

E
q

u
at

e

H
J

:
"E

Q
U

A
T

E
"

EV
A

LU
A

TE

L
A

B
E

L

O
F

EQ
U

A
TE

T

Y
PE

2

0

:
C

O
U

LD

B
E

PC

(A
D

D
R

E
SS

)
T

Y
PE

O

R

EQ
U

A
TE

T

Y
P

E
.

ST
O

R
E

IN

A

R
R

A
Y

.
2

5

;
N

A
M

E
/2

-B
Y

T
E

IN

T
E

G
E

R

V
A

LU
E

/
N

A
M

E
/2

-B
Y

T
E

V

A
LU

E
/

ET
C

 .
..

3

0

;-

-
-
-
-
-
-
-
-
-
-
-
-

4
0

EQ

U
A

TE

LD
Y

#

2
5

5
;

PR
E

PA
R

E

Y
 T

O

ZE
R

O

A
T

ST
A

R
T

O

F
LO

O
P

5
0

EQ

1
IN

Y
;

Y

G
O

ES

TO

ZE
R

O

1S
T

T

IM
E

TH

R
U

LO

O
P

6
0

LD

A

L
A

B
E

L
,Y

;
LO

O
K

A

T
T

H
E

W

O
RD

,
TH

E
LA

B
EL

7

0

B
EQ

N

O
A

R
;

EN
D

O

F
L

IN
E

(S

O

T
H

E
R

E
'S

A

 N
A

K
ED

L

A
B

E
L

,
N

O
T

H
IN

G

FO
LL

O
W

S
IT

)
8

0

CM
P

#
3

2
;

FO
U

N
D

A

 S
P

A
C

E
,

SO

R
A

IS
E

Y

BY

2

A
N

D

S
E

T

LA
B

EL

S
IZ

E

(L
A

B
S

IZ
E

)
9

0

B
N

E
E

Q
1;

O

T
H

E
R

W
IS

E
,

K
E

E
P

LO
O

K
IN

G

FO
R

A

 S
P

A
C

E
.

1
0

0

IN
Y

1

1
0

IN

Y

1
2

0

ST
Y

L

A
B

S
IZ

E

1
3

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

LO
W

ER

M
EM

TO
P

PO
IN

T
E

R

W
IT

H
IN

A

R
R

A
Y

(B

Y

LA
B

EL

S
IZ

E
)

1
4

0

SU
BM

EM

S
E

C
;

SU
B

T
R

A
C

T

L
A

B
E

L

S
IZ

E

FR
O

M

A
R

R
A

Y

P
O

IN
T

E
R

TO

M

A
K

E
RO

OM

FO
R

L

A
B

E
L

1

5
0

LO

A

M
EM

TO
P

1
6

0

SB
C

L

A
B

S
IZ

E

1
7

0

ST
A

M

EM
TO

P
1

8
0

LO

A

M
EM

TO
P+

1
1

9
0

SB

C

#0

2
0

0

ST
A

M

E
M

T
O

P
+

1
;-

--
--

--
--

--
--

-
2

0
5

;S

H
IF

T

7T
H

B

IT

O
F

1
S

T

C
H

A
R

.
TO

S

IG
N

IF
Y

ST

A
R

T

O
F

L
A

B
E

L
'S

N

A
M

E
2

1
0

LO

Y

#0

2
2

0

LO
A

L

A
B

E
L

,Y

2
3

0

EO
R

#

$
8

0

2
4

0

ST
A

(M

E
M

T
O

P
),

Y
;

ST
O

R
E

S

H
IF

T
E

D

1
S

T

L
E

T
T

E
R

2

5
0

EQ

3
IN

Y

w

2
6

0

LO
A

L

A
B

E
L

,Y
;

IF

S
P

A
C

E
,

ST
O

P
ST

O
R

IN
G

LA

B
EL

N

A
M

E
IN

A

R
R

A
Y

.
~

2
7

0

CM
P

#
3

2

0 r-)>

0 IJ
)

IJ
)

0 c n (t
) n 0 0.
.

(t
)

~

2
8

0

B
EQ

EQ

2
~

2
9

0

ST
A

(M

E
M

T
O

P
),

Y
;

O
T

H
E

R
W

IS
E

,
PU

T
N

EX
T

L
E

T
T

E
R

IN

T
O

A

R
R

A
Y

&

3

0
0

JM

P

E
Q

3;

C
O

N
T

IN
U

E
.

3
1

0

E
Q

2
IN

Y
;

NO
W

C

H
EC

K

F
O

R
=

(S

IG
N

IF
Y

IN
G

EQ

U
A

TE

T
Y

PE
)

(L
A

B
E

L

=

1
5

)
3

2
0

LO

A

L
A

B
E

L
,Y

3

3
0

C

M
P

#$
3D

;
IF

EQ

U
A

TE

T
Y

P
E

,
G

O

TO

F
IN

D

IT
S

V

A
L

U
E

.
3

4
0

B

EQ

EQ
U

A
L

3
5

0

D
E

Y
;

O
T

H
E

R
W

IS
E

,
IT

'S

PC

T
Y

PE

(L
A

B
E

L

LO
A

1

5
)

3
6

0

LO
A

S

A
;

SO

T
H

E

PC

V
A

R
IA

B
L

E

(S
A

)
C

O
N

T
A

IN
S

TH
E

V
A

LU
E

O
F

T
H

IS

L
A

B
E

L

3
7

0

ST
A

(M

E
M

T
O

P
),

Y
;

ST
O

R
E

IT

R

IG
H

T

A
FT

E
R

L

A
B

E
L

N

A
M

E
W

IT
H

IN

A
R

R
A

Y
.

3
8

0

IN
Y

3

9
0

LO

A

S
A

+
l

4
0

0

ST
A

(M

E
M

T
O

P
),

Y

4
1

0

LO
X

L

A
B

S
IZ

E
;

N
O

W
,

U
SI

N
G

L

A
B

E
L

S
IZ

E

A
S

IN
D

E
X

,
E

R
A

SE

TH
E

P
C

-T
Y

P
E

L

A
B

E
L

4

2
0

D

E
X

;
FR

O
M

TH

E
B

U
F

F
E

R
.

FO
R

E

X
A

M
PL

E
,

(L
A

B
E

L

LD
A

1

5
)

NO
W

4

3
0

LO

Y

#
0

;
B

EC
O

M
ES

(L

O
A

1

5
).

T

H
E

L

A
B

E
L

N

A
M

E
IS

C

O
V

ER
ED

.O
V

ER

4
4

0

E
Q

5
LD

A

L
A

B
E

L
,X

;
TO

PR

E
PA

R
E

TH

E
R

E
ST

O

F
TH

E
L

IN
E

TO

B

E
A

N
A

LY
ZE

D

4
5

0

B
EQ

E

Q
4;

N

O
R

M
A

LL
Y

BY

E

V
A

L
.

4
6

0

ST
A

L

A
B

E
L

,Y

4
7

0

IN
X

4

8
0

IN

Y

4
9

0

JM
P

EQ
5

5
0

0

E
Q

4
ST

A

L
A

B
E

L
,Y

5

1
0

R

T
S

;
R

ET
U

R
N

TO

EV

A
L

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

5
2

0

N
O

A
R

JS

R

E
R

R
IN

G
;

N
A

K
ED

L

A
B

E
L

FO

U
N

D

(N
O

A

R
G

U
M

EN
T)

SO

R

IN
G

B

E
L

L

&

5
3

0

LO
A

#<

N
O

A
R

G
;

A
N

D

P
R

IN
T

N

A
K

ED

LA
B

EL

E
R

R
O

R

M
E

SS
A

G
E

.
5

4
0

ST

A

TE
M

P
5

5
0

LO

A

#>
N

O
A

R
G

5

6
0

ST

A

T
E

M
P+

1
5

7
0

JS

R

PR
N

TM
ES

S
5

8
0

JM

P
E

Q
R

E
T

;
R

ET
U

R
N

TO

E

V
A

L
--

--
--

--
--

--
--

--
--

--
--

-

0 I)>

0 V
l

V
l

0 c:: ri (b
 n 0 Q
.

(b

V
J

N

(J
1

5
8

4

5
8

5

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
A

N
D

LE

EQ
U

A
TE

T

Y
PE

S
H

ER
E

(L
A

B
E

L

=

 1
5

)
5

9
0

EQ

U
A

L
D

EY

6
0

0

ST
Y

L

A
B

PT
R

;
T

E
L

L
S

U
S

HO
W

FA

R

FR
O

M

M
EM

TO
P

W
E

SH
O

U
LD

ST

O
R

E

A
R

G
U

M
EN

T
V

A
L

U
E

6

1
0

LD

A

H
E

X
FL

A
G

;
H

EX

N
U

M
B

ER
S

A
LR

EA
D

Y

H
A

N
D

LE
D

BY

IN

D
IS

K

R
O

U
T

IN
E

,
SO

S

K
IP

O

V
E

R
.

6
2

0

B
N

E
F

IN
E

Q
;

H
EX

FL

A
G

U

P
,

SO

G
O

TO

EQ

U
A

TE

E
X

IT

R
O

U
T

IN
E

B

E
L

O
W

.
6

3
0

IN

Y
;

O
T

H
E

R
W

IS
E

,
W

E
N

EE
D

TO

F

IG
U

R
E

O

U
T

TH
E

A
R

G
U

M
EN

T
(L

A
B

E
L

=

 1
5

)
6

4
0

IN

Y
;

TH
ER

E
A

R
E

T
H

R
E

E

C
H

A
R

S.

(
=

)
 B

ET
W

EE
N

L

A
B

E
L

&

 A
R

G
U

M
EN

T,

SO

6
5

0

IN
Y

;
IN

Y

T
H

R
IC

E
.

6
6

0

ST
Y

W

O
R

K
+1

;
P

O
IN

T

TO

L
O

C
A

T
IO

N

O
F

A
S

C
II

N

U
M

B
ER

(I

N

L
A

B
E

L

B
U

FF
E

R
)

6
7

0

LD
A

#<

L
A

B
E

L
;

SE
T

U

P
TE

M
P

P
O

IN
T

E
R

TO

PO

IN
T

TO

A

S
C

II

N
U

M
B

ER

6
8

0

C
LC

6

9
0

A

D
C

W

O
R

K
+1

7

0
0

ST

A

TE
M

P
7

1
0

LD

A

#>
L

A
B

E
L

7

2
0

A

D
C

#0

7
3

0

ST
A

T

E
M

P+
1

7
4

0

JS
R

V

A
L

D
E

C
;

C
A

LC
U

LA
TE

A

S
C

II

N
U

M
B

ER

V
A

LU
E

A
N

D

ST
O

R
E

IN

R

E
SU

L
T

7

5
0

F

IN
E

Q

LD
Y

L

A
B

PT
R

;
ST

O
R

E

IN
T

E
G

E
R

V

A
LU

E
JU

S
T

A

FT
E

R

L
A

B
E

L

N
A

M
E

IN

A
R

R
A

Y

7
6

0

LD
A

R

E
SU

L
T

7

7
0

ST

A

(M
E

M
T

O
P

),
Y

7

8
0

LD

A

R
E

SU
L

T
+1

7

9
0

IN

Y

8
0

0

ST
A

(M

E
M

T
O

P
),

Y

8
1

0

E
Q

R
E

T

P
L

A
;P

U
L

L

O
FF

TH

E
R

T
S

(F
R

O
M

E

V
A

L
)

A
N

D

JU
M

P
D

IR
E

C
T

L
Y

TO

IN

L
IN

E

8
2

0

P
L

A
;

IG
N

O
R

IN
G

A

N
Y

FU

R
T

H
E

R

E
V

A
L

U
A

T
IO

N

O
F

T
H

IS

L
IN

E

S
IN

C
E

EQ

U
A

TE

8
3

0

JM
P

IN
L

IN
E

;
L

A
B

E
L

S
A

R
E

FO
LL

O
W

ED

B
Y

N

O
TH

IN
G

TO

EV

A
LU

A
TE

8

4
0

.F

IL
E

A

R
R

A
Y

T
Y

P
E

0 r)>

0 (
f)

(
f)

I
o c: n ro ('

)
0 Q

.
ro

(.
;.

)

N

Q
"\

P

ro
g

ra
m

 D
-4

.
A

rr
ay

H
J

;
"A

R
R

A
Y

"
LO

O
K

S
TH

R
O

U
G

H

L
A

B
E

L

TA
B

LE

A
N

D

PU
T

S
V

A
LU

E
IN

R

E
SU

L
T

.
2

0

;
(U

SE
D

IN

B

O
TH

PA

SS

1
A

N
D

PA

SS

2
)

3
0

A

R
R

A
Y

LO

A

A
R

R
A

Y
T

O
P;

PU
T

T

O
P-

O
F-

A
R

R
A

Y

V
A

LU
E

IN
T

O

TH
E

D
Y

N
A

M
IC

PO

IN
T

E
R

(P

A
R

R
A

Y
)

4
0

ST

A

PA
R

R
A

Y
;

IN

O
T

H
E

R

W
O

R
D

S,

M
A

K
E

PA
R

R
A

Y

P
O

IN
T

TO

TH

E
H

IG
H

E
ST

W

O
RD

IN

TH

E
5

0

LD
A

A

R
R

A
Y

T
O

P+
1;

L

A
B

E
L

S
A

R
R

A
Y

6

0

ST
A

PA

R
R

A
Y

+1

7
0

JS

R

D
EC

PA
R

8

0

LD
A

#

$
F

F
;

SE
T

U

P
FO

R

B
M

I
T

E
S

T

IF

NO

M
A

TC
H

FO

U
N

D

9
0

ST

A

FO
U

N
D

FL
A

G

1
0

0

ST
A

R
T

L
K

S

E
C

;
ST

A
R

T

LO
O

K
IN

G

FO
R

LA

B
EL

N

A
M

E
1

1
0

LD

A

M
EM

TO
P;

C

H
EC

K

TO

SE
E

IF

W

E
'R

E

A
T

T
H

E

BO
TT

O
M

O

F
T

H
E

A

RR
A

Y

1
2

0

SB
C

PA

R
R

A
Y

1

3
0

LD

A

M
EM

TO
P+

1
1

4
0

SB

C

PA
R

R
A

Y
+1

1

5
0

B

C
S

A
D

O
N

E;

IF

S
O

,
C

H
EC

K

IF

W
E

FO
U

N
D

T

H
E

L

A
B

E
L

{O

R

FO
U

N
D

IT

T

W
IC

E
)

1
6

0

LD
X

#

0
;

SE
T

L

A
B

E
L

N

A
M

E
S

IZ
E

C

O
U

N
TE

R

TO

Z
E

R
O

1

7
0

S

E
C

;
G

O

DO
W

N
2

B
Y

T
E

S
IN

M

EM
O

RY

{P
A

ST

T
H

E

IN
T

E
G

E
R

V

A
L

U
E

O

F
A

 L
A

B
E

L
)

1
8

0

LD
A

PA

R
R

A
Y

1

9
0

SB

C

#2

2
0

0

ST
A

PA

R
R

A
Y

2

1
0

LD

A

PA
R

R
A

Y
+1

2

2
0

SB

C

#0

2
3

0

ST
A

PA

R
R

A
Y

+1

2
4

0

LD
Y

#0

2

5
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
6

0

L
PA

R

LO
A

(P

A
R

R
A

Y
),

Y
;

LO
O

K

FO
R

A

 7
TH

B

IT

S
E

T

{S
T

A
R

T

O
F

LA
B

EL

N
A

M
E)

2

7
0

B

M
I

FO
U

N
D

O
N

E;

IF

~
E
S
,

W
E

'V
E

G

O
T

TO

TH
E

ST
A

R
T

O

F
A

N

A
M

E
.

2
8

0

LO
A

PA

R
R

A
Y

;
O

T
H

E
R

W
IS

E

G
O

D

O
W

N

1
B

Y
TE

IN

A

R
R

A
Y

2

9
0

B

N
E

M
D

EC
X

0 >

0 C
Jl

C
Jl

0 c ~

('!
) ('
)

0 a.
.

('!
)

3
0

0

D
EC

PA

R
R

A
Y

+1

3
1

0

M
D

EC
X

D

EC

PA
R

R
A

Y

3
2

0

IN
X

;
IN

C
R

E
A

SE

L
A

B
E

L

N
A

M
E

S
IZ

E

C
O

U
N

TE
R

3

3
0

JM

P
L

PA
R

3

4
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
5

0

FO
U

N
D

O
N

E
LO

A

PA
R

R
A

Y
;

W
E

'V
E

L

O
C

A
T

E
D

A

 L
A

B
E

L

N
A

M
E

IN

TH
E

A
R

R
A

Y

3
6

0

ST
A

P

T
;

R
EM

EM
B

ER

IT
S

ST

A
R

T
IN

G

L
O

C
A

T
IO

N

3
7

0

LO
A

PA

R
R

A
Y

+1

3
8

0

ST
A

P

T
+

l
3

9
0

LO

A

(P
A

R
R

A
Y

),
Y

4

0
0

CM

P
W

O
R

K
;

C
O

M
PA

R
E

T
H

E

1S
T

L

E
T

T
E

R

W
IT

H

T
H

E

1
S

T

L
E

T
T

E
R

O

F
TH

E
T

A
R

G
E

T

W
O

RD

4
1

0

B
EQ

L

K
M

O
R

E
;

LO
O

K

M
O

R
E

C
L

O
SE

L
Y

A

T
TH

E
W

O
R

D
,

IF

1S
T

L

E
T

T
E

R

M
A

TC
H

ED

4
2

0

JM
P

ST
A

R
T

O
V

E
R

;
IF

IT

D

ID
N

'T

M
A

TC
H

,
G

O

DO
W

N
IN

TH

E
T

A
B

L
E

&

 F
IN

D

N
EX

T
W

O
R

D
.

4
3

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
4

0

LK
M

O
R

E
IN

X
;

R
A

IS
E

L

E
N

G
T

H

C
O

U
N

T
E

R

BY

1
4

5
0

ST

X

W
O

R
K

+1
;

R
EM

EM
B

ER

IT

4
6

0

LO
X

U

4

7
0

LD

A

B
U

F
L

A
G

;T
H

IS

M
EA

N
S

TH
A

T

O
R

(

CO
M

E
B

E
FO

R
E

TH

E
N

A
M

E
IN

TH

E
B

U
FF

E
R

4

8
0

B

EQ

L
K

M
l;

IF

TH

EY

D
O

N
'T

W

E
D

O
N

'T

N
EE

D

TO

R
A

IS
E

Y

IN

O

R
D

ER

TO

IG
N

O
R

E

TH
EM

4

9
0

!N

Y

5
0

0

JS
R

D

E
C

PA
R

;
LO

W
ER

T

H
E

IN

D
E

X

TO

C
O

M
PE

N
SA

T
E

FO

R

TH
E

!N
Y

5

1
0

5

2
0

LK

M
1

!N
Y

5

3
0

LO

A

B
U

F
F

E
R

,Y
;

C
H

EC
K

B

U
F

F
E

R
-H

E
L

D

L
A

B
E

L

5
4

0

B
EQ

F

O
U

N
D

IT
;

IF

W
E

'R
E

A

T
TH

E
EN

D

O
F

TH
E

W
O

RD

(0
),

TH

EN

W
E

'V
E

FO

U
N

D

A

M
A

TC
H

5

5
0

CM

P
#

4
8

;
O

R

T
H

E
R

E
'S

A

M

A
TC

H

IF

IT
'S

A

 C
H

A
R

A
C

T
E

R

LO
W

ER

TH
A

N

A
S

C
II

0

(,
O

R
+

)
5

6
0

B

C
C

FO

U
N

D
IT

5

7
0

;

N
O

T
Y

E
T

TH

E
EN

D

O
F

TH
E

"B
U

F
F

E
R

"
H

EL
D

L

A
B

E
L

ss

e
rN

x
~

5
9

0

CM
P

{P
A

R
R

A
Y

),
Y

;
IF

A

R
R

A
Y

W

O
RD

S

T
IL

L

A
G

R
E

E
S

W
IT

H

B
U

FF
E

R

W
O

R
D

,
TH

EN

~

6
0

0

B
EQ

L

K
M

l;

C
O

N
T

IN
U

E

L
O

O
K

IN
G

A

T
T

H
E

SE

W
O

RD
S

0 I)>

0 V
l

V
l

0 c

li

(!
) ('
)

0 a.

(!
)

~

6
1

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

N
O

M

A
TC

H
,

SO

LO
O

K

A
T

N
EX

T
W

O
RD

DO

W
N

oo

6
2

0

ST
A

R
T

O
V

E
R

LD

A

P
T

;
PU

T
PR

E
V

IO
U

S
W

O
R

D
'S

ST

A
R

T

A
D

D
R

.
IN

T
O

P

O
IN

T
E

R

6
3

0

ST
A

PA

R
R

A
Y

6

4
8

LD

A

P
T

+
l

6
5

0

ST
A

PA

R
R

A
Y

+l

6
6

0

JS
R

D

E
C

PA
R

;
LO

W
ER

P

O
IN

T
E

R

BY

l
(S

T
A

R
T

L
K

W

IL
L

LO

W
ER

IT

A

L
S

O
,

BE
LO

W

V
A

L
U

E
)

6
7

0

JM
P

ST

A
R

T
L

K
;

TR
Y

A

N
O

TH
ER

W

O
RD

IN

TH

E
A

R
R

A
Y

6

8
0

:-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

6
9

0

A
D

O
N

E
LD

A

FO
U

N
D

FL
A

G

7
0

0

B
M

I
A

D
l;

D

ID
N

'T

F
IN

D

T
H

E

L
A

B
E

L

7
1

0

R
T

S
;

A
LL

IS

W

E
L

L
.

R
ET

U
R

N

TO

E
V

A
L

.
7

2
0

A

D
l

LD
A

P

A
S

S

7
3

0

B
N

E
A

D
lX

;
2N

D

P
A

S
S

--
G

O

A
H

EA
D

A

N
D

P

R
IN

T

E
R

R
O

R

M
ES

SA
G

E
7

4
0

B

EQ

A
D

O
N

E
l;

O

N

1S
T

P

A
S

S
,

M
IG

H
T

N
O

T
Y

ET

B
E

D
E

F
IN

E
D

(R

A
IS

E

IN
C

S
A

/2
S

O

R

3
S

)
7

5
0

A

D
lX

JS

R

E
R

R
IN

G
;

L
A

B
E

L

N
O

T
IN

T

A
B

L
E

.
(T

R
E

A
T

IT

A

S
A

2-

B
Y

T
E

A

D
D

R
E

SS
)

7
6

0

JS
R

P

R
N

T
L

IN
E

7

7
0

JS

R

PR
N

T
SP

A
C

E

7
8

0

LD
A

t<

N
O

L
A

B

7
9

0

ST
A

TE

M
P

8
0

0

LD
A

#>

N
O

L
A

B

8
1

0

ST
A

T

E
M

P
+

l
8

2
0

JS

R

PR
N

T
M

E
SS

;
R

IN
G

B

E
L

L

A
N

D

P
R

IN
T

N

O
T

FO
U

N
D

M

ES
SA

G
E

8
3

0

JS
R

PR

N
T

C
R

8

4
0

A

D
O

N
E

l
PL

A

8
5

0

P
L

A
;

8
6

0

LD
A

O

P
8

7
0

A

N
D

#

3
1

8

8
0

C

M
P

#
1

6

8
9

0

B
EQ

A

D
02

;
C

H
EC

K

IF

B
R

A
N

C
H

IN

S
T

R
U

C
T

.
9

0
0

LD

A

B
Y

TF
LA

G

9
1

0

B
N

E
A

D
02

;
<

O

R

>

PS
E

U
D

O

0 I)>

0 V
l

V
l

0 c: .., ("
) ro n 0 Q
.. ro

(.;
..)

N

\0

9
2

0

JM
P

T

H
R

E
E

S
9

3
0

A

D
02

JM

P
TW

O
S

9
4

0

;
9

5
0

FO

U
N

D
IT

C

PX

W
O

R
K

+l
;C

H
E

C
K

LA

B
EL

L

E
N

G
T

H

A
G

A
IN

ST

T
A

R
G

E
T

W

OR
D

L
E

N
G

T
H

9

6
0

B

EQ

FO
U

N
D

F;

TH
EY

M

U
ST

EQ

U
A

L
TO

S

IG
N

IF
Y

A

 M
A

TC
H

.
(P

R
IN

T
/P

R
IN

W

O
U

LD

F
A

IL
)

9
7

0

JM
P

ST
A

R
T

O
V

E
R

;
FA

IL
E

D

M
A

TC
H

9

8
0

FO

U
N

D
F

IN
C

FO

U
N

D
FL

A
G

;
R

A
IS

E

FL
A

G

TO

ZE
R

O

(F
IR

S
T

M

A
TC

H
)

9
9

0

B
EQ

FO

FX
;

IF

H
IG

H
E

R

TH
A

N

0
,

PR
IN

T

D
U

P
L

IC
A

T
IO

N

L
A

B
E

L

ER
R

O
R

M

E
SS

A
G

E

1
0

0
0

JS

R

D
U

PL
A

B

1
0

1
0

FO

FX

LO
Y

W

O
R

K
+1

1

0
2

0

LO
A

B

U
FL

A
G

;
C

O
M

PE
N

SA
TE

FO

R

A

N
D

1

0
3

0

B
EQ

FO

F
1

0
4

0

IN
Y

1

0
5

0

FO
F

LO
A

(P

A
R

R
A

Y
),

Y
;

PU
T

TA

B
LE

L

A
B

E
L

'S

V
A

LU
E

IN

R
E

SU
L

T

1
0

6
0

ST

A

R
E

SU
L

T

1
0

7
0

IN

Y

1
0

8
0

LO

A

(P
A

R
R

A
Y

),
Y

1

0
9

0

ST
A

R

E
S

U
L

T
+

!
1

1
0

0

LO
A

B

Y
TF

LA
G

1

1
1

0

B
EQ

C

M
PM

O
;

IS

IT

>

O
R

<

PS

E
U

D
O

PR
IN

T

1
1

2
0

CM

P
#2

1

1
3

 0

B
N

E
A

R
EN

D

1
1

4
0

LO

A

R
E

S
U

L
T

+
1;

ST

O
R

E
H

IG
H

B

Y
TE

IN

T
O

LO

W

B
Y

TE

1
1

5
0

ST

A

R
E

SU
L

T

1
1

6
0

CM

PM
O

LO

A

PL
U

SF
L

A
G

;
D

O

A
D

D
IT

IO
N

+

PS

E
U

D
O

O

P
1

1
 7

 0

B
EQ

A

R
EN

D

1
1

8
0

C

L
C

;
A

D
D

T

H
E

+

N

U
M

BE
R

"A
D

D
N

U
M

"
TO

R

E
SU

L
T

1

1
9

0

LO
A

A

D
D

N
U

M

1
2

0
0

A

D
C

R
E

SU
L

T

1
2

1
0

ST

A

R
E

SU
L

T

1
2

2
0

LO

A

A
D

D
N

U
M

+1

0 r-)>

0 V
l

V
l

0 c ~
 ro n 0 a.

ro

~

1
2

3
0

A

D
C

R
E

S
U

L
T

+
!

o
1

2
4

0

ST
A

R

E
S

U
L

T
+

!
1

2
5

0

A
R

EN
D

LD

A

P
A

S
S

;
O

N

2N
D

P

A
S

S
,

D
O

N
'T

C

H
EC

K

FO
R

D

U
PS

~
2
6
0

.B
EO

A

R
EN

X

1
2

7
0

R

T
S

;
G

O

B
A

C
K

TO

E

V
A

L

1
2

8
0

A

R
EN

X

JM
P

ST

A
R

T
O

V
E

R
;

O
N

P

A
S

S

1
,

LO
O

K

FO
R

D

U
PS

(S

O

C
O

N
T

IN
U

E

IN

A
R

R
A

Y
)

1
2

9
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
3

0
0

D

E
C

PA
R

LD

A

PA
R

R
A

Y
;

LO
W

ER

A
R

R
A

Y

PO
IN

T
E

R

B
Y

1

1
3

1
0

B

N
E

M
D

EC

1
3

2
0

D

EC

PA
R

R
A

Y
+l

1

3
3

0

M
D

EC

D
EC

PA

R
R

A
Y

1

3
4

0

R
T

S
1

3
5

0

i
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
3

6
0

D

U
PL

A
B

JS

R

E
R

R
IN

G
;

R
IN

G

B
E

L
L

A

N
D

P

R
IN

T

D
U

P
LA

B
EL

M

E
SS

A
G

E

1
3

7
0

LD

A

#<
M

D
U

PL
A

B

1
3

8
0

ST

A

T
E

M
P

1
3

9
0

LO

A

#>
M

D
U

PL
A

B

1
4

0
0

ST

A

T
E

M
P

+
l

1
4

1
0

JS

R

PR
N

T
M

E
SS

1

4
2

0

JS
R

PR

N
T

C
R

1

4
3

0

R
T

S
;

1
4

4
0

. F

IL
E

O

PE
N

!

P
ro

gr
am

 D
-5

a.
 O

pe
n1

,
3.

3
V

er
si

on

5
;O

PE
N

IN

P
U

T

F
IL

E

1
0

O

P
E

N
l

JS
R

C

LR
C

H
N

2

0

LD
A

t
l
;

C
L

O
SE

F

IL
E

IF

A

LR
EA

D
Y

O

PE
N

3

0

JS
R

C

L
O

S
E

4

0

LD
A

i<

O
P

N
R

E
A

D

0 r-)>

0 (
j)

(
j)

0 c ..., ("
)

C't
l n 0 0
..

C't

l

5
0

ST

A

FM
O

P
6

0

LO
A

#>

O
PN

R
E

A
D

7

0

ST
A

FM

O
P+

1
8

0

JS
R

FM

D
R

V
R

0
9

0

IN
C

F

O
P

E
N

1;

SE
T

IN

P
U

T

F
IL

E

TO

O
PE

N

1
0

0

R
T

S
1

0
5

;

O
PE

N

O
U

T
PU

T

F
IL

E

1
1

0

O
PE

N
2

LO
A

#<

O
PN

W
R

IT

1
2

0

ST
A

FM

O
P

1
3

0

LO
A

#>

O
PN

W
R

IT

1
4

0

ST
A

F

M
O

P
+

l
1

5
0

JS

R

FM
D

R
V

R
I3

16

13

IN
C

F

O
P

E
N

2;

SE
T

O

U
T

PU
T

F

IL
E

O

PE
N

1

7
0

R

T
S

1
7

5

O
PE

N
4

LO
A

#1

3;

S
E

T
U

P

C
A

R
D

IN

S

L
O

T
1

1
7

6

LO
X

$

3
6

;
SA

V
IN

G

O
LD

O

U
TP

U
T

L
IN

K

1
7

7

ST
A

$

3
6

1

7
8

LO

A

#
$

C
1

1

7
9

LO

Y

$
3

7

1
8

0

ST
A

$

3
7

1

8
1

LO

A

#
$

8
A

:J
S

R

$F
D

E
D

;
SE

N
D

L

IN
E

FE

E
D

0

1
8

2

LO
A

#$

51
3:

S
T

A

$
5

7
9

;
S

E
T

L

IN
E

L

E
N

TO

8

0

C
O

LU
M

N
S

r-
1

8
3

LO

A

$
3

6

)>

1
8

4

ST
A

P

B
Y

T
E

+
1;

S

E
T

P

R
IN

T
IN

G

A
D

D
R

E
SS

0 V

l
1

8
5

ST

X

$
3

6
;

R
E

SE
T

O

U
T

PU
T

L

IN
K

V

l
1

8
6

ST

Y

$
3

7

0
1

8
7

R

T
S

c ""'
1

8
8

;

R
EA

D

O
N

E
B

Y
TE

FR

O
M

IN

P
U

T

F
IL

E

('"
')

('!
)

1
9

0

R
D

B
Y

TE

LO
A

#<

R
D

1B

(
)

(.
;.

)
2

0
0

ST

A

FM
O

P
0

(.
;.

)
2

1
0

LO

A

t>
R

D
1

B

Q
..

.._
.

('!
)

~

2
2

0

ST
A

FM

O
P+

l
N

2

3
0

JS

R

FH
D

R
V

R

2
4

0

JS
R

$3

D
C

2

5
0

S

T
A

P

A
R

H
+

l
2

6
0

ST

Y

PA
RM

2

7
0

LD

Y

#
0

8

2
8

0

LO
A

(P

A
R

H
),

Y
;

G
ET

TH

E
B

Y
TE

2

9
0

R

T
S

2
9

5

;
W

R
IT

E

O
N

E
B

Y
TE

TO

O

U
T

PU
T

F

IL
E

3

0
0

W

R
B

Y
TE

ST

A

W
R

D
A

TA

3
1

0

LO
A

t<

W
R

lB

3
2

0

ST
A

FH

O
P

3
3

0

LO
A

t>

W
R

lB

3
4

0

ST
A

F

H
O

P
+

l
3

5
0

JS

R

FM
D

R
V

R

3
6

0

R
T

S
3

6
5

;

C
L

O
SE

IN

P
U

T

F
IL

E

3
7

0

C
L

O
S

E
!

LD
A

F

O
P

E
N

l;

C
H

EC
K

TO

S

E
E

IF

IN

P
U

T

F
IL

E

IS

O
PE

N

3
8

0

B
EQ

N

O
C

L
O

SE
;

IF

N
O

T
E

X
IT

3

9
0

LO

A

#<
C

L
O

S
E

R

4
0

0

ST
A

FH

O
P

4
1

0

LO
A

#>

C
L

O
S

E
R

4

2
0

ST

A

F
H

O
P

+
l

4
3

0

JS
R

FH

D
R

V
R

4

4
0

LO

A

#0

4
5

0

ST
A

F

O
P

E
N

l;

S
E

T

IN
P

U
T

F

IL
E

TO

C

L
O

SE
D

46

11
1

N
O

C
LO

SE

R
T

S
4

6
5

;

C
L

O
SE

O

U
T

PU
T

F

IL
E

4

7
0

C

L
O

SE
2

LO
A

F

O
P

E
N

2;

C
H

EC
K

TO

SE

E

IF

O
U

T
PU

T

F
IL

E

IS

O
PE

N

4
8

0

B
EQ

N

O
C

L
O

SE
;

IF

N
O

T
E

X
IT

4

9
0

LD

A

t<
C

L
O

SE
W

0 r-)>

0 (J
)

(J
)

0 c:

n ('!
) n 0 Q
..

('!
)

5
0

0

ST
A

FM

O
P

5
1

0

LD
A

I>

C
L

O
SE

W

5
2

0

ST
A

F

M
O

P
+

l
5

3
0

JS

R

FM
D

R
V

R

5
4

0

LD
A

1

0

5
5

0

ST
A

F

O
P

E
N

2;

S
E

T

O
U

T
PU

T

F
IL

E

TO

C
L

O
SE

D

5
6

0

R
T

S
5

7
0

C

L
O

S
E

4
LD

A

#<
C

O
U

T

5
7

2

ST
A

C

SW
D

;
R

E
ST

O
R

E

N
O

RM
A

L
SC

R
E

E
N

O

U
T

PU
T

5

7
4

LD

A

t>
C

O
U

T

5
7

6

ST
A

C

SW
D

+l

5
7

8

R
T

S
5

8
0

FM

D
R

V
R

0
LD

Y

#
0

8
;

PU
T

FI

L
E

N
A

M
E

IN

T
O

PA

R
A

M
E

T
E

R

F
IE

L
D

5

9
0

LD

A

(F
M

O
P)

 I
y

6
0

0

ST
A

PA

R
M

6

1
0

IN

Y

6
2

0

LD
A

(F

M
O

P)
1
Y

6

3
0

ST

A

PA
R

M
+l

6

4
0

LD

A

I<
F

IL
E

N

6
5

0

ST
A

TE

M
P

6
6

0

LD
A

#>

F
IL

E
N

6

7
0

ST

A

T
E

M
P

+
l

6
8

0

LD
Y

#

0
0

6

9
0

LD

A

#$
A

0
7

0
0

PA

D
FN

ST

A

(P
A

R
M

)
1
Y

;
F

IR
S

T

F
IL

L

W
IT

H

S
P

A
C

E
S

7

1
0

IN

Y

7
2

0

C
PY

1

3
1

7

3
0

B

N
E

PA
D

FN

7
4

0

LD
Y

#

0
0

~

7
5

0

FM
0

LD
A

(T

E
M

P)
 1

Y

;
TH

EN

PU
T

FI

L
E

N
A

M
E

IN

PA

R
M

w

7

6
0

O

R
A

t$

8
0

;
M

A
K

E
SU

R
E

H

IG
H

B

IT

SE
T

0 r-)>

0 V
l

V
l

0 c: ""' (j (t
l

("
)

0 0
..

(t

l

V
J

V
J *"'

7
7

0

ST
A

(P

A
R

M
),

Y

7
8

0

I
~

7
9

0

C
PY

FN

A
M

EL
EN

8

0
0

B

N
E

FM
0

8
1

0

FM
D

R
V

R

JS
R

$3

D
C

;
G

E
T

ST

A
R

T

A
D

D
R

E
SS

TO

PA

R
A

M
E

T
E

R

F
IE

L
D

8

2
0

ST

A

PA
R

M
+1

8

3
0

ST

Y

PA
R

M

8
4

0

LO
Y

#

0
0

8

5
0

PA

R
M

SU

LD
A

(F

M
O

P
),

Y
;

8
6

0

ST
A

(P

A
R

M
),

Y

8
7

0

IN
Y

8

8
0

C

PY

U
S

8

9
0

B

N
E

PA
R

M
SU

9

0
0

LO

X

#
0

0

PU
T

PA
R

M
S

IN
T

O

PA
RM

9
1

0

JS
R

$

3
0

6
;

JS
R

TO

F

IL
E

M

A
N

A
G

ER

IN

D
O

S
9

2
0

R

T
S

9
2

5

;
SE

T

C
U

R
R

E
N

T

IN
P

U
T

C

H
A

N
N

EL

9
3

0

C
H

K
IN

ST

X

O
P

N
I

9
4

0

R
T

S
9

4
5

;

SE
T

C

U
R

R
E

N
T

O

U
T

PU
T

C

H
A

N
N

EL

9
5

0

C
H

K
O

U
T

TX
A

9

6
0

ST

A

O
PN

O

1
0

3
0

C

H
K

O
U

TO

R
T

S
1

0
3

5

;
G

ET

O
N

E
B

Y
TE

FR

O
M

C

U
R

R
E

N
T

L
Y

O

PE
N

C

H
A

N
N

EL

1
0

4
0

C

H
A

R
IN

ST

Y

Y
1

1
0

5
0

ST

X

X
;

SA
V

E

X
 &

 Y

R
EG

1

0
6

0

LO
A

O

P
N

I;

C
H

EC
K

TO

SE

E

IF

IN
P

U
T

C

H
A

N
N

EL

1
0

7
0

CM

P
#1

1

0
8

0

B
N

E
C

T
O

U
T

;
IF

N

O
T

E
X

IT

1
0

9
0

JS

R

R
D

B
Y

T
E

ll

S
S

PH

P

0 r-)>

0 V
l

V
l

0 c .., ("
)

('!
) n 0 0.
..

('!
)

1
1

1
0

LO

Y

Y
1

1
1

2
0

LO

X

X

1
1

3
0

P

L
P

1

1
4

B

R
T

S
1

1
5

B

C
TO

U
T

LO
Y

Y

1
1

1
6

0

R
T

S
1

1
6

5

;
O

U
T

PU
T

O

N
E

B
Y

TE

TO

C
U

R
R

EN
TL

Y

O
PE

N

C
H

A
N

N
EL

1

1
7

0

P
R

IN
T

ST

Y

Y
1

;
SA

V
E

R
EG

1

1
8

0

ST
A

A

1
1

1
9

0

LO
A

O

PN
O

;
C

H
EC

K

TO

S
E

E

IF

TO

O
U

T
PU

T

F
IL

E

1
2

0
0

CM

P
#

0
2

1

2
1

B

B
N

E
N

X
T1

1

2
2

0

LO
A

A

1
;

Y
E

S
,

W
R

IT
E

TH

E
B

Y
TE

1

2
3

0

JS
R

 W
R

B
Y

TE

1
2

4
0

JM

P
C

TO
U

T
1

3
4

B

N
X

T1

LO
A

O

PN
O

;
C

H
EC

K

TO

SE
E

IF

TO

P

R
IN

T
E

R

1
3

5
0

CM

P
i4

1

3
6

B

B
N

E
N

X
T

2
1

3
7

0

LO
A

A

1
;

Y
E

S
,

P
R

IN
T

TO

P

R
IN

T
E

R

1
3

7
5

O

R
A

t$

8
0

1

3
8

B

PB
Y

T
E

JS

R

$
C

1
0

0
;

L
O

B
Y

T
E

G

E
T

S
M

O
D

IF
IE

D

BY

O
P

E
N

4
1

3
9

0

JM
P

C
TO

U
T

1
4

B
9

N

X
T2

LO

A

P
R

IN
T

F
L

A
G

;
N

O
,

M
U

ST

B
E

TO

SC
R

E
E

N

1
4

B
2

B

N
E

R
P

R
IN

T
IN

G
;

C
A

R
D

D

O
ES

IT

FO

R

U
S

IF

W
E

'R
E

P

R
IN

T
IN

G

1
4

0
4

LO

A

A
1

1
4

1
B

O

R
A

i$

8
0

1

4
2

B

JS
R

C

O
U

T
1

4
2

5

R
P

R
IN

T
IN

G

LO
A

A

1;

R
E

ST
O

R
E

A

CC
U

M

1
4

3
0

JM

P
C

TO
U

T
w

1

4
3

5

;
C

L
O

SE

A
L

L

IN
PU

T

A
N

D

O
U

TP
U

T
C

H
A

N
N

E
L

S
~

1
4

4
B

C

LR
C

H
N

LO

A

#
0

0

0 r-)>

0 V
l

V
l

0 c: .., (
j

(I
) n 0 CL

(I

)

~

1
4

5
0

S

T
A

O

PN
O

"
'

1
4

6
0

ST

A

O
P

N
I

1
4

7
0

LO

A

t<
P

R
IN

T
;

R
E

S
E

T

O
U

TP
U

T
R

O
U

T
IN

E

1
4

8
0

ST

A

CS
W

D

1
4

9
0

LO

A

t>
P

R
IN

T

1
5

0
0

ST

A

C
SW

D
+l

1

5
1

0

R
T

S
1

5
1

5

;C
H

E
C

K

FO
R

S

T
O

P

K
EY

1

5
2

0

ST
O

PK
E

Y

LO
A

$

C
0

0
0

1

5
3

0

C
M

P
f$

8
3

1

5
4

0

R
T

S
1

5
4

5

;
C

L
O

SE

O
PE

N

F
IL

E
S

1

5
5

0

C
L

O
SE

CM

P
#

0
1

1

5
6

0

B
N

E
C

L
2

;
C

L
O

SE

IN
P

U
T

F

IL
E

?
1

5
7

0

JM
P

C

L
O

S
E

!
1

5
8

0

C
L

2
CM

P
#

0
2

;
N

O
,

C
L

O
SE

O

U
T

PU
T

F

IL
E

?
1

5
9

0

B
N

E
C

L
4

1
6

0
0

JM

P

C
L

O
SE

2
1

6
1

0

C
L

4
JM

P
C

L
O

S
E

4;

N
O

,
M

U
ST

B

E
PR

IN
T

E
R

1

7
0

0

;
B

A
S

IC

W
ED

G
E

1
7

1
0

W

ED
G

E
ST

A

A
1

1
7

2
0

LO

A

#
$

0
0

;
IS

T

X
T

P
T

R

A
T

$
2

0
0

?

1
7

3
0

C

M
P

T
X

T
PT

R

1
7

4
0

B

N
E

O
U

T
1

7
5

0

LO
A

#

0
2

1

7
6

0

C
M

P
T

X
T

P
T

R
+

l
1

7
7

0

B
N

E
O

U
T

;
N

O
,

E
X

IT

1
7

7
5

LO

Y

#
0

1

7
8

0

N
X

TC
H

R

LO
A

(T

X
T

P
T

R
),

Y
;

IG
N

O
R

E

L
E

A
D

IN
G

S

P
A

C
E

S

1
7

8
1

C

M
P

#
3

2

1
7

8
2

B

N
E

IS
L

N
U

M

0 r-)>

0 fJ
l

fJ
l

0 c ~

n ('[
) n 0 0
..

('[

)

1
7

8
3

IN

C

T
X

T
PT

R

1
7

8
4

JM

P
N

X
TC

H
R

1

7
9

0

IS
LN

U
M

CM

P
#

$
2

F
;

IS

IT

A
 N

U
M

B
ER

?
1

8
0

0

ac

e
O

U
T

;
N

O
,

E
X

IT

1
8

1
0

CM

P
#$

3A

1
8

2
0

ac

e
IN

S
L

IN

1
8

3
0

O

U
T

LO
A

$

2
0

0
;

IS

IT

"A
SM

"?

1

8
4

0

CM
P

#6
5

1
8

5
0

B

N
E

O
U

T1

1
8

6
0

LO

A

$
2

0
1

1

8
7

0

CM
P

#8
3

1
8

8
0

B

N
E

O
U

T1

1
8

9
0

LD

A

$
2

0
2

1

9
0

0

CM
P

#7
7

1
9

1
0

B

N
E

O
U

T1

1
9

2
0

LO

A

$
2

0
3

1

9
3

0

CM
P

#3
2

1
9

4
0

B

N
E

O
U

T
1;

N

O
,

E
X

IT

1
9

5
0

LO

Y

#
0

;
Y

E
S

1
9

6
0

TF

R
N

A
M

LD

A

$
2

0
4

,Y
;

T
R

A
N

SF
E

R

N
A

M
E

TO

TO
P

O
F

SC
R

E
E

N

1
9

7
0

CM

P
#0

0

1
9

8
0

B

EQ

A
SM

r

1
9

9
0

O

R
A

#

$
8

0

)>

2
0

0
0

ST

A

$
4

0
0

,Y

0
2

0
1

0

IN
Y

(
/)

(/
)

2
0

2
0

JM

P
TF

R
N

A
M

0

2
0

3
0

A

SM

LO
A

#

$
A

0
;

PU
T

FO
L

L
O

W
IN

G

3
S

P
A

C
E

S

c: ..,
2

0
4

0

ST
A

$

4
0

0
,Y

n (I

)
2

0
5

0

ST
A

$

4
0

1
,Y

n

w

2
0

6
0

ST

A

$
4

0
2

,Y

0
w

0.

.
'
l

2
0

7
0

P

L
A

;
PU

LL

R
ET

U
R

N

A
D

D
R

E
SS

A

N
D

JU

M
P

TO

ST
A

R
T

(I
)

~

2'
18

0
PL

A

(Y
)

2
0

9
0

JM

P
ST

A
R

T

2
1

0
0

O

U
T1

LD

A

A
1;

N

O
R

M
A

L
C

H
R

G
ET

2

1
1

0

CM
P

j$
3

A

2
1

2
0

B

C
S

E
X

IT

2
1

3
0

CM

P
i$

2
0

2

1
4

0

B
N

E
N

X
T

2
1

5
0

JM

P
C

H
R

G
E

T

2
1

6
0

N

X
T

SE
C

2

1
7

0

SB
C

#

$
3

0

2
1

8
0

SE

C

2
1

9
0

SB

C

#$
D

0
2

2
0

0

E
X

IT

R
T

S
2

2
1

0

IN
S

L
IN

LD

X

PR
G

E
N

D
;

FO
U

N
D

L

IN
E

N

U
M

B
ER

,
NO

W

IN
SE

R
T

L

IN
E

2

2
2

0

ST
X

V

A
R

TA
B

2

2
3

0

LD
X

PR

G
E

N
D

+1

2
2

4
0

ST

X

V
A

R
T

A
B

+1

2
2

5
0

C

L
C

2

2
6

0

JS
R

L

IN
G

E
T

;
G

ET

L
IN

E

N
U

M
B

ER

2
2

7
0

JS

R

T
O

K
N

IZ

2
2

8
0

PL

A

2
2

9
0

PL

A

2
3

0
0

JM

P
L

IN
IN

S
;

JU
M

P
TO

N

O
RM

A
L

IN
S

E
R

T

L
IN

E

A
N

D

R
E

SE
T

L

IN
E

L

IN
K

A

D
D

R
E

SS
E

S
2

3
1

0

T
O

K
N

IZ

LD
Y

j0

0
;

T
O

K
E

N
IZ

E

L
IN

E

2
3

2
0

ST

Y

H
IG

H
D

S
2

3
3

0

LD
A

j0

2

2
3

4
0

ST

A

H
IG

H
D

S+
1

2
3

5
0

T

K
3

LD
A

(T

X
T

P
T

R
),

Y

2
3

6
0

ST

A

(H
IG

H
D

S
),

Y

2
3

7
0

IN

Y

2
3

8
0

CM

P
#

0
0

;
EN

D

O
F

L
IN

E

0 I)>

0 (
J
l

(
J
l

0 c .., n (!
) n 0 0
..

(!

)

V
J

V
J

\0

2
3

9
0

B

N
E

T
K

3
2

4
0

0

D
E

Y
:

Y
E

S
2

4
1

0

T
K

4
D

EY

2
4

2
0

LD

A

(H
IG

H
D

S
),

Y
:

IG
N

O
R

E

FO
LL

O
W

IN
G

SP

A
C

E
S

2
4

3
0

CM

P
t3

2

2
4

4
0

B

EQ

T
K

4
2

4
5

0

IN
Y

2

4
6

0

LD
A

#0

2

4
7

0

ST
A

(H

IG
H

D
S

),
Y

2

4
8

0

IN
Y

2

4
9

0

IN
Y

2

5
0

0

IN
Y

2

5
1

0

IN
Y

2

5
2

0

IN
Y

:
Y

-R
E

G

H
O

LD
S

L
IN

E

LE
N

G
TH

+

6

2
5

3
0

R

T
S

2
5

4
0

E

D
IT

S
U

LD

A

#<
W

E
D

G
E

:
IN

IT
IA

L
IZ

E

W
ED

G
E

2
5

5
0

ST

A

$B
B

2

5
6

0

LD
A

#>

W
ED

G
E

2
5

7
0

ST

A

$B
C

2

5
8

0

LD
A

#

$
4

C
:

"J
M

P
"

2
5

9
0

ST

A

$B
A

2

5
9

2

LD
A

#

$
F

C
:S

T
A

1

1
5

:
SE

T

H
IM

EM

2
5

9
5

LO

A

#
$

7
9

:S
T

A

1
1

6

2
6

0
0

R

T
S

2
6

1
0

.F

IL
E

FI

N
D

M
N

0 r-)>

0 V
l

V
l

0 c:: ~

(!
) n 0 Q
..

(!
)

<:.
.>
~

0
P

ro
gr

am
 0

-S
b.

 O
pe

n1
,

P
ro

D
O

S
V

er
si

on

5
:O

PE
N

IN

PU
T

F

IL
E

1

0

O
PE

N
1

JS
R

 C
LR

C
H

N

20

LO
A

t1

;
C

LO
SE

F

IL
E

IF

A

LR
EA

D
Y

O

PE
N

31

1l
JS

R

C
LO

SE

4
0

LO

A

t$
9

2
;

B
U

FF
E

R
1

A
T

$9
21

1l
lll

Si

ll
JS

R

O
PE

N
FI

L
E

61

1l
ST

A

FO
PE

N
l

11
1ll

ll
R

TS

11
1l5

;

O
PE

N

O
U

TP
U

T
F

IL
E

11

11
l

O
PE

N
2

LO
A

t$

9
6

;
B

U
FF

E
R

2
A

T
$9

61
/JI

Il
12

11
l

JS
R

O

PE
N

FI
L

E

13
11

l
ST

A

FO
PE

N
2

14
11

l
ST

A

S
E

O
F

L
IS

T
+

1
15

11
l

JS
R

M

LI

:E
R

A
SE

O

LD

C
O

N
TE

N
TS

1

6
0

;.

B
Y

T
E

$D

ill

<
S

E
O

F
L

IS
T

>

S
E

O
F

L
IS

T

1
6

5

.B
Y

T
E

21

11
8

211
1

1
4

5

1
6

6

LO
A

TA

1

6
7

ST

A

IN
F

O
L

IS
T

+
S

1

6
8

LO

A

T
A

+
l

1
6

9

ST
A

IN

F
O

L
IS

T
+

6
17

11
l

JS
R

 M
L

I:

PU
T

ST
A

R
T

A
D

D
R

ES
S

IN

AU
X

F
IL

E

T
Y

PE

17
1

;.
B

Y
T

E

$C
3

<
IN

F
O

L
IS

T

>
IN

F
O

L
IS

T

1
7

2

.B
Y

T
E

1

9
5

33

1

4
5

1

7
3

R

TS

1
7

5

O
PE

N
4

LO
A

ti

ll
;

SE
T

U
P

CA
RD

IN

SL

O
T

l
1

7
6

LO

X

$
3

6
:

SA
V

E
O

LD

O
U

TP
U

T
L

IN
K

1

7
7

ST

A

$
3

6

1
7

8

LO
A

t$

C
l

1
7

9

LO
Y

$3

7

0 r)>

0 V
l

V
l

0 c

(
j

(t
) n 0 a..
.

(t
)

w
 ""'

1
8

8

ST
A

$

3
7

1

8
1

LD

A

I$
8

A
:J

S
R

$F

D
E

D
;

SE
N

D

L
IN

E

FE
E

D

1
8

2

LD
A

I$

5
8

:S
T

A

$
5

7
9

;
SE

T

L
IN

E

L
E

N

TO

8
8

C

O
LU

M
N

S
1

8
3

LO

A

$
3

6

1
8

4

ST
A

P

B
Y

T
E

+
l;

S

E
T

P

R
IN

T
IN

G

A
D

D
R

E
SS

1

8
5

ST

X

$
3

6
;

R
E

ST
O

R
E

O

U
TP

U
T

L
IN

K

1
8

6

ST
Y

$

3
7

1

8
7

R

T
S

1
8

8

;
R

EA
D

O

N
E

B
Y

TE

FR
O

M

IN
P

U
T

F

IL
E

1

9
8

R

D
B

Y
T

E

LD
A

F

O
P

E
N

l
2

8
8

ST

A

R
W

L
IS

T
+

l
2

1
8

JS

R

M
L

I
2

2
8

;.

B
Y

T
E

$C

A

<R
W

L
IS

T

>R
W

L
IS

T

2
2

5

.B
Y

T
E

2

8
2

25

1

4
5

2

3
8

LO

A

D
A

T
A

B
U

FF

2
4

8

R
T

S
2

9
5

;

W
R

IT
E

O

N
E

B
Y

TE

TO

O
U

TP
U

T
F

IL
E

3

8
8

W

R
B

Y
TE

ST

A

D
A

T
A

B
U

FF

3
1

8

LD
A

FO

PE
N

2
3

2
8

ST

A

R
W

L
IS

T
+

l
3

3
8

JS

R

M
L

I
3

4
8

;.

B
Y

T
E

$C

B

<R
W

L
IS

T

>R
W

L
IS

T

3
4

5

.B
Y

T
E

2

8
3

25

1

4
5

3

5
8

R

T
S

3
6

5

;
C

L
O

SE

IN
P

U
T

F

IL
E

3

7
8

C

L
O

S
E

!
LD

A

F
O

P
E

N
l;

C

H
EC

K

TO

S
E

E

IF

IN
P

U
T

F

IL
E

IS

O

PE
N

3

8
8

B

EQ

N
O

C
L

O
SE

;
IF

N

O
T

E
X

IT

3
9

8

JS
R

C

L
O

S
IT

48

11
1

LO
A

#

8

4
1

8

ST
A

F

O
P

E
N

l;

S
E

T

IN
P

U
T

F

IL
E

TO

C

L
O

SE
D

42

11
1

N
O

C
L

O
SE

R

T
S

0 I)>

0 V
l

V
l

0 c: ..., (
j

(t
) n 0 0.
..

(t
)

U
J ""' N

4
3

0

;
C

L
O

SE

O
U

TP
U

T
F

IL
E

4

4
0

C

L
O

SE
2

LO
A

F

O
P

E
N

2;

C
H

EC
K

TO

S

E
E

IF

O

U
TP

U
T

F
IL

E

IS

O
PE

N

4
5

0

B
EQ

N

O
C

L
O

SE
;

IF

N
O

T
E

X
IT

4

6
0

JS

R

C
L

O
S

IT

4
6

5

;
C

L
O

SE

O
U

TP
U

T
F

IL
E

4

7
0

LO

A

t0

4
8

0

ST
A

F

O
P

E
N

2;

SE
T

O

U
T

PU
T

F

IL
E

TO

C

L
O

SE
D

4

9
0

R

T
S

5
0

0

C
L

O
S

IT

ST
A

C

L
O

S
L

IS
T

+
1

5
1

0

JS
R

M

L
I

5
2

0

;.
B

Y
T

E

$C
C

<

C
L

O
S

L
IS

T

>
C

L
O

S
L

IS
T

5

2
5

.B

Y
T

E

2
0

4

1
2

1

4
5

5

3
0

R

T
S

5
7

0

C
L

O
SE

4
LD

A

#<
C

O
U

T

5
7

2

ST
A

C

SW
D

;
R

E
ST

O
R

E

N
O

R
M

A
L

SC
R

E
E

N

O
U

TP
U

T
5

7
4

LD

A

#>
C

O
U

T

5
7

6

ST
A

C

SW
D

+1

5
7

8

R
T

S
5

8
0

O

P
E

N
F

IL
E

ST

A

O
P

E
N

L
IS

T
+

4
5

9
0

LD

A

FN
A

M
EL

EN

6
0

0

ST
A

N

A
M

EB
U

FF

6
7

0

A
T

T
O

PE
N

JS

R

M
L

I
6

8
0

;.

B
Y

T
E

$C

8
<

O
P

E
N

L
IS

T

>
O

P
E

N
L

IS
T

6

8
5

.B

Y
T

E

2
0

0

1
4

1

4
5

6

9
0

B

C
C

O

PE
N

SU
C

C

;I
F

F

IL
E

N

O
T

FO
U

N
D

7

0
0

CM

P
t$

4
6

7

1
0

B

N
E

O
PE

N
SU

C
C

7

2
0

JS

R

M
L

I
;M

A
K

E
O

N
E

7
3

0

;.
B

Y
T

E

$C
0

<
C

R
E

L
IS

T

>
C

R
E

L
IS

T

7
3

5

.B
Y

T
E

1

9
2

0

1
4

5

7
4

0

JM
P

A
T

T
O

PE
N

0 ')>

0 (
fl

(
fl

0 c: rl ro n 0 C
L ro

7
5

0

O
PE

N
SU

C
C

LO

A

O
P

E
N

L
IS

T
+

5
:R

E
T

U
R

N

F
I
L
~

IO

7
6

0

R
T

S
9

2
5

:

S
E

T

C
U

R
R

EN
T

IN
P

U
T

C

H
A

N
N

EL

9
3

0

C
H

K
IN

ST

X

O
P

N
I

9
4

0

R
T

S
9

4
5

:

S
E

T

C
U

R
R

EN
T

O
U

T
PU

T

C
H

A
N

N
EL

9

5
0

C

H
K

O
U

T
TX

A

9
6

0

ST
A

O

PN
O

1

0
3

0

C
H

K
O

U
TO

R

T
S

1
0

3
5

:

G
E

T

O
N

E
B

Y
T

E

FR
O

M

C
U

R
R

E
N

T
L

Y

O
PE

N

C
H

A
N

N
EL

1

0
4

0

C
H

A
R

IN

ST
Y

Y

1
1

0
5

0

ST
X

X

:
SA

V
E

X

&
 Y

R

EG

1
0

6
0

LO

A

O
P

N
I:

C

H
EC

K

TO

SE
E

IF

IN

P
U

T

C
H

A
N

N
EL

1

0
7

0

C
M

P
U

1

0
8

0

B
N

E
C

T
O

U
T

:
IF

N

O
T

E
X

IT

1
0

9
0

JS

R

R
O

B
Y

TE

1
1

0
0

PH

P
1

1
1

0

LO
Y

Y

1
1

1
2

0

LO
X

X

1

1
3

0

P
L

P

0
1

1
4

0

R
T

S
1

1
5

0

C
TO

U
T

LO
Y

Y

1
r
-

1
1

6
0

R

T
S

)>

0
1

1
6

5

:
O

U
T

PU
T

O

N
E

B
Y

T
E

TO

C

U
R

R
E

N
T

L
Y

O

PE
N

C

H
A

N
N

EL

(
f)

1
1

7
0

P

R
IN

T

ST
Y

Y

1
:

SA
V

E

R
EG

(
f)

1
1

8
0

ST

A

A
1

0 c::
1

1
9

0

LO
A

O

PN
O

:
C

H
EC

K

TO

SE
E

IF

TO

O

U
TP

U
T

F
IL

E

.., n
1

2
0

0

CM
P

t0
2

ro

1
2

1
0

B

N
E

N
X

T1

n
U

J
1

2
2

0

LO
A

A

1
:

Y
E

S
,

W
R

IT
E

TH

E
B

Y
TE

0

"""
a..

U

J
1

2
3

0

JS
R

W

R
B

Y
TE

ro

w

1
2

4
B

JM

P
C

T
O

U
T

0

"'" "'"
1

3
4

B

N
X

T
l

LO
A

O

PN
O

:
C

H
EC

K

TO

SE
E

IF

TO

P

R
IN

T
E

R

r-
1

3
5

B

CM
P

t4

>

1
3

6
B

B

N
E

N
X

T
2

0 (J
')

1
3

7
B

LO

A

A
1

:
Y

E
S

,
P

R
IN

T

TO

P
R

IN
T

E
R

(J

')

1
3

7
5

O

RA

t$
8

0

0
1

3
8

B

PB
Y

T
E

JS

R

$C
1B

B

c,

1
3

9
B

JM

P
C

TO
U

T
n ([

)

1
4

8
0

N

X
T2

LO

A

P
R

IN
T

F
L

A
G

:
N

O
,

M
U

ST

B
E

TO

SC
R

E
E

N

n
1

4
0

2

B
N

E
R

P
R

IN
T

IN
G

:
C

A
R

D

D
O

ES

IT

FO
R

U

S
IF

W

E
'R

E

P
R

IN
T

IN
G

0

1
4

0
4

LD

A

A
1

0.
..

([
)

1
4

1
0

O

R
A

t$

8
0

1

4
2

0

JS
R

C

O
U

T
1

4
2

5

R
P

R
IN

T
IN

G

LO
A

A

l:

R
E

ST
O

R
E

A

C
C

U
M

1

4
3

9

JM
P

C
T

O
U

T

1
4

3
5

1

C
L

O
SE

A

L
L

IN

P
U

T

A
N

D

O
U

TP
U

T
C

H
A

N
N

EL
S

1
4

4
0

C

LR
C

H
N

L

O
A

tB

0

1
4

5
0

ST

A

O
PN

O

1
4

6
B

ST

A

O
P

N
I

1
4

7
B

LO

A

#
<

P
R

IN
T

1

4
8

B

ST
A

C

SW
D

1

4
9

0

LD
A

#

>
P

R
IN

T

1
5

0
0

ST

A

C
SW

D
+1

1

5
1

8

R
T

S
1

5
1

5

:C
H

E
C

K

FO
R

ST

O
P

K
EY

1

5
2

9

ST
O

PK
E

Y

LO
A

$C

B
B

B

1
5

3
1

CM

P
t$

8
3

1

5
4

0

R
T

S
1

5
4

5

:
C

L
O

SE

O
PE

N

F
IL

E
S

1

5
5

0

C
L

O
SE

C

M
P

#
0

1

1
5

6
0

B

N
E

C
L

2
:

C
L

O
SE

IN

P
U

T

F
IL

E
?

1
5

7
8

JM

P
C

L
O

SE
1

1
5

8
8

C

L
2

CM
P

1
8

2
7

N

O
,

C
L

O
SE

O

U
T

PU
T

F

IL
E

?
1

5
9

8

B
N

E
C

L
4

1
6

8
8

JM

P
C

L
O

SE
2

1
6

1
8

C

L
4

JM
P

C
L

O
SE

47

N
O

,
M

U
ST

B

E
P

R
IN

T
E

R

1
7

8
8

1

B
A

S
IC

W

ED
G

E
1

7
1

8

W
ED

G
E

ST
A

A

1
1

7
2

8

LO
A

l$

8
8

 1
IS

T

X
T

PT
R

A

T
$

2
0

0
?

1
7

3
8

CM

P
T

X
T

P
T

R

1
7

4
8

B

N
E

O
U

T
1

7
5

8

LO
A

1

8
2

1

7
6

8

CM
P

T
X

T
P

T
R

+
1

1
7

7
8

B

N
E

O
U

T7

N
O

,
E

X
IT

1

7
7

5

LO
Y

1

8

1
7

8
8

N

X
TC

H
R

LO

A

(T
X

T
P

T
R

),
Y

7
IG

N
O

R
E

L

E
A

D
IN

G

S
P

A
C

E
S

1

7
8

1

CM
P

1
3

2

1
7

8
2

B

N
E

IS
L

N
U

M

1
7

8
3

IN

C

T
X

T
PT

R

1
7

8
4

JM

P
N

X
TC

H
R

1

7
9

8

IS
L

N
U

M

C
M

P
#$

2F
7

IS

IT

A

N
U

M
B

ER
?

1
8

8
8

B

C
C

O

U
T7

N

O
,

E
X

IT

0
1

8
1

8

CM
P

I$
3

A

I
1

8
2

8

B
C

S
O

U
T

)>

1
8

2
5

JM

P
IN

S
L

IN

0
1

8
3

8

O
U

T
LO

A

$
2

8
8

7

IS

IT

"A
SM

"?

V

l

V
l

1
8

4
8

CM

P
1

6
5

0

1
8

5
8

B

N
E

O
U

T1

c ..,
1

8
6

8

LO
A

$

2
8

1

n Ill

1
8

7
8

CM

P
1

8
3

n

w

1
8

8
8

B

N
E

O
U

T1

0
~

1
8

9
8

LO

A

$
2

8
2

a..

.
(J

l
Ill

~

1
9

0
0

C

M
P

#
7

7

0"
\

1
9

1
0

B

N
E

O
U

T1

1
9

2
0

LD

A

$
2

0
3

1

9
3

0

C
M

P
#

3
2

1

9
4

0

B
N

E
O

U
T

1;

N
O

,
E

X
IT

1

9
5

0

LD
Y

#

0
;

Y
E

S
1

9
6

0

TF
R

N
A

M

LD
A

$

2
0

4
,Y

;
T

R
A

N
SF

E
R

N

A
M

E
TO

T

O
P

O
F

SC
R

E
E

N

1
9

7
0

CM

P
#

0

1
9

8
0

B

EQ

A
SM

1

9
9

0

O
R

A

t$
8

0

2
0

0
0

ST

A

$
4

0
0

,Y

2
0

1
0

IN

Y

2
0

2
0

JM

P
TF

R
N

A
M

2

0
3

0

A
SM

LD

A

t$
A

0
;

PU
T

FO

L
L

O
W

IN
G

3

SP
A

C
E

S
2

0
4

0

ST
A

$

4
0

0
,Y

2

0
5

0

ST
A

$

4
0

1
,Y

2

0
6

0

ST
A

$

4
0

2
,Y

2

0
7

0

P
L

A
;

PU
L

L

R
E

T
U

R
N

A

D
D

R
E

SS

A
N

D

JU
M

P
TO

ST

A
R

T

2
0

8
0

PL

A

2
0

8
1

JS

R

M
L

I;

IS

P
R

E
F

IX
?

2
0

8
2

;.

B
Y

T
E

$C

7
<

P
R

E
F

L
IS

T

>
P

R
E

F
L

IS
T

2

0
8

3

.B
Y

T
E

1

9
9

4

7

1
4

5

2
0

8
4

LD

A

N
A

M
EB

U
FF

2

0
8

5

B
N

E
G

O
A

SS
M

;
IS

O

N
E

2
0

8
6

LD

A

$
B

E
3

C
:A

S
L

:A
S

L
:A

S
L

:A
S

L

2
0

8
7

LD

Y

$B
E

3D
;

D
E

FA
U

L
T

D

R
IV

E

2
0

8
8

C

PY

#1

2
0

8
9

B

EQ

SL
O

T
1

2
0

9
0

O

R
A

#

$
8

0

2
0

9
1

SL

O
T

1
ST

A

O
L

IN
L

IS
T

+
1

2

0
9

2

JS
R

M

L
I;

F

IN
D

N

A
M

E
O

F
V

O
LU

M
E

0 r-)>

0 V
l

V
l

0 c ("
)

('!
) n 0 0
..

('!

)

2
0

9
3

;.

B
Y

T
E

$C

5
<

O
L

IN
L

IS
T

>

O
L

IN
L

IS
T

2

0
9

4

.B
Y

T
E

1

9
7

50

1

4
5

2

0
9

5

LO
A

N

A
M

E
B

U
FF

+1
:A

N
D

#

$
F

2

0
9

6

T
A

Y
:

IN
Y

:
IN

Y

2
0

9
7

LO

A

i$
2

F
;

A
D

D

"
/"

'S

2
0

9
8

ST

Y

N
A

M
EB

U
FF

2

0
9

9

ST
A

N

A
M

E
B

U
FF

+1

2
1

0
0

ST

A

N
A

M
E

B
U

FF
,Y

2

1
0

1

JS
R

M

L
I;

M

A
K

E
IT

P

R
E

F
IX

2

1
0

2

;.
B

Y
T

E

$C
6

<
P

R
E

F
L

IS
T

>

P
R

E
F

L
IS

T

2
1

0
3

.B

Y
T

E

1
9

8

47

1
4

5

2
1

0
4

G

O
A

SS
M

JM

P
ST

A
R

T

2
1

0
5

O

U
T1

LO

A

A
1;

N

O
R

M
A

L
C

H
R

G
ET

2

1
1

0

CM
P

t$
3

A

2
1

2
0

B

C
S

E
X

IT

2
1

3
0

CM

P
t$

2
0

2

1
4

0

B
N

E
N

X
T

2
1

5
0

JM

P
C

H
R

G
E

T

2
1

6
0

N

X
T

SE
C

2

1
7

0

SB
C

#

$
3

0

2
1

8
0

SE

C

0
2

1
9

0

SB
C

i$

0
0

.. r-

2
2

0
0

E

X
IT

R

T
S

)>

2
2

1
0

IN

S
L

IN

LO
X

PR

G
E

N
D

;
FO

U
N

D

L
IN

E

N
U

M
B

ER
,

NO
W

IN

S
E

R
T

L

IN
E

0

2
2

2
0

ST

X

V
A

R
TA

B

V
l

2
2

3
0

LD

X

PR
G

E
N

D
+1

V

l
0

2
2

4
0

ST

X

V
A

R
T

A
B

+1

c ...,
2

2
5

0

C
LC

("

) ro
2

2
6

0

JS
R

L

IN
G

E
T

;
G

ET

L
IN

E

N
U

M
B

ER

('
)

w

2
2

7
0

JS

R

T
O

K
N

IZ

0
~

2
2

8
0

PL

A

CL

'.
J

ro

~

2
2

9
0

PL

A

~

2
3

0
0

JM

P

L
IN

IN
S

;
JU

M
P

TO

N
O

R
M

A
L

IN
S

E
R

T

L
IN

E

A
N

D

R
E

SE
T

L

IN
E

L

IN
K

A

D
D

R
E

SS
E

S
2

3
1

0

T
O

K
N

IZ

LD
Y

#

0
0

;
T

O
K

E
N

IZ
E

L

IN
E

2

3
2

0

ST
Y

H

IG
H

D
S

2
3

3
0

LD

A

#
0

2

2
3

4
0

ST

A

H
IG

H
D

S+
1

2
3

5
0

T

K
3

LD
A

(T

X
T

P
T

R
),

Y

2
3

6
0

ST

A

(H
IG

H
D

S
),

Y

2
3

7
0

IN

Y

2
3

8
0

C

M
P

#
0

0
;

EN
D

O

F
L

IN
E

2

3
9

0

B
N

E
TK

3
2

4
0

0

D
E

Y
;

Y
E

S
2

4
1

0

T
K

4
D

EY

2
4

2
0

LD

A

(H
IG

H
D

S
),

Y
;

IG
N

O
R

E

FO
L

L
O

W
IN

G

SP
A

C
E

S
2

4
3

0

C
M

P
t3

2

2
4

4
0

B

EQ

T
K

4
2

4
5

0

IN
Y

2

4
6

0

LD
A

#

0

2
4

7
0

ST

A

(H
IG

H
D

S
),

Y

2
4

8
0

IN

Y

2
4

9
0

IN

Y

2
5

0
0

IN

Y

2
5

1
0

IN

Y

2
5

2
0

IN

Y
;

Y
-R

E
G

H

O
LD

S
L

IN
E

L

E
N

G
T

H

+
6

2

5
3

0

R
T

S
2

5
4

0

E
D

IT
S

U

LD
A

#<

W
E

D
G

E
;

IN
IT

IA
L

IZ
E

W

ED
G

E
2

5
5

0

ST
A

$B

B

2
5

6
0

LD

A

#>
W

ED
G

E
2

5
7

0

ST
A

$B

C

2
5

8
0

LD

A

t$
4

C
;

"J
M

P
"

0 I)>

0 V
l

V
l

0 c .., ('"
')

('!
)

("
)

0 a.

('!
)

2
5

9
0

ST

A

$B
A

2

6
0

0

R
T

S
2

6
1

0

.F
IL

E

FI
N

D
M

N

P
ro

g
ra

m
 D

-6
.

F
in

d
m

n

1
0

;

"F
IN

D
M

N
"

-
-

LO
O

K
S

TH
R

O
U

G
H

M

N
EM

O
N

IC
S

FO
R

M

A
TC

H

TO

L
A

B
E

L
.

2
0

;

W
E

JM
P

TO

T
H

IS

FR
O

M

E
V

A
L

.
&

 J
M

P
B

A
C

K

TO

l
O

F
2

L
O

C
A

T
IO

N
S

(J
M

P

FO
R

S

P
E

E
D

)
3

0

FI
N

D
M

N

LO
Y

#

0

4
0

LO

X

#
2

5
5

;
PR

E
PA

R
E

X

 T
O

G

O

TO

ZE
R

O

A
T

ST
A

R
T

O

F
L

O
O

P
5

0

L
O

O
P

IN
X

;
X

R

A
IS

E
D

TO

Z

E
R

O

A
T

ST
A

R
T

O

F
LO

O
P

6
0

LO

A

M
N

E
M

O
N

IC
S,

Y
;

LO
O

K

IN

T
A

B
L

E

O
F

M
N

EM
O

N
IC

S
7

0

C
M

P
L

A
B

E
L

;
C

O
M

PA
R

E
IT

TO

1

S
T

C

H
A

R
.

O
F

W
O

RD

IN

L
A

B
E

L

B
U

FF
E

R

8
0

B

EQ

M
O

R
E;

IF

=

,
C

O
M

PA
R

E
2N

D

L
E

T
T

E
R

S
O

F
TA

B
LE

V

S
.

B
U

FF
E

R

9
0

IN

Y
;

O
T

H
E

R
W

IS
E

G

O

U
P

T
H

R
E

E

IN

TH
E

T
A

B
L

E

TO

F
IN

D

T
H

E

N
EX

T
M

N
E

M
O

N
IC

1

0
0

IN

Y

1
1

0

IN
Y

1

2
0

C

PX

#
5

7
;

H
A

V
E

W
E

C
H

E
C

K
E

D

A
L

L

5
6

M

N
E

M
O

N
IC

S.

1
3

0

B
N

E
L

O
O

P;

IF

N
O

T
,

C
O

N
T

IN
U

E

T
R

Y
IN

G

T
O

F

IN
D

A

M

A
TC

H

1
4

0

N
O

M
A

TC
H

JM

P

E
Q

L
A

B
E

L
;

D
ID

N
'T

F

IN
D

A

M

A
TC

H

(S
O

G

O

B
A

C
K

TO

E

V
A

L
)

1
5

0

M
O

RE

!N
Y

;
C

O
M

PA
R

E
2N

D

L
E

T
T

E
R

1

6
0

LD

A

M
N

E
M

O
N

IC
S,

Y

1
7

0

C
M

P
L

A
B

E
L

+
l

1
8

0

B
EQ

M

O
R

E
l;

IF

=

,
G

O

O
N

TO

C

O
M

PA
R

E
3R

D

A
N

D

F
IN

A
L

L

E
T

T
E

R

1
9

0

IN
Y

2

0
0

IN

Y

2
1

0

B
N

E
L

O
O

P;

2N
D

L

E
T

T
E

R

D
ID

N
'T

M

A
TC

H
,

T
R

Y

N
EX

T
M

N
EM

O
N

IC

(Y

<>

0
)

2
2

0

B
EQ

N

O
M

A
TC

H

;
IF

Y

 =
 0

,
W

E
'V

E

G
O

N
E

PA
ST

T

A
B

L
E

(R

E
T

U
R

N

TO

E
V

A
L

)
w

2

3
0

M

O
R

E
l

!N
Y

;
C

O
M

PA
R

E
3R

D

L
E

T
T

E
R

~

2
4

0

LO
A

M

N
E

M
O

N
IC

S,
Y

0 r- >

0 (J
')

(J
')

0 c ..., ('
)

('!
) n 0 Q
..

('!
)

~

2
5

0

CM
P

L
A

B
E

L
+2

o

2
6

0

B
EQ

FO

U
N

D
;

IF

3R
D

L

E
T

T
E

R
S

A
R

E
=

,
W

E
'V

E

FO
U

N
D

O

U
R

M
A

TC
H

2

7
0

IN

Y

2
8

0

B
N

E
L

O
O

P
;

O
T

H
E

R
W

IS
E

TR

Y

N
EX

T
M

N
EM

O
N

IC

2
9

0

B
EQ

N

O
M

A
TC

H

3
0

0

FO
U

N
D

LO

A

L
A

B
E

L
+

3;

TH
E

4T
H

C

H
A

R
.

M
U

ST

B
E

A

B
LA

N
K

FO

R

T
H

IS

TO

B
E

A

M
N

EM
O

N
IC

3

1
0

CM

P
#

3
2

3

2
0

B

EQ

F
O

l;

IF

SO
,

ST
O

R
E

D

A
TA

A

B
O

U
T

T
H

IS

M
N

EM
O

N
IC

&

 R
E

T
U

R
N

TO

E

V
A

L
.

3
3

0

CM
P

#
0

;
O

R
IF

EN

D

O
F

L
IN

E
,

IT

W
O

U
LD

BE

A

N

IM
P

L
IE

D

A
D

D
R

.
M

N
EM

O
N

IC

L
IK

E

IN
Y

3

4
0

B

N
E

N
O

M
A

TC
H

;
O

T
H

E
R

W
IS

E
,

NO

M
A

TC
H

FO

U
N

D

(I
T

'S

N
O

T
A

 M
N

E
M

O
N

IC
).

3
5

0

F
O

l
LO

A

T
Y

P
E

S
,X

;
ST

O
R

E

A
D

D
R

.
T

Y
P

E
.

3
6

0

ST
A

T

P

3
7

0

LO
Y

O

P
S

,X
;

ST
O

R
E

O

PC
O

D
E

3
8

0

ST
Y

O

P
3

9
0

EN

D

JM
P

EV

A
R

;
M

A
TC

H

FO
U

N
D

SO

JU

M
P

TO

EV
A

R

R
O

U
T

IN
E

IN

E

V
A

L

4
0

0

.F
IL

E

G
E

T
SA

P
ro

gr
am

 D
-7

a.
 G

et
sa

1
0

2

0

3
0

"G
E

T
S

A
"

G
ET

S

T
A

R
T

IN
G

A

D
D

R
E

SS

FR
O

M

D
IS

K

(L
E

A
V

E
S

D
IS

K

P
O

IN
T

IN
G

A

T

*=

T
H

IS

S
P

A
C

E

(S
T

A
R

T

A
D

D
R

E
SS

)
(E

X
P

E
C

T
S

F

IL
E

#

1

TO

BE

A
L

R
E

A
D

Y

O
P

E
N

E
D

).

4
0

:

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

5
0

G

E
T

SA

LD
X

#

1
;

S
E

T

U
P

IN
PU

T

C
H

A
N

N
EL

FO

R

A

D
E

V
IC

E

(T
O

G

E
T

B

Y
T

E
S)

6

0

JS
R

C

H
K

IN
;

B
A

S
IC

'S

R
O

U
T

IN
E

70

LO

X

#
6

;
W

E
N

EE
D

TO

TH

RO
W

AW

AY

T
H

E

1S
T

6

B
Y

T
E

S
ON

A

 D
IS

K

F
IL

E

(S
E

C
T

O
R

L

IN
K

,
75

LS

A

ST
X

X

8

0

JS
R

C

H
A

R
IN

;
RA

M

ST
A

R
T

A

D
D

R
E

SS
,

A
N

D

L
IN

E

L
IN

K
)

(C
H

A
R

IN
IS

"G

E
T

B

Y
T

E
")

8

5

LO
X

X

9

0

D
E

X
;

C
O

U
N

T
DO

W
N

U
N

T
IL

W

E
'V

E

PU
L

L
E

D

O
FF

T

H
E

0 r)>

0 V
>

V

>

0 c::
 .., (
j

(0
 n 0 a..

(0

w

<.
Jl

1
~
~

B
N

E
L

S
A

;
1S

T

6
B

Y
TE

S
..

.
T
H
E
N
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-

1
1
~

JS
R

C

H
A

R
IN

;
PU

L
L

IN

N

EX
T

B
Y

TE

1
2
~

CM
P

#$
2A

;
IS

IT

TH

E
*

SY
M

B
O

L
1
3
~

B
EQ

M

SA
;

IF

S
O

,
GO

BA

CK

TO

C
A

L
L

E
R

(E

V
A

L

SU
B

PR
O

G
R

A
M

C

A
LL

S
G

E
T

SA
)

1
4
~

LO
A

#<

M
N

O
ST

A
R

T
;

O
T

H
E

R
W

IS
E

,
P

R
IN

T

ER
R

O
R

M

ES
SA

G
E

W
H

IC
H

1
5
~

ST
A

T

E
M

P;

SA
Y

S
"N

O

ST
A

R
T

A
D

D
R

E
S

S
".

PO

IN
T

TO

T

H
IS

ER

R
O

R

M
ES

SA
G

E
IN

1
6
~

LO
A

#>

M
N

O
ST

A
R

T
;

TH
E

P
O

IN
T

E
R

,"
T

E
M

P
,"

A

N
D

P

R
IN

T

TH
E

M
ES

SA
G

E
(P

R
N

T
M

E
SS

)
1
7
~

ST
A

T

E
M

P+
1;

(N

O
T

E
:

T
H

IS

N
O

-S
T

A
R

T
-A

D
D

R
E

SS

C
O

N
D

IT
IO

N

O
C

C
U

R
S

2
W

A
Y

S:

(E
IT

H
E

R

1
8
~

JS
R

PR

N
T

M
E

SS
;

(Y
O

U

FO
R

G
O

T
TO

W

R
IT

E

O
N

E
O

R
Y

O
U

G

A
V

E
TH

E
W

RO
N

G

F
IL

E

N
A

M
E)

1
9
~

JM
P

F
IN

;
GO

B

A
C

K

TO

B
A

SI
C

V

IA

TH
E

SH
U

TD
O

W
N

R

O
U

T
IN

E

W
IT

H
IN

E

V
A

L
;-

--
--

--
2
~
~

M
SA

R

TS

2
1
~

.F
IL

E

V
A

LD
EC

P
ro

gr
am

 D
-7

b.
 C

et
sa

,
P

ro
D

O
S

 C
ha

ng
es

7
~

LO
X

#

4
;

W
E

N
EE

D

TO

TH
RO

W

AW
AY

TH

E
1S

T

4
B

Y
TE

S
O

N

A
 D

IS
K

F

IL
E

P
ro

gr
am

 D
-8

.
V

al
de

c

1
~

2
~

3
~

4
~

"V
A

L
D

E
C

"
T

R
A

N
SL

A
T

E

A
S

C
II

IN

PU
T

TO

A

 T
W

O
-B

Y
TE

IN

T
E

G
E

R

IN

R
E

SU
L

T

SE
T

U
P/

T
E

M
P

M
U

ST

PO
IN

T

TO

A
S

C
II

N

U
M

B
ER

(W

H
IC

H

EN
D

S
IN

Z

E
R

O
).

R
E
S
U
L
~
S
/

R
E

SU
L

T

H
O

LD
S

2-
B

Y
T

E

R
E

SU
L

T

5
~

V
A

LD
EC

LO

Y

#
~

5
5

;

R
EA

D

A
S

C
II

FR

O
M

L

E
FT

6
~

V
G

ET
ZE

R
O

LO

A

(T
E

M
P

),
Y

7
~

B
EQ

V

Z
E

R
O

;
~

D
E

L
IM

IT
E

R

8
0

!N

Y

TO

R
IG

H
T

--
D

E
C

R
E

M
E

N
T

IN
G

Y

--

(T
O

F

IN
D

LE

N
G

TH
)

FO
U

N
D

0 r)>

0 V
l

V
l

0 c: .., n ('1
) n 0 Q
.

('1
)

~

9
0

JM

P
V

G
E

T
Z

E
R

O
;-

--
--

--
--

--
--

--
(F

O
R

E

X
A

M
PL

E
,

A
SS

U
M

E
A

S
C

II

IS

"1
5

")

N

1
1

0

V
ZE

R
O

ST

Y

V
R

E
N

D
;

SA
V

E

LE
N

G
TH

O

F
A

S
C

II

N
U

M
B

ER

(I
N

T

H
E

EX

A
M

PL
E,

L

E
N

=

 2
)

1
2

0

D
EY

1

3
0

LO

A

#
0

;
C

LE
A

N

"R
E

S
U

L
T

"
V

A
R

IA
B

L
E

(S

E
T

TO

0

)
1

4
0

ST

A

R
E

SU
L

T

1
5

0

ST
A

R

E
S

U
L

T
+

!
1

6
0

LO

X

U
;

U
SE

"X

"
V

A
R

IA
B

L
E

A

S
A

M

U
L

T
IP

L
Y

-X
10

-H
O

W
-M

A
N

Y
-T

IM
E

S

C
O

U
N

TE
R

1

7
0

ST

X

X

1
8

0

V
A

LL
O

O
P

LO
A

(T

E
M

P
),

Y
;

LO
A

D

IN

TH
E

R
IG

H
T

M
O

ST

A
S

C
II

C

H
A

R
A

C
T

E
R

(E

X
:

"
5

"
)

1
9

0

A
N

D

#
$

0
F

;
A

S
A

S
C

II
,

5
=

 $
3

5
.

0
S

T
R

IP

O
F

F

TH
E

3
,

L
E

A
V

IN
G

TH

E
5

.
2

0
0

ST

A

R
A

D
D

;
ST

O
R

E

IN

M
U

L
T

IP
L

IC
A

T
IO

N

R
E

G
IS

T
E

R

2
1

0

ST
A

T

S
T

O
R

E
;

ST
O

R
E

IN

"R

E
M

E
M

B
E

R

IT
"

R
E

G
IS

T
E

R

2
2

0

LO
A

#

0
;

PU
T

0

IN

B
O

TH

T
H

E
SE

R

E
G

IS
T

E
R

S

(I
N

T

H
E

IR

H
IG

H

B
Y

T
E

S)

2
3

0

ST
A

R

A
D

D
+l

2

4
0

ST

A

T

S
T

O
R

E
+

1
;-

--
--

--
--

--
--

--
--

M
U

L
T

IP
L

Y

X
1

0

A
S

M
U

CH

A
S

N
E

C
E

S
S

A
R

Y
--

--
--

2
5

0

V
LO

O
P

D
E

X
;

LO
W

ER

T
H

E

C
O

U
N

T
E

R
.

(I
N

TH

E
E

X
A

M
PL

E
,

X
 N

OW

=
 0

FO

R

1S
T

C

H
A

R
)

2
6

0

B
EQ

V

G
O

O
N

;
SO

W

E
D

O
N

'T

JS
R

TO

TH

E
X

l0

SU
B

R
O

U
T

IN
E

IN

T

H
IS

C

A
SE

)
2

7
0

JS

R

T
E

N
;

O
T

H
E

R
W

IS
E

,W
E

'D

M
U

L
T

IP
L

Y

TH
E

N
U

M
B

ER

X
l0

A

S
M

A
N

Y

T
IM

E
S

A
S

N
E

C
E

SS
A

R
Y

2

8
0

LO

A

R
A

D
D

;
M

O
V

E
R

E
SU

L
T

O

F
M

U
L

T
IP

L
IC

A
T

IO
N

IN

T
O

ST

O
R

A
G

E
R

E
G

IS
T

E
R

2

9
0

ST

A

T
ST

O
R

E

3
0

0

LO
A

R

A
D

D
+1

3

1
0

ST

A

T
S

T
O

R
E

+
1;

SA

V
IN

G

R
E

SU
L

T
S

O
F

M
O

ST

R
E

C
E

N
T

M

U
L

T
IP

L
IC

A
T

IO
N

3

2
0

JM

P
V

L
O

O
P;

C

O
N

T
IN

U
E

M

U
L

T
IP

L
Y

IN
G

X

l0

U
N

T
IL

X

IS

DO

W
N

T
O

Z

E
R

0
.-

--
--

--
-

3
3

0

V
G

O
O

N

IN
C

X

;
R

A
IS

E

X

BY

1
(S

IN
C

E

W
E

'R
E

M

O
V

IN
G

L

E
FT

A

N
D

EA

C
H

N

U
M

B
ER

W

IL
L

3

3
5

;

B
E

10
X

TH

E
O

N
E

TO

IT

S

R
IG

H
T

).

3
4

0

LO
X

X

3

5
0

JS

R

V
A

LA
D

D
;

A
D

D

R
A

D
D

TO

R

E
SU

L
T

(A

D
D

IN

R

E
SU

L
T

S
O

F
T

H
E

M

U
L

T
IP

L
IC

A
T

IO
N

)
3

6
0

D

E
Y

;
M

O
V

E
IN

D
E

X

O
V

E
R

BY

1

(T
O

PO

IN
T

TO

N

E
X

T

A
S

C
II

C

H
A

R
.

TO

TH
E

L
E

F
T

)
3

7
0

D

EC

V
R

E
N

D
;

LO
W

ER

LE
N

G
TH

P

O
IN

T
E

R
.

IF

IT
'S

N

O
T

Y
ET

Z

E
R

O
,

TH
EN

3

8
0

B

N
E

V
A

L
L

O
O

P;

C
O

N
T

IN
U

E

P
R

O
C

E
S

S
IN

G

T
H

IS

A
S

C
II

N

U
M

BE
R

3
9

0

R
T

S
;

O
T

H
E

R
W

IS
E

R

E
T

U
R

N

TO

C
A

L
L

E
R

.

0 I >

0 V
l

V
l

0 c: ..., 1'1

(!
) n 0 Q
..

(!

)

V
ol

(J

1

V
ol

4
~
~

4
1
~

4
2
~

4
3
~

4
4
~

4
5
~

4
6
~

4
7

0

4
8
~

4
9
~

5
~
0

5
1
~

5
2

0

5
3
~

5
4
~

5
5
~

5
6
~

5
7
~

5
8
~

5
9
~

6
0

0

6
1
~

6
2
~

6
3

0

6
4
~

6
5
~

;-
--

--
--

--
--

--
--

T
E

N

C
L

C

R
A

D
D

;
R

A
D

D
+l

RA

D
D

M
U

L
T

IP
L

Y

BY

1
0

M
U

L
T

IP
L

Y

R
A

D
D

X

 4

A
S

L

R
O

L
A

S
L

R

O
L

C
L

C

L
D

A

A
D

C

S
T

A

L
D

A

A
D

C

S
T

A

A
S

L

R
O

L

R
T

S

R
A

D
D

+
l;

--
--

--
--

--
--

--
-

T
S

T
O

R
E

;P
U

L
L

O

U
T

O
R

IG
IN

A
L

N

U
M

B
ER

A

N
D

A

D
D

IT

T

O

R
E

SU
L

T

O
F

X
4

(G
IV

IN
G

X

S
)

R
A

D
D

RA

D
D

T

S
T

O
R

E
+

l
R

A
D

D
+l

R

A
D

D
+

l;
--

--
--

--
--

--
N

O
W

,
M

U
L

T
IP

L
Y

X

2
.

((
N

*
4

+
N

)*
2

)
IS

N
*
l
~

RA
D

D

R
A

D
D

+l

;-
-
-
-
-
-
-
-
-
-
-
-
-

A
D

D

R
E

S
U

L
T

S

O
F

TH
E

M
U

L
T

IP
L

IC
A

T
IO

N

TO

TH
E

IN
T

E
G

E
R

A

N
SW

ER

V
A

LA
D

D

C
LC

L

D
A

RA

D
D

A

D
C

R

E
SU

L
T

S

T
A

R

E
SU

L
T

L

D
A

R

A
D

D
+l

A

D
C

R

E
S

U
L

T
+

l
S

T
A

R

E
S

U
L

T
+

l
R

T
S

.F
IL

E

IN
D

IS
K

0 r-)>

0 (.
/)

(.
/)

0 c: ~ n ro ('
)

0 a..

ro

w

U
l
~

P
ro

gr
am

 D
-9

.
ln

di
sk

1
0

:

"I
N

D
IS

K
"

M
A

IN

G
E

T
-I

N
P

U
T

-F
R

O
M

-D
IS

K

R
O

U
T

IN
E

2

0

;S
E

T
U

P
/E

X
P

E
C

T
S

D

IS
K

TO

PO

IN
T

TO

1S

T

CH
A

R
IN

A

NE

W

L
IN

E

(O
R

BE

Y
O

N
D

C

O
L

O
N

)
3

0

;R
E

S
U

L
T

S
/E

IT
H

E
R

FL

A
G

S
EN

D

O
F

PR
O

G
.

O
R

F
IL

L
S

L

A
B

E
L

+
W

IT
H

L

IN
E

O

F
C

O
D

E
4

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

5
0

IN

D
IS

K

JS
R

C

L
E

A
N

L
A

B
;

F
IL

L

L
A

B
E

L

W
IT

H

ZE
R

O
S

(R
O

U
T

IN
E

IN

E

V
A

L
)

6
0

LO

Y

#
0

7

0

ST
Y

H

E
X

FL
A

G
;

PU
T

H
E

X
FL

A
G

DO

W
N

7
5

ST

Y

B
A

B
FL

A
G

8

0

ST
Y

B

Y
T

FL
A

G
;

PU
T

FL
A

G

SH
O

W
IN

G

<

O
R

>

DO

W
N

9
0

ST

Y

PL
U

SF
L

A
G

;
PU

T
A

R
IT

H
M

E
T

IC

PS
E

U
D

O

O
P

(+
)

FL
A

G

DO
W

N
1

0
0

LD

A

C
O

L
FL

A
G

;
IF

T

H
E

R
E

W

AS

A
 C

O
LO

N

JU
S

T

P
R

IO
R

TO

T

H
IS

,
R

EM
O

V
E

A
N

Y

B
LA

N
K

S
1

1
0

BN

E
N

O
B

L
A

N
K

S;

(T
H

IS

TA
K

ES

C
A

R
E

O
F

:
!N

Y
:

L
O

A

1
5

:
LO

X

1
7

TY

PE

E
R

R
O

R
S)

1

2
0

JS

R

C
H

A
R

IN
;

O
T

H
E

R
W

IS
E

,
PU

LL

IN

TH
E

1S
T

C

H
A

R
A

C
T

E
R

(F

R
O

M

D
IS

K

O
R

R
A

M
)

1
3

0

ST
A

L

IN
E

N
;

ST
O

R
E

LO
W

B

Y
TE

O

F
L

IN
E

N

U
M

BE
R

1
4

0

JS
R

C

H
A

R
IN

1

5
0

ST

A

L
IN

E
N

+
l;

ST

O
R

E

H
IG

H

B
Y

TE

O
F

L
IN

E

N
U

M
B

ER

1
6

0

N
O

B
LA

N
K

S
JS

R

C
H

A
R

IN
;

R
O

U
T

IN
E

TO

E

L
IM

IN
A

T
E

B

LA
N

K
S

FO
L

L
O

W
IN

G

A
 C

O
LO

N

1
7

0

CM
P

#
3

2
:

(O
R

FO

L
L

O
W

IN
G

A

 L
IN

E

N
U

M
B

ER
)

1
7

5

BN
E

C
O

O
LO

O
K

1

7
6

JS

R

E
N

D
PR

O
;

T
H

IS

H
A

N
D

LE
S

C
O

LO
N

S
PL

A
C

ED

A
C

C
ID

E
N

T
A

L
L

Y

A
T

T
H

E

EN
D

O

F
L

IN
E

1

7
7

P

L
A

:P
L

A
:J

M
P

S

T
A

R
T

L
IN

E

1
8

0

C
O

O
LO

O
K

CM

P
#

3
2

;
(O

R

FO
LL

O
W

IN
G

A

L

IN
E

N

U
M

B
ER

)
1

9
0

JM

P
M

O
il

;
S

K
IP

TO

C

H
EC

K

FO
R

C

O
LO

N

(I
T

'S

E
Q

U
IV

A
L

E
N

T

TO

A
N

EN

D

O
F

L
IN

E

0
)

2
0

0

S
T

IN
D

IS
K

JS

R

C
H

A
R

IN
;

EN
TR

Y

P
O

IN
T

W

IT
H

IN

L
IN

E

(N
O

T
A

T
ST

A
R

T

O
F

L
IN

E
)

2
1

0

M
O

IN
D

I
B

N
E

M
O

il
;

IF

N
O

T
Z

E
R

O
,

LO
O

K

FO
R

C

O
LO

N

2
2

0

JM
P

E
N

D
PR

O
;

FO
U

N
D

A

0

EN
D

O

F
L

IN
E

.
C

H
EC

K

FO
R

EN

D

O
F

PR
O

G
R

A
M

(3

Z

E
R

O
S

)
2

3
0

M

O
il

C

M
P

#
5

8
;

IS

IT

A
 C

O
LO

N

2
4

0

B
N

E
X

M
O

l;

IF

N
O

T
,

C
H

EC
K

FO

R

SE
M

IC
O

L
O

N

2
5

0

JM
P

C
O

L
O

N
;

FO
U

N
D

A

C

O
LO

N

0 r- >

0 (
f)

(
f)

0 c: .., r"
l

It
) n 0 0
.

It
)

(,
.)

(J

1

(J
1

2
6

0

X
M

01

CM
P

#
5
9
~

IS

IT

A

SE
M

IC
O

L
O

N

2
7

0

B
N

E
C
O
M
O
A
~

IF

N
O

T
C

O
N

T
IN

U
E

O

N

2
8

0

ST
Y

A
~

FO
U

N
D

A

SE

M
IC

O
L

O
N

(R

E
M

)
2

9
0

LD

A

P
R
I
N
T
F
L
A
G
~

IF

PR
IN

T
O

U
T

N

O
T

R
E

Q
U

E
ST

E
D

,
TH

EN

D
O

N
'T

ST

O
R

E

TH
E

R
EM

A
R

K
S

3
0

0

B
EQ

PU

LL
R

X

3
0

5

ST
A

B

A
B

FL
A

G

3
1

0

LD
A

A
~

O
T

H
E

R
W

IS
E

,
C

H
EC

K

Y

(S
A

V
E

D

A
B

O
V

E
).

IF

Z

E
R

O
,

IS

A

SE
M

IC
O

L
O

N

A
T

3
2

0

B
EQ

P
U
X
~

ST
A

R
T

O

F
TH

E
L

IN
E

(N

O

L
A

B
E

L
S

O
R

M
N

E
M

O
N

IC
S,

JU

S
T

A

B

IG

C
O

M
M

EN
T)

3

3
0

JS

R

P
U
L
L
R
E
S
T
~

O
T

H
E

R
W

IS
E

SA

V
E

C
O

M
M

EN
TS

FO

LL
O

W
IN

G

TH
E

SE
M

IC
O

L
O

N

3
4

0

JM
P

M
P
U
L
L
~

A
N

D

TH
EN

R

ET
U

R
N

TO

EV

A
L

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
5

0

PU
X

JS

R

C
H
A
R
I
N
~

PU
T

N
O

N
-C

O
M

M
EN

T
D

A
TA

IN

T
O

L

A
B

E
L

B

U
FF

E
R

3

6
0

B

EQ

P
U
X
1
~

EN
D

O

F
L

IN
E

,
SO

E

X
IT

3

7
0

C

M
P

#
1
2
7
~

7T
H

B

IT

N
O

T
S

E
T

(S

O

IT
'S

N

O
T

A
 K

EY
W

O
R

D

IN

B
A

S
IC

)
3

8
0

B

C
C

PU

X
2

3
9

0

JS
R

K
E
Y
W
O
R
D
~

IT

IS

A
 K

EY
W

O
R

D
,

SO

EX
TE

N
D

IT

O

U
T

A
S

A
N

A

S
C

II

W
OR

D
4

0
0

PU

X
2

ST
A

L
A
B
E
L
,
Y
~

PU
T

TH
E

C
H

A
R

.
IN

T
O

TH

E
M

A
IN

B

U
FF

E
R

4

1
0

IN

Y

4
2

0

JM
P

P
U
X
~

R
ET

U
R

N

TO

LO
O

P
FO

R

M
O

RE

C
H

A
R

A
C

T
E

R
S

--
--

--
--

--
--

--
--

--
--

-
4

3
0

PU

X
1

JS
R

P
R
N
T
L
I
N
E
~

P
R

IN
T

TH

E
L

IN
E

N

U
M

B
ER

4

4
0

JS

R

P
R
N
T
S
P
A
C
E
~

P
R

IN
T

A

SP

A
C

E

4
5

0

JS
R

P
R
N
T
I
N
P
U
T
~

P
R

IN
T

TH

E
C

H
A

R
A

C
TE

R
S

IN

TH
E

L
A

B
E

L

B
U

FF
E

R

(M
A

IN

B
U

FF
E

R
)

4
6

0

JS
R

P
R
N
T
C
R
~

P
R

IN
T

A

 C
A

R
R

IA
G

E

R
ET

U
R

N

4
7

0

LD
A

#
0
~

S
E

T

A
 V

A
R

IA
B

L
E

TO

ZE

R
O

TO

S

IG
N

IF
Y

N

O
T

H
IN

G

FO
R

EV

A
L

TO

EV
A

LU
A

TE

4
8

0

ST
A

A

4

9
0

JM

P
M
P
U
L
L
~

G
O

TO

E

X
IT

R

O
U

T
IN

E
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
4

9
5

PU

L
L

R
E

ST

ST
A

B

A
B

FL
A

G

5
0

0

ST
A

A

5

1
0

LD

Y

#0

5
3

0

PA
X

1
JS

R

C
H
A
R
I
N
~

G
ET

C

H
A

R
A

C
TE

R

5
4

0

B
N

E
P
A
X
~

IF

N
O

T
Z

E
R

O
,

C
O

N
T

IN
U

E

5
5

0

ST
A

B
A
B
U
F
,
Y
~

O
T

H
E

R
W

IS
E

,
W

E
'R

E

A
T

TH
E

EN
D

O

F
T

H
E

CO

M
M

EN
T

0 r)>

0 V
l

V
l

0 c: ~ ("
)

('[
) n 0 Q
.

('[
)

~

5
6

0

LO
Y

A

~

5
7

0

R
T

S
;

Y
 M

U
ST

H

O
LD

O

FF
SE

T

FO
R

ZE

R
O

F

IL
L

(E

N
D

P
R

0
)-

--
--

--
--

--
--

--
--

5
8

0

PA
X

B

PL

PA
X

A
;

N
O

T
A

 K
EY

W
O

RD

(7
T

H

B
IT

N

O
T

S
E

T
)

6
0

0

JS
R

K

EY
W

A
D

;
O

T
H

E
R

W
IS

E
,

EX
TE

N
D

K

EY
W

O
RD

IN

T
O

A

N

A
S

C
II

S

T
R

IN
G

6

1
0

PA

X
A

ST

A

B
A

B
U

F
,Y

;
ST

O
R

E
C

H
A

R
.

IN

RE
M

A
RK

B

U
FF

E
R

6

2
0

!N

Y

6
3

0

JM
P

P
A

X
!;

R

ET
U

R
N

TO

LO

O
P

TO

G
ET

A

N
O

TH
ER

C

H
A

R
A

C
T

E
R

--
--

--
--

--
--

--
6

4
0

PU

L
L

R
X

JS

R

C
H

A
R

IN
;

JU
S

T

PU
L

L

IN

RE
M

A
RK

C

H
A

R
A

C
T

E
R

S,

IG
N

O
R

IN
G

TH

EM

6
5

0

B
EQ

M

PU
L

L
;

L
O

O
K

IN
G

FO

R

TH
E

EN
D

O

F
L

IN
E

Z

E
R

O

6
6

0

JM
P

P
U

L
L

R
X

;-
--

--
--

--
--

--
--

--
--

--
--

--
-

6
7

0

M
PU

LL

JS
R

E

N
D

PR
O

;
C

H
EC

K

FO
R

EN

D

O
F

PR
O

G
R

A
M

A

N
D

TH

EN

6
8

0

LO
A

A

;
SE

E

IF

Y

=

 0
.

IF

S
O

,
TH

E
SE

M
IC

O
L

O
N

W

AS

A
T

T
H

E

ST
A

R
T

O

F
A

L

IN
E

6

9
0

B

N
E

M
PU

L
L

l
7

0
0

P

L
A

;
Y

 =
 0

SO

JU

M
P

BA
CK

TO

EV

A
L

TO

PR
E

PA
R

E

TO

G
ET

N

E
X

T

L
IN

E

7
1

0

PL
A

7

2
0

JM

P
S

T
A

R
T

L
IN

E
;

SE
M

I
@

 S
T

A
R

T

SO

R
ET

U
R

N

TO

EV
A

L
TO

G

E
T

N

EX
T

L
IN

E
--

--
--

--
-

7
3

0

M
PU

L
L

l
R

T
S

;
SE

M
IC

O
L

O
N

,
B

U
T

N
O

T
A

T
ST

A
R

T

O
F

L
IN

E

(R
E

T
U

R
N

TO

C

A
L

L
E

R
)

7
4

0

CO
M

O
A

CM

P
#

$
3

E
;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

C
H

EC
K

FO

R

O
TH

ER

O
D

D

C
H

A
R

A
C

TE
R

S
7

5
0

B

EQ

H
I;

FO

U
N

D

>

7
6

0

CM
P

#$
3C

7

7
0

B

EQ

L
O

;
FO

U
N

D

<

7
8

0

CM
P

#
$

2
B

7

9
0

B

N
E

CO
M

O

8
0

0

IN
C

PL

U
SF

L
A

G
;

FO
U

N
D

+

8

1
0

CO

M
O

CM

P
#$

2A

8
2

0

B
N

E
C

O
M

O
!

8
3

0

JM
P

ST
A

R
;

FO
U

N
D

*

8
4

0

C
O

M
O

!
CM

P
#

4
6

8

5
0

B

EQ

PS
E

U
D

O
O

;
FO

U
N

D

PS
E

U
D

O
-O

P
8

6
0

CM

P
#

3
6

8

7
0

B

EQ

H
E

X
X

;
FO

U
N

D

H
EX

N

U
M

B
ER

0 ')>

0 (J
')

(J
')

0 c ~

n ('1
) n 0 0.
..

('1
)

8
8

0

CM
P

#
1

2
7

;
N

O
T

A
 K

EY
W

O
RD

(7

T
H

B

IT

N
O

T
U

P
)

8
9

0

B
C

C

A
D

D
LA

B

9
0

0

JS
R

K

EY
W

O
R

D
;

FO
U

N
D

K

EY
W

O
R

D
,

SO

EX
TE

N
D

IT

IN

T
O

A

N

A
S

C
II

S

T
R

IN
G

9

1
0

A

D
D

LA
B

ST

A

L
A

B
E

L
,Y

;
PU

T
TH

E
C

H
A

R
A

C
TE

R

IN
T

O

TH
E

M
A

IN

B
U

FF
E

R

A
N

D

9
2

0

IN
Y

;
R

A
IS

E

TH
E

P
O

IN
T

E
R

A

N
D

9

3
0

JM

P
S

T
IN

D
IS

K
;

R
ET

U
R

N

TO

G
ET

A

N
O

TH
ER

C

H
A

R
A

C
TE

R

(B
U

T

N
O

T
A

 L
IN

E

N
U

M
B

ER
)

9
4

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

9
5

0

C
O

LO
N

ST

A

C
O

L
FL

A
G

;
S

IG
N

IF
Y

C

O
LO

N

BY

S
E

T
T

IN
G

C

O
L

FL
A

G

9
6

0

R

T
S

;-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-

9
7

0

PS
EU

D
O

O

JM
P

P
S

E
U

D
O

J;

SP
R

IN
G

B
O

A
R

D

TO

PS
E

U
D

O
-O

P
H

A
N

D
L

IN
G

R

O
U

T
IN

E
S

9
8

0

H
EX

X

ST
A

L

A
B

E
L

,Y
;

SP
R

IN
G

B
O

A
R

D

TO

H
EX

N

U
M

B
ER

T

R
A

N
SL

A
T

O
R

9

9
0

IN

Y

1
0

0
0

JM

P
H

EX

1
0

1
0

;-

-
-
-
-
-
-
-

T
R

A
N

SL
A

T
E

A

 S
IN

G
L

E
-B

Y
T

E

K
EY

W
O

RD

TO
K

EN

IN
T

O

A
S

C
II

S

T
R

IN
G

1

0
2

0

K
EY

W
O

RD

S
E

C
;

F
IN

D

N
U

M
B

ER

O
F

K
EY

W
O

RD

(I
S

IT

1

S
T

,
5T

H
,

O
R

W

H
A

T)

1
0

3
0

SB

C

#
$

7
F

1

0
4

0

ST
A

K

EY
N

U
M

;
ST

O
R

E

N
U

M
B

ER

(P
O

S
IT

IO
N

)
IN

B

A
S

IC
'S

K

EY
W

O
RD

T

A
B

L
E

1

0
5

0

LD
X

#

2
5

5

1
0

6
0

SK

E
Y

D

EC

K
EY

N
U

M
;

R
ED

U
C

E
N

U
M

B
ER

BY

1

(W
H

EN

Z
E

R
O

,
W

E
'V

E

FO
U

N
D

IT

IN

T

A
B

L
E

)
1

0
7

0

B
EQ

FK

E
Y

;
A

N
D

W

E
E

X
IT

T

H
IS

SE

A
R

C
H

R

O
U

T
IN

E

A
N

D

ST
O

R
E

TH

E
A

S
C

II

W
O

RD

1
0

8
0

K

SX

IN
X

;
B

R
IN

G

X
 U

P
TO

ZE

R
O

A

T
ST

A
R

T

O
F

LO
O

P
1

0
9

0

LD
A

K

E
Y

W
D

S,
X

;
LO

O
K

A

T
C

H
A

R
.

IN

B
A

S
IC

'S

T
A

B
L

E
.

1
1

0
0

B

PL

K
S

X
;D

ID

N
O

T
F

IN
D

A

S

H
IF

T
E

D

B
Y

T
E

(l
S

T

C
H

A
R

.
IS

S

H
IF

T
E

D

IN

TH
E

T
A

B
L

E
)

1
1

1
0

B

M
I

SK
E

Y
;

D
ID

F

IN
D

ST

A
R

T
-O

F-
K

E
Y

W
O

R
D

S

H
IF

T
E

D

C
H

A
R

A
C

T
E

R

-
-
-
-
-
-
-
-
-
-
-
-
-

1
1

2
0

FK

E
Y

IN

X
;

ST
O

R
E

TH

E
K

EY
W

O
RD

IN

T
O

L

A
D

S
'

M
A

IN

B
U

FF
E

R

(L
A

B
E

L
)

1
1

3
0

LD

A

K
E

Y
W

D
S,

X

1
1

4
0

B

M
I

K
S

E
T

;
A

S

H
IF

T
E

D

C
H

A
R

.
IN

D
IC

A
T

E
S

EN

D

O
F

K
EY

W
O

R
D

,
ST

A
R

T

O
F

N
EX

T
K

EY
W

O
R

D

1
1

5
0

ST

A

L
A

B
E

L
,Y

;
PU

T
C

H
A

R
.

IN
T

O

L
A

D
S

'
B

U
FF

E
R

1

1
6

0

!N
Y

~

1
1

7
0

JM

P
FK

E
Y

;
LO

O
P

A
G

A
IN

FO

R

N
EX

T
C

H
A

R
.-

--
--

--
--

--
--

--
--

--
-

~

0 r)>

0 (J
)

(J
)

0 c: i=l ('!
) n 0 Q
..

('!
)

~

1
1

8
0

K

SE
T

A

N
D

#

$
7

F

oo

1
1

9
0

R

T
S

;
C

L
E

A
R

O

U
T

B
IT

7

A
N

D

R
ET

U
R

N

TO

C
A

L
L

IN
G

R

O
U

T
IN

E

1
2

0
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
A

N
D

LE

>

A
N

D

<

P
S

E
U

D
O

-O
P

S

1
2

1
0

H

I
LO

A

#
2

;
TH

E
B

Y
TF

LA
G

H

A
S

3
P

O
S

S
IB

L
E

S

T
A

T
E

S
:

1
2

2
0

ST

A

B
Y

T
FL

A
G

;
0

=

L
IN

E

D
O

E
SN

'T

C
O

N
T

A
IN

A

>

O

R

<

PS
EU

D
O

1

2
3

0

JM
P

S
T

IN
D

IS
K

;
1

=

<

(L
O

W

B
Y

T
E

)
T

Y
P

E

1
2

4
0

LO

LO

A

#
1

;
2

=
 >

(H

IG
H

B

Y
T

E
)

T
Y

P
E

1

2
5

0

ST
A

B

Y
T

FL
A

G
;

(A
C

T
IO

N

IS

TA
K

EN

ON

T
H

IS

PS
E

U
D

O
-O

P
W

IT
H

IN

TH
E

1
2

6
0

JM

P
S

T
IN

D
IS

K
;

EQ
U

A
TE

SU

B
PR

O
G

R
A

M
).

0
W

E
FE

T
C

H

TH
E

N
EX

T
C

H
A

R
.

1
2

7
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
A

N
D

LE

*
PS

E
U

D
O

O

P
(C

H
A

N
G

E

TH
E

P
C

)
1

2
8

0

ST
A

R

LO
A

B

Y
T

FL
A

G
;

IF

N
O

T
*>

O

R

*<

TY
PE

T

H
E

N

1
2

9
0

B

EQ

ST
A

R
M

;
C

O
N

T
IN

U
E

O

N

1
3

0
0

LO

A

#
4

2
;

O
T

H
E

R
W

IS
E

PU

T

*
SY

M
B

O
L

IN
T

O

L
A

B
E

L

(M
A

IN

B
U

F
F

E
R

)
1

3
1

0

ST
A

L

A
B

E
L

,Y
;-

--
--

--
--

--
--

H
A

N
D

LE

*>

O
R

*
<

T

Y
P

E

1
3

2
0

!N

Y

1
3

3
0

IN

C

H
E

X
FL

A
G

;
SE

T

H
EX

FL
A

G

TO

PR
E

V
E

N
T

EV

A
L

FR
O

M

T
R

Y
IN

G

TO

FI
G

U
R

E

O
U

T
A

R
G

.
1

3
4

0

LO
A

B

Y
T

FL
A

G
;

SE
E

W

H
IC

H

<>

P
S

E
U

D
O

-O
P

IT

IS

1

3
5

0

CM
P

#1

1
3

6
0

B

EQ

ST
A

R
L

O
;

LO
W

B

Y
T

E

T
Y

PE

PU
T

S
LO

W

B
Y

TE

O
F

PC

IN
T

O

R
E

SU
L

T

1
3

7
0

LO

A

S
A

+
1

;
H

IG
H

B

Y
TE

T

Y
PE

PU

T
S

H
IG

H

B
Y

TE

O
F

PC

IN
T

O

R
E

S
U

L
T

1

3
8

0

ST
A

R

E
SU

L
T

1

3
9

0

JM
P

S
T

IN
D

IS
K

;
A

N
D

R

ET
U

R
N

FO

R

N
EX

T
C

H
A

R
.-

--
--

--
--

--
--

--
--

--
--

--
-

1
4

0
0

ST

A
R

L
O

LO

A

SA

1
4

1
0

ST

A

R
E

SU
L

T

1
4

2
0

JM

P
S

T
IN

D
IS

K
;

W
A

S
LO

A

#<
*

T
Y

PE

-
-
-
-
-
-
-
-

1
4

3
0

ST

A
R

M

JS
R

S

T
IN

D
IS

K
;-

--
--

--
--

--
--

H
A

N
D

LE

*
=

PS

E
U

D
O

-O
P

(C
H

A
N

G
E

TH

E
P

C
)

1
4

4
0

LO

A

P
A

S
S

;
O

N

PA
SS

1

,
D

O
N

'T

P
R

IN
T

O

U
T

D
A

TA

TO

SC
R

E
E

N

1
4

5
0

B

EQ

ST
A

R
N

1

4
6

0

LD
A

#

4
2

;
P

R
IN

T

*
1

4
7

0

JS
R

P

R
IN

T

1
4

8
0

JS

R

P
R

N
T

IN
P

U
T

;
P

R
IN

T

ST
R

IN
G

IN

L

A
B

E
L

B

U
FF

E
R

0 I)>

0 V
l

V
l

0 c ri (t
)

("
)

0 c.
.

(t
)

1
4

9
0

JS

R

PR
N

T
C

R
;

P
R

IN
T

C

A
R

R
IA

G
E

R

ET
U

R
N

1

5
0

0

ST
A

R
N

LD

A

H
E

X
FL

A
G

;
IF

H

E
X

,
TH

E
A

R
G

U
M

EN
T

H
A

S
A

LR
EA

D
Y

B

EE
N

FI

G
U

R
E

D

1
5

1
0

B

N
E

ST
A

R
R

;
SO

JU

M
P

O
V

ER

T
H

IS

N
EX

T
PA

R
T

1

5
2

0

LD
Y

#0

1

5
3

0

ST
A

F
LD

A

L
A

B
E

L
,Y

1

5
4

0

CM
P

#
3

2

1
5

5
0

B

EQ

ST
A

F1

1
5

6
0

IN

Y

1
5

7
0

JM

P
S

T
A

F
;

F
IN

D

N
U

M
BE

R
(B

Y

LO
O

K
IN

G

FO
R

TH

E
B

L
A

N
K

:
*=

1

5
)

1
5

8
0

ST

A
F1

IN

Y

1
5

9
0

ST

Y

T
E

M
P;

P

O
IN

T

TO

A
S

C
II

N

U
M

BE
R

1
6

0
0

LD

A

#<
L

A
B

E
L

1

6
1

0

C
LC

1

6
2

0

A
D

C
TE

M
P

1
6

3
0

ST

A

TE
M

P
1

6
4

0

LD
A

#>

L
A

B
E

L

1
6

5
0

A

D
C

#0

1
6

6
0

ST

A

T
E

M
P+

1
1

6
7

0

JS
R

V

A
L

D
E

C
;

T
R

A
N

SL
A

T
E

A

S
C

II

N
U

M
B

ER

IN
T

O

IN
T

E
G

E
R

(I

N

R
E

SU
L

T
)

1
6

8
0

ST

A
R

R

LD
A

P

A
S

S
;

O
N

PA

SS

1
,

LE
A

V
E

D
IS

K

O
B

JE
C

T

F
IL

E

A
L

O
N

E
.

1
6

9
0

B

EQ

ST
A

R
R

X

1
7

0
0

LD

A

D
IS

K
F

L
A

G
;

O
N

PA

SS

2
,

W
E

'V
E

G

O
T

TO

ST
U

FF

TH
E

D
IS

K

O
B

JE
C

T

F
IL

E

1
7

1
0

B

EQ

ST
A

R
R

X
;

IF

TH
E

D
IS

K
FL

A
G

IS

U

P
(W

E
A

R
E

C
R

E
A

T
IN

G

AN

O
B

JE
C

T

C
O

D
E

F
IL

E
)

1
7

2
0

JS

R

F
IL

L
D

IS
K

;
F

IL
L

D
IS

K

D
O

ES

T
H

IS

FO
R

U

S
.

1
7

3
0

ST

A
R

R
X

LD

A

R
E

SU
L

T
;

PU
T

TH
E

A
R

G
U

M
EN

T
O

F
*=

IN

T
O

TH

E
PC

(S

A
)

1
7

4
0

ST

A

SA

1
7

5
0

LD

A

R
E

SU
L

T
+1

1

7
6

0

ST
A

S

A
+

l
1

7
7

0

PL
A

;
PU

L
L

O

FF

TH
E

R
TS

A

N
D

v.

>
1

7
8

0

PL
A

~

1
7

9
0

JM

P
S

T
A

R
T

L
IN

E
;

R
ET

U
R

N

TO

EV
A

L
FO

R

TH
E

N
EX

T
L

IN
E

O

F
C

O
D

E

0 r >

0 [
j)

[
j)

0 c:: .., n ('t
l n 0 0.
.

('t
l

~

1
8

0
0

:-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

IS

T
H

IS

T
H

E

EN
D

O

F
T

H
E

E

N
T

IR
E

SO

U
R

C
E

C

O
D

E
o

1
8

1
0

EN

D
PR

O

ST
A

L

A
B

E
L

,Y
:

PU
T

TH
E

ZE
R

O

(T
H

A
T

SE

N
T

U

S
H

E
R

E
)

IN
T

O

TH
E

M
A

IN

B
U

FF
E

R

1
8

2
0

IN

Y

1
8

3
0

C

PY

#
2

5
5

1

8
4

0

B
N

E
E

N
D

PR
O

:
F

IL
L

R

E
ST

O

F
B

U
FF

E
R

W

IT
H

0

0
S

1

8
5

0

ST
A

L

A
B

E
L

,Y

1
8

6
0

JS

R

C
H

A
R

IN
:

PU
L

L

IN

TH
E

N
EX

T
2

B
Y

T
E

S.

IF

TH
EY

A

R
E

B
O

TH

Z
E

R
O

S,

TH
EN

1

8
7

0

JS
R

C

H
A

R
IN

:
W

E
H

A
V

E
,

IN

F
A

C
T

,
FO

U
N

D

TH
E

EN
D

O

F
O

U
R

SO
U

R
C

E

C
O

D
E

F
IL

E

1
8

8
0

B

EQ

IN
E

N
D

:
A

N
D

W

E
B

EQ

TO

IN
E

N
D

1

8
9

0

LD
A

#

0
:

O
T

H
E

R
W

IS
E

W

E
PU

T
T

H
E

C

O
LF

LA
G

(C

O
L

O
N

)
D

O
W

N
,

B
E

C
A

U
SE

T

H
IS

IS

1

9
0

0

ST
A

C

O
L

FL
A

G
;

A
N

EN

D

O
F

L
IN

E

C
O

N
D

IT
IO

N
,

N
O

T
A

 C
O

LO
N

1

9
1

0

R
T

S
:

A
N

D

R
ET

U
R

N

TO

C
A

LL
ER

1

9
2

0

IN
E

N
D

LD

A

#

1
:-

-
-
-
-
-
-
-

SE
T

EN

D

O
F

SO
U

R
C

E
C

O
D

E
F

IL
E

FL

A
G

TO

U

P
C

O
N

D
IT

IO
N

1

9
3

0

ST
A

EN

D
FL

A
G

1

9
4

0

R
T

S
;

A
N

D

R
ET

U
R

N

TO

C
A

LL
ER

1

9
5

0

:-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

C
H

A
N

G
E

A
 H

EX

N
U

M
B

ER

TO

A

2-
B

Y
T

E

IN
T

E
G

E
R

1

9
6

0

;
PU

L
L

IN

N

EX
T

FE
W

B

Y
T

E
S,

T

U
R

N
IN

G

TH
EM

IN

T
O

AN

IN

T
E

G
E

R

IN

R
E

SU
L

T

1
9

7
0

H

EX

LO
X

#

0
:

PU
T

S
IN

T
E

G
E

R

E
Q

U
IV

A
L

E
N

T

O
F

IN
C

O
M

IN
G

H

EX

IN
T

O

R
E

SU
L

T

1
9

8
0

H

1
JS

R

C
H

A
R

IN

1
9

9
0

B

EQ

D
E

C
I:

EN

D

O
F

L
IN

E

(S
O

ST

O
P

L
O

O
K

IN
G

)
2

0
0

0

CM
P

#
5

8

2
0

1
0

B

EQ

D
E

C
I:

C

O
LO

N

(S
O

ST

O
P

L
O

O
K

IN
G

)
2

0
1

2

CM
P

#
3

2

2
0

1
4

B

EQ

H
1

2
0

2
0

CM

P
#

5
9

2

0
3

0

B
EQ

D

E
C

I:

SE
M

IC
O

L
O

N

(S
O

ST

O
P

L
O

O
K

IN
G

)
2

0
4

0

CM
P

#
4

4

2
0

5
0

B

EQ

D
E

C
IT

:
CO

M
M

A

(S
O

ST

O
P

L
O

O
K

IN
G

,
B

U
T

G
O

TO

A

 D
IF

F
E

R
E

N
T

PL

A
C

E
)

2
0

6
0

CM

P
#

4
1

;
(T

H
IS

"D

IF
F

E
R

E
N

T

P
L

A
C

E
"

H
A

N
D

LE
S

A

N
O

T
-E

N
D

-O
F

-L
IN

E

C
O

N
D

IT
IO

N
).

2

0
7

0

B
EQ

D

E
C

IT
;

C
L

O
SE

PA

R
E

N
T

H
E

SI
S

)
(S

O

ST
O

P
L

O
O

K
IN

G
)

2
0

8
0

ST

A

H
E

X
B

U
F

,X
;

O
T

H
E

R
W

IS
E

,
PU

T

TH
E

A
S

C
II

-S
T

Y
L

E
-H

E
X

C

H
A

R
.

IN

B
U

FF
E

R

A
N

D

0 ')>

0 V
l

V
l

0 c .., n i"D
 n 0 Q
..

i"D

w

0"
\

.....
.

2
0

9
0

IN

X
;

R
A

IS
E

TH

E
IN

D
E

X

A
N

D

2
1

0
0

ST

A

L
A

B
E

L
,Y

;
A

L
SO

ST

O
R

E

IT

IN
T

O

M
A

IN

B
U

FF
E

R

FO
R

PR

IN
T

O
U

T

A
N

D

2
1

1
0

IN

Y
;

R
A

IS
E

T

H
IS

IN

D
E

X

TO
O

2

1
2

0

JM
P

H
1;

TH

EN

K
E

E
P

O
N

PU

T
T

IN
G

H

EX

N
U

M
B

ER

IN
T

O

H
E

X
B

U
F

F
E

R
--

--
--

--
--

-
2

1
3

0

D
E

C
IT

ST

X

H
E

X
L

E
N

;
SA

V
E

LE
N

G
TH

O

F
A

S
C

II
-H

E
X

N

U
M

B
ER

2

1
4

0

ST
A

L

A
B

E
L

,Y
;

F
IN

IS
H

ST

O
R

IN
G

C

H
A

R
S.

IN

T
O

M

A
IN

B

U
FF

E
R

(,

O

R

)
IN

T

H
IS

C

A
S

E
)

2
1

5
0

IN

Y

2
1

6
0

JS

R

ST
A

R
T

H
E

X
;

T
R

A
N

SL
A

T
E

A

S
C

II
-H

E
X

N

U
M

B
ER

IN

T
O

IN

T
E

G
E

R

IN

R
E

SU
L

T

V
A

R
IA

B
L

E

2
1

7
0

JM

P
S

T
IN

D
IS

K
;

R
ET

U
R

N

TO

PU
L

L

IN

R
E

ST

O
F

TH
E

L
IN

E
;-

--
--

--
--

--
2

1
8

0

D
E

C
I

ST
A

A

;
SA

V
E

TH

E
EN

D

O
F

L
IN

E
,

C
O

L
O

N
,

O
R

SE

M
IC

O
L

O
N

C

H
A

R
.

FO
R

LA

TE
R

2

1
9

0

LO
A

#

0

2
2

0
0

ST

X

H
E

X
L

E
N

;
SA

V
E

LE

N
G

TH

O
F

A
S

C
II

-H
E

X

N
U

M
B

ER

2
2

1
0

ST

A

L
A

B
E

L
,Y

;
F

IN
IS

H

ST
O

R
IN

G

C
H

A
R

S.

IN
T

O

M
A

IN

B
U

FF
E

R

(0

IN

T
H

IS

C
A

SE
)

2
2

2
0

JS

R

ST
A

R
T

H
E

X
;

T
R

A
N

SL
A

T
E

A

S
C

II
-H

E
X

N

U
M

B
ER

IN

T
O

IN

T
E

G
E

R

IN

R
E

SU
L

T

V
A

R
IA

B
L

E

2
2

3
0

LO

A

A
;

R
E

T
R

IE
V

E

0
O

R

C
O

LO
N

O

R

SE
M

IC
O

L
O

N

A
N

D

GO

B
A

C
K

U

P
TO

M

O
IN

D
I

W
H

IC
H

2

2
4

0

JM
P

M
O

IN
D

I;
--

--
--

--
--

--
--

--
-

B
EH

A
V

ES

A
C

C
O

R
D

IN
G

TO

W

H
IC

H

SY
M

B
O

L
A

 H
O

L
D

S.

2
2

5
0

ST

A
R

T
H

E
X

LO

A

#

0
;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
E

X
-A

S
C

II

TO

IN
T

E
G

E
R

T

R
A

N
S

L
A

T
O

R
--

--
--

2
2

6
0

ST

A

R
E

SU
L

T
;

S
E

T

R
E

SU
L

T

TO

ZE
R

O

2
2

7
0

ST

A

R
E

SU
L

T
+1

2

2
8

0

T
A

X
;

SE
T

X

 T
O

ZE

R
O

2

2
9

0

H
X

LO
O

P
A

SL

R
E

S
U

L
T

;
S

H
IF

T

A
N

D

R
O

LL

(M
O

V
ES

2-

B
Y

T
E

B

IT
S

TO

TH

E
L

E
F

T
)-

--
--

2
3

0
0

R

O
L

R
E

S
U

L
T

+
1;

D

O
IN

G

T
H

IS

8
T

IM
E

S
H

A
S

TH
E

E
FF

E
C

T

O
F

B
R

IN
G

IN
G

IN

2

3
1

0

A
SL

R

E
SU

L
T

;
TH

E
A

S
C

II

N
U

M
B

ER
,

1
B

Y
TE

A

T
A

 T
IM

E
,

A
N

D

T
R

A
N

SF
O

R
M

IN
G

IT

2

3
2

0

R
O

L
R

E
S

U
L

T
+

1;

IN
T

O

A
 2

-B
Y

T
E

IN

T
E

G
E

R

W
IT

H
IN

T

H
IS

2-

B
Y

T
E

V

A
R

IA
B

L
E

W

E
'R

E

2
3

3
0

A

SL

R
E

SU
L

T
;

C
A

L
L

IN
G

"R

E
S

U
L

T
."

2

3
4

0

R
O

L
R

E
SU

L
T

+1

2
3

5
0

A

SL

R
E

SU
L

T

2
3

6
0

R

O
L

R
E

SU
L

T
+1

2

3
7

0

LO
A

H

E
X

B
U

F,
X

;
G

E
T

A

B

Y
TE

FR

O
M

TH

E
A

S
C

II
-H

E
X

N

U
M

B
ER

2

3
8

0

CM
P

#
6

5
;

IF

IT
'S

LO

W
ER

TH

A
N

6

5
,

IT
'S

N

O
T

A
N

A

L
PH

A
B

E
T

IC

(A
-F

)
H

EX

N
U

M
B

ER

2
3

9
0

B

C
C

H

X
M

O
R

E;

SO

D
O

N
'T

SU

B
T

R
A

C
T

7

FR
O

M

IT

0 I)>

0 V
l

V
l

0 c: .., l'
i

(!
) n 0 a.

(!
)

~

2
4

0
0

SB

C

t7
;

B
U

T
IF

IT

'S

>

6
5

,
TH

EN

-7
.

=
 6

5
.

6
5

-7

=
 5

8
.

N

2
4

1
0

H

X
M

O
RE

A

N
D

#

1
5

;
W

H
EN

Y

O
U

5

8

A
N

D

1
5

,
Y

O
U

G

E
T

1

0

(T
H

E

V
A

L
U

E

O
F

A
)

2
4

2
0

O

RA

R
E

S
U

L
T

;
#

1
5

(0

0
0

0
1

1
1

1
)

A
N

D

#
5

8

(0
0

1
1

1
0

1
0

)
=

0

0
0

0
1

0
1

0

(T
E

N
)

2
4

3
0

ST

A

R
E

S
U

L
T

;
PU

T
TH

E
B

Y
TE

IN

T
O

R

E
SU

L
T

2

4
4

0

IN
X

;
R

A
IS

E

TH
E

IN
D

E
X

2

4
5

0

C
PX

H

E
X

L
E

N
;

A
R

E
W

E
A

T
TH

E
EN

D

O
F

O
U

R
A

S
C

II
-H

E
X

N

U
M

BE
R

2
4

6
0

B

N
E

H
X

L
O

O
P;

IF

N

O
T

,
C

O
N

T
IN

U
E

2

4
7

0

IN
C

H

E
X

FL
A

G
;

IF

S
O

,
R

A
IS

E

H
E

X
FL

A
G

(T

O

SH
O

W

R
E

SU
L

T

H
A

S
T

H
E

A

N
SW

ER
)

2
4

8
0

LO

A

#
1

;
A

N
D

R

ET
U

R
N

TO

C

A
L

L
E

R

2
4

9
0

R

TS

2
5

0
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
5

1
0

;
H

A
N

D
LE

PS

E
U

D
O

S.

(.
B

Y
T

E

T
Y

P
E

S
)

2
5

2
0

PS

E
U

D
O

J
C

PY

#
0

;
IF

Y

 =
 0

TH

EN

IT
'S

N

O
T

A

PC

LA
B

EL

L
IK

E

(L
A

B
E

L

.B
Y

TE

0
0

)
2

5
3

0

B
EQ

P

S
E

2
2

5
4

0

LO
X

P

A
S

S
;

O
T

H
E

R
W

IS
E

,
O

N

1S
T

P

A
S

S
,

ST
O

R
E

L
A

B
E

L

NA
M

E
A

N
D

PC

A

D
D

R
.

IN

A
R

R
A

Y

2
5

5
0

B

N
E

P
S

E
2

2
5

6
0

PH

A
;

SA
V

E
A

 A
N

D

Y

R
E

G
IS

T
E

R
S

2
5

7
0

TY

A

2
5

8
0

PH

A

2
5

9
0

JS

R

E
Q

U
A

T
E

;
N

A
M

E
A

N
D

PC

A

D
D

R
.

ST
O

R
E

D

IN

A
R

R
A

Y

2
6

0
0

PL

A
;

PU
L

L

O
U

T
A

 A
N

D

Y
 R

E
G

IS
T

E
R

S

(R
E

ST
O

R
E

T

H
E

M
)

2
6

1
0

TA

Y

2
6

2
0

PL

A

2
6

3
0

P

S
E

2
ST

A

L
A

B
E

L
,Y

;
ST

O
R

E

.
C

H
A

R
.

2
6

4
0

!N

Y

2
6

5
0

JS

R

C
H

A
R

IN
;

G
ET

C

H
A

R
.

FO
LL

O
W

IN
G

TH

E
P

E
R

IO
D

(.

)
2

6
6

0

ST
A

L

A
B

E
L

,Y

2
6

7
0

IN

Y

2
6

8
0

CM

P
#

6
6

;
IS

IT

"B

"
FO

R

.B
Y

T
E

2

6
9

0

B
N

E
P

S
E

U
D

l;

W
A

SN
'T

.B

Y
T

E

2
7

0
0

LO

A

#
0

;
R

E
SE

T

FL
A

G

W
H

IC
H

W

IL
L

D

IS
T

IN
G

U
IS

H

B
ET

W
EE

N

.B
Y

T
E

0

A
N

D

.B
Y

T
E

"A

0 r-)>

0 V
l

V
l

0 c: n ('[
)

(
)

0 c.
.

('[
)

2
7
1
~

ST
A

B

N
U

M
FL

A
G

;
"

T
Y

P
E

,
O

R
~
~

~
8

1
5

1

7
2

T

Y
PE

(T

H
E

TW

O

.B
Y

T
E

T

Y
P

E
S

)
2
7
2
~

LO
A

P

A
S

S
;

P
R

IN
T

N

O
T

H
IN

G

TO

SC
R

E
E

N

ON

PA
SS

1

2
7
3
~

B
EQ

C

LB

2
7
4
~

ST
Y

Y

;
SA

V
E

Y
 R

E
G

IS
T

E
R

(O

U
R

IN

D
E

X
)

2
7
6
~

LO
A

S

F
L

A
G

;
SH

O
U

LD

W
E

P
R

IN
T

TO

SC

R
E

E
N

2
7
7
~

B
EQ

C

L
B

;
NO

2
7
8
~

JS
R

P

R
N

T
L

IN
E

;
Y

E
S

,
P

R
IN

T

L
IN

E

N
U

M
BE

R
2
7
9
~

JS
R

PR

N
T

SP
A

C
E

;
P

R
IN

T

SP
A

C
E

2
8
~
~

JS
R

PR

N
T

SA
;

P
R

IN
T

PC

A

D
D

R
E

SS

2
8
1
~

JS
R

PR

N
T

SP
A

C
E

;
P

R
IN

T

SP
A

C
E

2
8
2
~

LO
Y

Y

;
R

EC
O

V
ER

Y

IN

D
E

X

2
8
3
~

C
LB

JS

R

C
H

A
R

IN
;

PU
L

L

IN

C
H

A
R

A
C

TE
R

FR

O
M

D

IS
K

/
RA

M

2
8
4
~

ST
A

L

A
B

E
L

,Y
;

ST
O

R
E

IN

M

A
IN

B

U
FF

E
R

2
8
5
~

IN
Y

2
8
6
~

CM
P

#
3

2
;

IS

IT

A

SP
A

C
E

2
8
7
~

B
N

E
C

L
B

;
IF

N

O
T

,
C

O
N

T
IN

U
E

PU

L
L

IN
G

IN

M

O
RE

C

H
A

R
A

C
T

E
R

S
--

--
--

--
--

--
2
8
8
~

JS
R

C

H
A

R
IN

;
(W

E
'R

E

LO
O

K
IN

G

FO
R

TH

E
1S

T

SP
A

C
E

A

FT
E

R

.B
Y

T
E

)
2
8
9
~

ST
A

L

A
B

E
L

,Y
;

ST
O

R
E

FO

R

P
R

IN
T

IN
G

2
9
~
~

IN
Y

2
9
1
~

CM
P

#
3

4
;

IS

TH
E

C
H

A
R

A
C

TE
R

A

 Q
U

O
T

E
("

).

IF

S
O

,
IT

'S

A

.B
Y

T
E

"A

B
C

D

T
Y

PE

2
9
2
~

B
N

E
B

N
U

M
W

ER
K

;
O

T
H

E
R

W
IS

E

IT
'S

N

O
T

TH
E

"
T

Y
PE

2
9
3
~

B
Y

l
JS

R

C

H
A

R
IN

;-
--

--
--

--
-

H
A

N
D

LE

A
S

C
II

S

T
R

IN
G

.B

Y
T

E

T
Y

PE
S

2
9
4
~

B
N

E
B

Y
2

2
9
5
~

JM
P

B
E

N
D

PR
O

;
FO

U
N

D

A
 ~

EN

D

O
F

L
IN

E

(O
R

PR

O
G

R
A

M
)

2
9
6
~

B
Y

2
C

M
P

#
5

8
;

FO
U

N
D

A

 C
O

LO
N

"E

N
D

O

F
L

IN
E

"
2
9
7
~

B
N

E
B

Y
2X

2
9
8
~

JM
P

B
E

N
l;

FO

U
N

D

A

C
O

LO
N

2
9
9
~

B
Y

2X

C
M

P
#

5
9

;
FO

U
N

D

A

SE
M

IC
O

L
O

N

"E
N

D

O
F

L
IN

E
"

3
~
~
~

B
N

E
B

Y
3

~

3
~
1
~

JS
R

P

U
L

L
R

E
S

T
;

ST
O

R
E

C

O
M

M
EN

TS

IN

CO
M

M
EN

T
B

U
FF

E
R

(B

A
B

U
F

)
8:;

3~

12

LO
X

PR

IN
T

FL
A

G

0 r-)>

0 (J
')

(J
')

0 c ri ro n 0 a..

ro

~

3
0

1
4

ST

X

B
A

B
FL

A
G

~

3
0

2
0

JM

P
B

E
N

D
PR

O
;

A

SE
M

IC
O

L
O

N

SO

EN
D

T

H
IS

R

O
U

T
IN

E

IN

TH
A

T
W

A
Y

.
3

0
3

0

B
Y

3
CM

P
#

3
4

;
H

A
V

E
W

E
FO

U
N

D

A
 C

O
N

C
L

U
D

IN
G

Q

U
O

TE

("
)

3
0

4
0

B

N
E

B
Y

3X

3
0

5
0

JM

P
B

Y
1;

FO

U
N

D

A

II

so

IG
N

O
R

E

IT

3
0

6
0

B

Y
3X

LO

X

P
A

S
S

;
O

N

PA
SS

1

,
JU

S
T

R

A
IS

E

PC

C
O

U
N

TE
R

(I

N
C

S
A

);

D
O

N
'T

PO

K
E

IT
.

3
0

7
0

B

N
E

PS
L

O
O

P
3

0
8

0

JS
R

IN

C
SA

3

0
9

0

JM
P

B
Y

1
;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
1

0
0

PS

E
U

D
1

JM
P

PS
E

U
D

O
;

SO
M

E
O

TH
ER

PS

E
U

D
O

T

Y
P

E
,

N
O

T
.B

Y
T

E

(A

SP
R

IN
G

B
O

A
R

D
)

3
1

1
0

PS

L
O

O
P

ST
A

L

A
B

E
L

,Y
;

ST
O

R
E

A

 C
H

A
R

A
C

TE
R

IN

M

A
IN

B

U
F

F
E

R
;-

--
--

--
--

--
-

3
1

2
0

TA

X

3
1

3
0

ST

Y

Y
;

SA
V

E

Y

IN
D

E
X

3

1
4

0

JS
R

P

O
K

E
IT

;
PA

SS

2
,

SO

PO
K

E
IT

IN

T
O

M

EM
O

RY

(T
H

E

A
S

C
II

C

H
A

R
A

C
T

E
R

)
3

1
5

0

LD
Y

Y

;
R

E
ST

O
R

E

Y

3
1

6
0

IN

Y
;

R
A

IS
E

IN

D
E

X

A
N

D

3
1

7
0

JM

P
B

Y
1;

G

E
T

N

EX
T

C
H

A
R

A
C

T
E

R

3
1

8
0

BN

U
M

W
ER

K

LD
X

#

0
;-

-
-
-
-
-
-
-

H
A

N
D

LE

.B
Y

T
E

1

2
3

(N
U

M
E

R
IC

T

Y
P

E
)

3
1

9
0

ST

X

B
FL

A
G

;
PU

T

DO
W

N
B

FL
A

G

(E
N

D

O
F

L
IN

E

S
IG

N
A

L
)

3
2

0
0

ST

A

N
U

B
U

F,
X

3

2
1

0

IN
X

3

2
2

0

W
ER

K
1

LD
A

B

FL
A

G
;

IF

B
FL

A
G

IS

U

P
,

W
E

'R
E

D

O
N

E
.

3
2

3
0

B

N
E

B
B

E
N

D
;

SO

G
O

TO

EN

D

R
O

U
T

IN
E

3

2
4

0

W
K

0
JS

R

C
H

A
R

IN
;

O
T

H
E

R
W

IS
E

,
G

ET

A

C
H

A
R

A
C

TE
R

FR

O
M

D

IS
K

/R
A

M

3
2

5
0

B

EQ

B
SF

L
A

G
;

IF

ZE
R

O

(E
N

D

O
F

L
IN

E
)

S
E

T

B
FL

A
G

U

P
.

3
2

6
0

CM

P
#

5
8

;
L

IK
E

W
IS

E

IF

C
O

LO
N

3

2
7

0

B
EQ

B

SF
L

A
G

3

2
8

0

CM
P

#
5

9
;

SE
M

IC
O

L
O

N

R
E

Q
U

IR
E

S
TH

A
T

W
E

F
IR

S
T

F

IL
L

TH

E
CO

M
M

EN
T

B
U

FF
E

R

3
2

9
0

B

N
E

W
K

1;

B
E

FO
R

E

SE
T

T
IN

G

TH
E

B
FL

A
G

(I

N

TH
E

B
SF

L
A

G

R
O

U
T

IN
E

)
3

3
0

0

JS
R

P

U
L

L
R

E
S

T
;

H
E

R
E

'S

W
H

ER
E

TH
E

C
O

M
M

EN
T

B
U

FF
E

R

IS

F
IL

L
E

D

3
3

0
2

LD

X

PR
IN

T
FL

A
G

0 r)>

0 V
l

V
l

0 c ""' (j (1
) n 0 Q
_

(1

)

3
3

0
4

ST

X

B
A

B
FL

A
G

3

3
1

0

JM
P

B
S
F
L
A
G
~

FO
U

N
D

SE

M
IC

O
L

O
N

3

3
2

0

W
K

1
ST

A

B
U
F
M
~

PU
T

C
H

A
R

.
IN

T
O

"B

U
FM

"
B

U
FF

E
R

3

3
3

0

LD
A

P
A
S
S
~

O
N

PA

SS

1
,

R
A

IS
E

TH

E
PC

O

N
LY

(I

N
C

S
A

),

N
O

PO

K
ES

3

3
4

0

B
N

E
W

ER
K

S
3

3
5

0

LD
A

BU

FM

3
3

6
0

C

M
P

#
3
2
~

IS

IT

A

SP
A

C
E

3
3

7
0

B

N
E

W
E
R
K
1
~

IF

N
O

T
,

R
ET

U
R

N

FO
R

M

O
RE

O

F
TH

E
N

U
M

B
ER

(0

V

S
5

5
5

)
3

3
8

0

JS
R

I
N
C
S
A
~

R
A

IS
E

PC

C

O
U

N
TE

R

BY

1
3

3
9

0

JM
P

W
E
R
K
1
~

G
E

T

N
EX

T
N

U
M

B
ER

3

4
0

0

W
ER

K
5

LD
A

B
U
F
M
~

PU
T

C
H

A
R

.
IN

T
O

PR

IN
T

O
U

T

M
A

IN

B
U

FF
E

R

3
4

1
0

ST

A

L
A

B
E

L
,Y

3

4
2

0

!N
Y

3

4
3

0

C
M

P
#
3
2
~

IS

IT

A
 S

PA
C

E

3
4

4
0

B

EQ

W
ER

K
2

3
4

5
0

C

M
P

#
0
~

IS

IT

EN
D

O

F
L

IN
E

3

4
6

0

B
EQ

W

ER
K

2
3

4
7

0

C
M

P
#
5
8
~

IS

IT

C
O

LO
N

3

4
8

0

B
EQ

W

ER
K

2
3

4
9

0

ST
A

N
U
B
U
F
,
X
~

O
T

H
E

R
W

IS
E

,
ST

O
R

E

IT

3
5

0
0

IN

X

3
5

1
0

JM

P

W
E
R
K
1
~

A
N

D

R
ET

U
R

N

FO
R

M

O
RE

O

F
TH

E
N

U
M

B
E

R
--

--
--

--
--

--
--

--
3

5
2

0

B
SF

L
A

G

IN
C

B
F
L
A
G
~

R
A

IS
E

U

P
TH

E
EN

D

O
F

L
IN

E

FL
A

G

3
5

3
0

ST

A

B
U
F
M
+
1
~

SA
V

E

C
O

LO
N

,
SE

M
IC

O
L

O
N

,
O

R

W
H

A
TE

V
ER

F

O
R

LA

TE
R

U

SE

3
5

4
0

JM

P

W
K
1
~

R
ET

U
R

N

FO
R

M

O
RE

(B

U
T

T

H
IS

T

IM
E

IT

W

IL
L

EN

D

L
I
N
E
)
~
-
-
-
-
-
-
-
-
-

3
5

5
0

W

ER
K

2
LO

A

#
<
N
U
B
U
F
~

PO
IN

T

TO

TH
E

A
S

C
II

N

U
M

B
ER

ST

O
R

E
D

IN

N

U
B

U
F

3
5

6
0

ST

A

TE
M

P
3

5
7

0

LD
A

#>

N
U

B
U

F
3

5
8

0

ST
A

T

E
M

P+
1

w

3
5

9
0

ST

Y

Y

~

3
6

0
0

JS

R

V
A
L
D
E
C
~

TU
R

N

TH
E

A
S

C
II

IN

T
O

A

N

IN
T

E
G

E
R

IN

R

E
SU

L
T

0 r)>

0 (
j)

(
j)

0 c ""''

("
) ro

("
)

0 Q
.

ro

V
J

0
\

0
\

3
6

1
0

3

6
2

0

3
6

3
0

3

6
4

0

3
6

5
0

3

6
6

0

3
6

7
0

3

6
8

0

3
6

9
0

3

7
0

0

3
7

1
0

3

7
2

0

3
7

3
0

3

7
4

0

3
7

5
0

3

7
6

0

3
7

7
0

3

7
8

0

3
7

9
0

3

8
0

0

3
8

1
0

3

8
2

0

3
8

3
0

3

8
4

0

3
8

5
0

3

8
6

0

3
8

7
0

3

8
8

0

3
8

9
0

3

9
0

0

3
9

1
0

LD
X

R

E
SU

L
T

JS

R

P
O

K
E

IT
;

PO
K

E
T

H
E

R

E
SU

L
T

IN

T
O

M

EM
O

RY

(O
R

D

IS
K

O

B
JE

C
T

F

IL
E

)
LD

Y

Y
;

E
R

A
SE

TH

E
N

U
M

B
ER

IN

H

EX
B

U
F

LD
A

#0

LD

X

#5

C
LE

X

ST
A

N

U
B

U
F,

X

D
EX

B

N
E

C
L

E
X

JM

P
W

E
R

K
1;

A

N
D

TH

EN

B
B

EN
D

LD

A

P
A

S
S

;
EN

D

B
N

E
B

B
E

N
D

1;

JS
R

IN

C
S

A

R
ET

U
R

N

TO

FE
T

C
H

TH

E
N

E
X

T

N
U

M
B

E
R

;-
--

--
--

--
--

--

.B
Y

T
E

L

IN
E

.
O

N

PA
SS

1

,
R

A
IS

E

PC

(P
O

K
E

IT

R
A

IS
E

S

O
N

PA

SS

2
).

IT

B
B

EN
D

1
LD

A

B
U

FM
+1

;
IF

EN

D

O
F

L
IN

E

SI
G

N
A

L

W
A

S
A

 C
O

LO
N

,
TH

EN

CM
P

#
5

8

BE
Q

B

E
N

1;

D
O

N
'T

LO

O
K

FO

R

L
IN

E

N
U

M
B

ER

O
R

EN
D

O

F
SO

U
R

C
E

C
O

D
E

F
IL

E

(E
N

D
PR

O
)

B
EN

D
PR

O

JS
R

EN

D
PR

O

B
EN

1
ST

A

C
O

L
FL

A
G

;
S

E
T

IT

(C

O
L

O
N

)
O

R

N
O

T
(E

N
D

PR
O

R

E
T

U
R

N
S

W
IT

H

0
IN

A

)
IN

C

L
O

C
FL

A
G

;
R

A
IS

E

P
R

IN
T

-A
-P

C
-L

A
B

E
L

FL

A
G

PL

A
;

PU
L

L

R
TS

FR

O
M

ST

A
C

K

PL
A

LD

A

P
A

S
S

;
O

N

PA
SS

1

,
D

O
N

'T

P
R

IN
T

A

N
Y

C

O
M

M
EN

TS

B
EQ

N

O
PR

LD

A

S
F

L
A

G
;

IF

SC
R

E
E

N
FL

A
G

IS

D

O
W

N
,

D
O

N
'T

P

R
IN

T

AN
Y

C
O

M
M

EN
TS

BE

Q

N
O

PR

JM
P

PR
M

M
FI

N
;

BA
CK

TO

EV

A
L

(W
H

ER
E

CO
M

M
EN

TS

A
R

E
P

R
IN

T
E

D
)

N
O

PR

JM
P

S
T

A
R

T
L

IN
E

;
B

A
C

K

TO

EV
A

L
(B

Y
P

A
S

S
IN

G

PR
IN

T
O

U
T

)
;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

FO
R

C

H
A

N
G

E
O

F
PC

F

IL
L

D
IS

K

LD
A

P

A
S

S
;

A

C
H

A
N

G
E

O
F

PC

R
E

Q
U

IR
E

S
F

IL
L

IN
G

A

D

IS
K

O

B
JE

C
T

F

IL
E

CM

P
#

2
;

W
IT

H

TH
E

R
E

Q
U

L
SI

T
F.

N

U
M

B
ER

O

F
B

Y
T

E
S

TO

M
AK

E
U

P
FO

R

B
N

E
F

IL
L

X
;

TH
E

A
D

V
A

N
C

IN
G

O

F
TH

E
PR

O
G

R
A

M

C
O

U
N

T
E

R

(P
C

)
R

T
S

;
N

O
T

A
T

ST
A

R
T

O

F
3R

D

PA
SS

(3

R
D

PA

SS

IS

JU
S

T

B
E

FO
R

E

SH
U

T
D

O
W

N
)

0 I)>

0 (.
/)

(.
/)

0 c .., ("
')

(0
 n

I
o Q

..

(0

(.
;.

)

0
\

'-
l

3
9

2
0

F

IL
L

X

JS
R

C

LR
C

H
N

3

9
3

0

LD
X

#2

3

9
4

0

JS
R

C

H
K

O
U

T;

PU
T

SP
A

C
E

R
S

IN

D
IS

K
F

IL
E

FO

R

*=

3
9

5
0

S

E
C

;
F

IN
D

O

U
T

HO
W

M

A
N

Y

SP
A

C
E

R
S

TO

SE
N

D

TO

D
IS

K

BY

S
U

B
T

R
A

C
T

IN
G

:R
E

S
U

L
T

-S
A

3

9
6

0

LD
A

R

E
SU

L
T

3

9
7

0

SB
C

SA

3

9
8

0

ST
A

W

O
R

K
;

A
N

SW
ER

H

EL
D

IN

"W

O
R

K
"

V
A

R
IA

B
L

E

3
9

9
0

LD

A

R
E

SU
L

T
+1

4

0
0

0

SB
C

SA

+
1

4
0

1
0

ST

A

W
O

R
K

+1

4
0

2
0

PU

T
SP

C
R

LD

A

#0

4
0

3
0

JS

R

P
R

IN
T

;
P

R
IN

T

SP
A

C
E

R

TO

D
IS

K

4
0

4
0

LD

A

W
O

R
K

;
LO

W
ER

W

O
RK

BY

1

4
0

5
0

B

N
E

D
EC

W
O

RK
X

4

0
6

0

D
EC

W

O
R

K
+1

4

0
7

0

D
EC

W
O

R
K

X

D
EC

W

O
RK

4

0
8

0

B
N

E
PU

T
SP

C
R

4

0
9

0

LD
A

W

O
R

K
+1

4

1
0

0

B
N

E
P

U
T

S
P

C
R

;
PU

T
M

O
RE

SP

A
C

E
R

S
IN

U

N
T

IL

"W
O

R
K

"
IS

D

EC
R

EM
EN

TE
D

TO

Z

E
R

O
.

4
1

1
0

R

E
S

F
IL

L

JS
R

C

LR
C

H
N

4

1
2

0

LD
X

#

1
;

R
E

ST
O

R
E

N

O
R

M
A

L
I/

0

4
1

3
0

JS

R

C
H

K
IN

4

1
4

0

R
T

S
4

1
5

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
1

6
0

K

EY
W

A
D

S

E
C

;
SE

E

K
EY

W
O

RD

A
B

O
V

E
(S

A
M

E
K

EW
O

RD

TO

A
S

C
II

S

T
R

IN
G

R

O
U

T
IN

E
)

4
1

7
0

SB

C

#
$

7
F

;
T

H
IS

IS

A

 V
E

R
SI

O
N

O

F
K

EY
W

O
R

D
,

B
U

T
FO

R

C
O

M
M

E
N

T
S(

PU
T

S
IT

IN

4

1
8

0

ST
A

K

EY
N

U
M

;
IN

ST
E

A
D

O

F
L

A
B

E
L

B

U
F

F
E

R
).

4

1
9

0

LO
X

#

2
5

5

4
2

0
0

SK

EX

D
EC

K

EY
N

U
M

4

2
1

0

B
EQ

FK

EX

4
2

2
0

K

SX
X

IN

X

B
A

B
U

F

9 r)>

0 (
J
l

(
J
l

I
o c::

 .., ("
) ro n 0 Q
..

ro

V
J

(
]\

0

0

4
2

3
e

LO
A

K

E
Y

W
D

S,
X

4

2
4

e

B
PL

K

SX
X

4

2
5

e

B
M

I
SK

EX

4
2

6
e

FK
EX

IN

X

4
2

7
e

LO
A

K

E
Y

W
D

S,
X

4

2
B

e
B

M
I

K
SE

X

4
2

9
e

ST
A

B

A
B

U
F,

Y

4
3

e
e

IN
Y

4

3
le

JM

P
FK

EX

4
3

2
e

K
SE

X

A
N

D

#
$

7
F

4

3
3

e

R
T

S
4

3
4

e

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
3

5
e

.F
IL

E

M
A

TH

P
ro

g
ra

m
 D

-1
 0

.
M

a
th

le

;
"M

A
TH

"
T

H
IS

R

O
U

T
IN

E

H
A

N
D

LE
S

+

2
e

;
IT

L

E
A

V
E

S
T

H
E

IN

T
E

N
D

E
D

A

D
D

IT
IO

N

3
e

;
(A

D
D

N
U

M

IS

A
D

D
ED

TO

"R

E
S

U
L

T
"

IN

4
e

M
A

TH

LO
Y

#

e
;

S
E

T

IN
D

E
X

E
S

TO

ZE
R

O

se

L
o

x

#
e

IT

C
O

M
ES

FR

O
M

EV

A
L

A
FT

E
R

IN

D
IS

K

IN

T
H

E

V
A

R
IA

B
L

E

"A
D

D
N

U
M

"
T

H
E

V

A
LD

EC

SU
B

PR
O

G
R

A
M

)

6
e

M
A

T
H

l
LO

A

L
A

B
E

L
,Y

;
LO

O
K

FO

R

L
O

C
A

T
IO

N

O
F

"+
"

S
Y

M
B

O
L

--
--

--
--

7
e

C
M

P
#4

3
B

e
B

EQ

M
A

TH
2

9
e

IN
Y

le

e

JM
P

M
A

T
H

l;
--

--
--

--
--

--
-

NO
W

P

O
IN

T

TO

1S
T

N

U
M

B
ER

FO

L
L

O
W

IN
G

+

ll

e

M
A

TH
2

!N
Y

1

2
e

LO
A

L

A
B

E
L

,Y

1
3

e

JS
R

R

A
N

G
EC

K
;

C
H

EC
K

TO

S

E
E

IF

T

H
IS

IS

B

ET
W

EE
N

4

8

-
5

8

(A
S

C
II

FO

R

0
-9

)

0 r-)>

0 (
/)

(
/)

0 c .., ("
) ro (
)

0 0.
... ro

V
J

0
\

\0

14
11

1
B

C
S

V
A

L
IT

;
IF

N

O
T

,
E

X
IT

T

H
IS

R

O
U

T
IN

E

(W
E

'V
E

ST

O
R

ED

TH
E

N
U

M
B

ER

A
N

D

H
A

V
E

15
11

1
ST

A

H
E

X
B

U
F,

X
;

LO
C

A
TE

D

SO
M

ET
H

IN
G

O

TH
ER

TH

A
N

A

N

A
S

C
II

N

U
M

B
ER

)
16

11
1

IN
X

;
K

EE
P

ST
O

R
IN

G

V
A

L
ID

A

S
C

II

N
U

M
B

ER
S

IN

H
EX

B
U

F
B

U
FF

E
R

17

11
1

JM
P

M
A

T
H

2
;-

--
--

--
--

--
--

--
--

--
18

11
1

R
A

N
G

EC
K

CM

P
#

5
8

;-
-
-
-
-
-
-
-
-
-
-
-
-
-

IS

T
H

IS

>
47

A

N
D

<

58

19
11

1
B

C
S

M
A

TH
3

211
111

1
SE

C

21
11

1
SB

C

#4
8

22
11

1
SE

C

23
11

1
SB

C

#2
11

18
;

IS

IT

>
 4

7
&

<

5

8

24
11

1
M

A
TH

3
R

TS

25
11

1
V

A
L

IT

LO
A

#

1
1

1
;-

--
--

--
--

-
TU

R
N

IT

FR

O
M

A

S
C

II

IN
T

O

A

2-
B

Y
T

E

IN
T

E
G

E
R

26

11
1

ST
A

H

E
X

B
U

F,
X

;
PU

T
ZE

R
O

A

T
EN

D

O
F

A
S

C
II

N

U
M

B
ER

(A

S
D

E
L

IM
IT

E
R

)
27

11
1

LO
A

#<

H
E

X
B

U
F;

PO

IN
T

"T

E
M

P"

PO
IN

T
E

R

TO

A
S

C
II

N

U
M

B
ER

IN

B

U
FF

E
R

28

11
1

ST
A

TE

M
P

29
11

1
LO

A

#>
H

E
X

B
U

F
311

111
1

ST
A

T

E
M

P+
1

31
11

1
JS

R

V
A

L
D

E
C

;
R

O
U

T
IN

E

W
H

IC
H

TU

R
N

S
A

S
C

II

N
U

M
BE

R
IN

T
O

IN

T
E

G
E

R

IN

"R
E

SU
L

T
"

32
11

1
LO

A

R
E

SU
L

T
;

M
O

V
E

R
E

SU
L

T

TO

TE
M

PO
R

A
R

Y

A
D

D
IT

IO
N

V

A
R

IA
B

L
E

,
"A

D
D

N
U

M
"

33
11

1
ST

A

A
D

D
N

U
M

34

11
1

LO
A

R

E
SU

L
T

+1

35
11

1
ST

A

A
D

D
N

U
M

+1

36
11

1
R

T
S

;
R

ET
U

R
N

TO

C

A
L

L
E

R

37
11

1
.F

IL
E

P

R
IN

T
O

P
S

0 r-)>

0 V
l

V
l

0 c: ..., n ro n 0 a..
.

ro

w

"'-
1

0
P

ro
gr

am
 D

-1
1

.
P

ri
nt

op
s

1
0

:

"P
R

IN
T

O
P

S
"

P
R

IN
T

S

&
 P

O
K

E
S

V
A

LU
ES

(B

O
T

H

O
PC

O
D

ES

&
 A

R
G

U
M

EN
TS

)
20

FO

R
M

A
T

LD
A

P

A
S

S
;

O
N

PA

SS

2
,

IG
N

O
R

E

IN
C

SA

(R
A

IS
E

S

P
C

)
S

IN
C

E

3
0

B

N
E

PR
M

;
O

N

PA
SS

2

,
W

E
JS

R

TO

P
O

K
E

IT

(I
T

G

O
ES

TO

IN

C
S

A
)

4
0

JS

R

IN
C

S
A

;
B

U
T

O
N

PA

SS

1
,

W
E

D
O

N
'T

P

R
IN

T

O
R

PO

K
E

A
N

Y
T

H
IN

G
,

W
E

JU
S

T

5
0

R

T
S

:
R

A
IS

E

TH
E

PC

A
N

D

R
ET

U
R

N

-
-
-
-
-
-
-
-
-
-
-
-
-
-

6
0

PR

M

LD
A

SF

L
A

G
;

SH
O

U
LD

W

E
P

R
IN

T

TO

SC
R

E
E

N

7
0

B

EQ

PR
M

X
;

IF

N
O

T
,

S
K

IP

T
H

IS

N
EX

T
PA

R
T

(P
R

IN
T

TO

SC

R
E

E
N

)
8

0

JS
R

C

L
R

C
H

N
;

O
T

H
E

R
W

IS
E

,
R

E
SE

T

N
O

RM
A

L
I/

O

C
O

N
D

IT
IO

N

9
0

LD

X

#
1

:
(F

IL
E

#1

FO

R

IN
P

U
T

,
SC

R
E

E
N

FO

R

O
U

T
PU

T
)

1
0

0

JS
R

C

H
K

IN

1
1

0

LD
X

O

P
;

LO
A

D

TH
E

O
PC

O
D

E
1

2
0

JS

R

PR
N

TN
U

M
;

P
R

IN
T

IT

1

3
0

JS

R

PR
N

T
SP

A
C

E
;

P
R

IN
T

A

 S
PA

C
E

1

4
0

PR

M
X

LD

X

O

P
;-

-
-
-
-
-
-
-
-
-
-

NO
W

PO

K
E

TH
E

O
PC

O
D

E

IN
T

O

R
A

M
/D

IS
K

M

EM
O

RY

1
5

0

JS
R

P

O
K

E
IT

1

6
0

R

T
S

:-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
7

0

;
P

R
IN

T

TW
O

B
Y

T
E

S
(T

H
E

O

PC
O

D
E

A
N

D

A
 1

-B
Y

T
E

A

R
G

U
M

E
N

T
)-

--
--

--
--

--
--

--
--

1
8

0

P
R

IN
T

2
LD

A

P
A

S
S

;
O

N

PA
SS

2

,
W

E
S

K
IP

IN

C
S

A

(S
E

E

L
IN

E

2
0

A

B
O

V
E)

1

9
0

B

N
E

P2
M

2

0
0

JS

R

IN
C

S
A

2

1
0

R

T
S

:-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
2

0

P2
M

LD

A

SF
L

A
G

;
IF

SC

R
E

E
N

P

R
IN

T

FL
A

G

IS

D
O

W
N

,
S

K
IP

P

R
IN

T
IN

G

TO

SC
R

E
E

N

2
3

0

B
EQ

P2

M
X

2

4
0

LD

X

R
E

SU
L

T
:

O
T

H
E

R
W

IS
E

P

R
IN

T

TH
E

L
O

W
-B

Y
T

E

O
F

"R
E

S
U

L
T

"
(T

H
E

A

R
G

U
M

EN
T)

2

5
0

JS

R

PR
N

TN
U

M

2
6

0

P2
M

X

LD
X

R

E
SU

L
T

;
A

N
D

A

LS
O

PO

K
E

TH

E
L

O
W

-B
Y

T
E

TO

R

A
M

/D
IS

K

M
EM

O
RY

2

7
0

JM

P
P

O
K

E
IT

:
A

 J
M

P
TO

P

O
K

E
IT

W

IL
L

R

TS

U
S

B
A

C
K

TO

TH

E
C

A
L

L
E

R
--

--
--

--
--

--
2

8
0

;

P
R

IN
T

TH

R
EE

B

Y
T

E
S

(T
H

E

O
PC

O
D

E

A
N

D

A

2-
B

Y
T

E

A
R

G
U

M
E

N
T

)-
--

--
--

--
--

--
--

--
2

9
0

P

R
IN

T
3

LD
A

P

A
S

S
;

O
N

PA

SS

2
,

S
K

IP

IN
C

SA

(S
E

E

L
IN

E

2
0

A

B
O

V
E

)

0 ')>

0 V
l

V
l

0 c .., (
)

(1
) n 0 0
..

(1

)

w

'-::
1
.

3
0

0

B
N

E
P3

M

3
1

0

JS
R

IN

C
S

A
;

R
A

IS
E

PC

B

Y

2
3

2
0

JS

R

IN
C

S
A

3

3
0

R

T
S

;-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
4

0

P3
M

LD

A

S
F

L
A

G
;

SH
O

U
LD

W

E
P

R
IN

T

TO

SC
R

E
E

N

3
5

0

B
EQ

P3

M
X

3

6
0

LD

X

R
E

S
U

L
T

;
P

R
IN

T

A
N

D

PO
K

E
L

O
W

 B
Y

T
E

O

F
A

R
G

U
M

EN
T

3
7

0

JS
R

PR

N
TN

U
M

3

8
0

P3

M
X

LD

X

R
E

SU
L

T

3
9

0

JS
R

P

O
K

E
IT

4

0
0

LD

A

S
F

L
A

G
;

SH
O

U
LD

W

E
P

R
IN

T

TO

SC
R

E
E

N

4
1

0

B
EQ

P3

M
X

X

4
2

0

LD
A

H

X
FL

A
G

;
A

R
E

W
E

P
R

IN
T

IN
G

O

PC
O

D
E

S
A

N
D

A

R
G

U
M

EN
TS

IN

H

EX

4
3

0

B
EQ

P

3M
X

2;

IF

SO
,

D
O

N
'T

P

R
IN

T

A

SP
A

C
E

H

ER
E

4
4

0

JS
R

PR

N
T

SP
A

C
E

;
O

T
H

E
R

W
IS

E
,

P
R

IN
T

A

SP

A
C

E

4
5

0

P3
M

X
2

LD
X

R

E
S

U
L

T
+

1;

P
R

IN
T

A

N
D

PO

K
E

TH

E
H

IG
H

B

Y
TE

O

F
TH

E
A

R
G

U
M

EN
T

4
6

0

JS
R

PR

N
TN

U
M

4

7
0

P3

M
X

X

LD
X

R

E
SU

L
T

+1

4
8

0

JM
P

P
O

K
E

IT
;

A
N

D

A
 J

U
M

P
TO

P

O
K

E
IT

W

IL
L

R

TS

U
S

B
A

C
K

TO

C

A
L

L
E

R

4
9

0

P
O

K
E

IT

ST
X

W

O
R

K
+

1
;-

--
--

--
--

--
--

P
O

K
E

IN

A

B

Y
TE

TO

RA

M
/
D

IS
K

--
--

--
--

--
--

--
-

5
0

0

LO
A

PO

K
E

FL
A

G
;

A
R

E
W

E
SU

PP
O

SE
D

TO

PO

K
E

TO

RA
M

5

1
0

B

EQ

D
IS

P
;

IF

N
O

T,

S
K

IP

IT

5
2

0

LD
Y

#

0
;

O
T

H
E

R
W

IS
E

,
SE

N
D

TH

E
B

Y
TE

TO

RA

M

M
EM

O
RY

A

T
C

U
R

R
E

N
T

PC

A

D
D

R
E

SS

(S
A

)
5

3
0

TX

A

5
4

0

ST
A

(
S

A
)
,Y

;-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

5
5

0

D
IS

P

LD
A

D

IS
K

F
L

A
G

;
A

R
E

W
E

SU
PP

O
SE

D

TO

PO
K

E
TO

A

D

IS
K

O

B
JE

C
T

F

IL
E

5

6
0

B

EQ

IN
C

S
A

;
IF

N

O
T,

S

K
IP

IT

5

7
0

JS

R

C
L

R
C

H
N

;
IF

S

O
,

A
L

E
R

T

F
IL

E

#
2

(W

R
IT

E

F
IL

E

O
N

D

IS
K

)
5

8
0

LD

X

#2

5
9

0

JS
R

C

H
K

O
U

T
6

0
0

LD

A

W
O

R
K

+1
;

PU
T

TH
E

B
Y

T
E

TO

BE

SE

N
T

TO

D

IS
K

IN

TH

E
A

 R
E

G
IS

T
E

R

0 r-)>

0 (
f
l

(
f
l

0 c

("
)

(t
) n 0 a..
.

(t
)

w

6
1

0

JS
R

P

R
IN

T
;

P
R

IN
T

(A

FT
E

R

L
IN

E
S

5

5
0

-5
7

0

A
B

O
V

E
)

P
R

IN
T

S

TO

D
IS

K

F
IL

E

#2

~

6
2

0

JS
R

C

LR
C

H
N

;
R

E
ST

O
R

E

N
O

RM
A

L
I/

O

(P
R

IN
T

TO

SC

R
E

E
N

A

N
D

6

3
0

LO

X

#
1

:
RE

A
D

FR

O
M

F

IL
E

#1

6

4
0

JS

R

C
H

K
IN

6

5
0

IN

C
S

A

C

L
C

:-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

R
A

IS
E

T

H
E

PC

C

O
U

N
TE

R

(S
A

)
BY

1

-
-
-
-
-
-
-
-

6
6

0

LO
A

#1

6

7
0

6

8
0

6

9
0

7

0
0

7

1
0

7

2
0

A
D

C

SA

ST
A

SA

LO

A

#0

A
D

C

SA
+1

ST

A

SA
+1

R

T
S

7
3

0

:-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

PR
IN

T
O

U
T

R

O
U

T
IN

E
S

(T
O

SC

R
E

E
N

)
-
-
-
-
-
-
-
-
-
-

7
4

0

PR
N

T
M

E
SS

LO

Y

#
0

;
P

R
IN

T

A

M
ES

SA
G

E
(E

R
R

O
R

S
U

SU
A

L
L

Y
)

TO

TH
E

SC
R

E
E

N

7
5

0

M
E

SS
L

O
O

P
LO

A

(T
E

M
P

),
Y

:
T

H
E

SE

M
ES

SA
G

ES

A
R

E
D

E
L

IM
IT

E
D

BY

0

A
N

D

A
R

E
PO

IN
T

E
D

7

6
0

B

EQ

M
E

SS
D

O
N

E
;

TO

BY

TH
E

V
A

R
IA

B
L

E

"T
E

M
P

"
7

7
0

JS

R

P
R

IN
T

7

8
0

JS

R

P
T

P
;

A
FT

E
R

P

R
IN

T
IN

G

A

C
H

A
R

A
C

TE
R

TO

SC

R
E

E
N

,
C

H
EC

K

TO

SE
E

IF

IT

SH

O
U

LD

7
9

0

IN
Y

;
A

LS
O

BE

P

R
IN

T
E

D

TO

TH
E

P
R

IN
T

E
R

8

0
0

JM

P

M
ES

SL
O

O
P

8
1

0

M
ES

SD
O

N
E

R
T

S
:-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

8
2

0

PR
N

T
SP

A
C

E

LO
A

#

3
2

;
P

R
IN

T

A

SP
A

C
E

C

H
A

R
A

C
T

E
R

8

3
0

JS

R

P
R

IN
T

8

4
0

JS

R

P
T

P
:

SE
E

IF

IT

SH

O
U

LD

A
L

SO

GO

TO

T
H

E

P
R

IN
T

E
R

8

5
0

R

T
S

:-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

8
6

0

PR
N

TN
U

M

ST
X

X

;
P

R
IN

T

A
 N

U
M

B
ER

(L

O
W

B

Y
TE

IN

X

,
H

IG
H

B

Y
TE

IN

A

)
8

7
0

LD

A

H
X

FL
A

G
;

IF

W
E

'R
E

P

R
IN

T
IN

G

IN

H
E

X
,

N
O

T
D

E
C

IM
A

L
,

TH
EN

8

8
0

B

EQ

PR
N

TN
U

M
D

;
U

SE

TH
E

H
E

X
PR

IN
T

S

U
B

R
O

U
T

IN
E

.
O

T
H

E
R

W
IS

E
,

GO

TO

PR
N

TN
U

M
D

8

9
0

TX

A

9
0

0

JS
R

H

E
X

PR
IN

T

9
1

0

JS
R

PT

PN
U

;
C

H
EC

K

IF

N
U

M
B

ER

SH
O

U
LD

B

E
P

R
IN

T
E

D

TO

P
R

IN
T

E
R

A

S
W

EL
L

0 r)>

0 V
l

V
l

0 c "" n (!
) n 0 0.
..

(!
)

w

'
I

w

9
2

0

LD
X

X

;
R

E
ST

O
R

E

N
U

M
B

ER

IN

X

B
E

FO
R

E

9
3

0

R
T

S
;

R
E

T
U

R
N

IN
G

TO

C

A
L

L
E

R
--

--
--

--
--

--
--

--
--

--
--

--
-

9
4

0

PR
N

TN
U

M
D

LO

A

#
0

;
P

R
IN

T

A

D
EC

IM
A

L
N

U
M

B
ER

9

5
0

JS

R

O
U

TN
U

M
;

B
A

S
IC

'S

L
IN

E

N
U

M
B

ER

PR
IN

T
O

U
T

R

O
U

T
IN

E

9
6

0

JS
R

PT

PN
U

;
SH

O
U

LD

W
E

A
L

SO

P
R

IN
T

IT

TO

P

R
IN

T
E

R

9
7

0

LD
X

X

;
R

E
ST

O
R

E

V
A

LU
E

IN

X

B
E

FO
R

E

9
8

0

R
T

S
;

R
E

T
U

R
N

IN
G

TO

TH

E
C

A
L

L
E

R

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

9
9

0

PR
N

T
SA

LO

A

H
X

FL
A

G
;

P
R

IN
T

T

H
E

SA

(P

C
,

PR
O

G
R

A
M

C

O
U

N
T

E
R

)
1

0
0

0

B
EQ

PR

N
T

SA
D

;
IF

N

O
T

H
EX

P

R
IN

T
O

U
T

,
T

H
E

N

U
SE

D

E
C

IM
A

L

R
O

U
T

IN
E

BE

LO
W

1

0
1

0

LO
A

S

A
+

l;

O
T

H
E

R
W

IS
E

,
P

R
IN

T

LO
W

A

N
D

H

IG
H

B

Y
TE

S
O

F
SA

(A

S
H

E
X

)
1

0
2

0

JS
R

H

E
X

P
R

IN
T

;
H

IG
H

B

Y
TE

1S

T

1
0

3
0

LO

A

SA

1
0

4
0

JS

R

H
E

X
PR

IN
T

1

0
5

0

JS
R

P

T
P

S
A

;
SH

O
U

LD

W
E

A
L

SO

P
R

IN
T

SA

TO

P

R
IN

T
E

R

1
0

6
0

R

T
S

;-
--

--
--

--
--

--
--

-
1

0
7

0

PR
N

TS
A

D

LO
X

S

A
;

P
R

IN
T

SA

(D

E
C

IM
A

L

V
E

R
S

IO
N

)
1

0
8

0

LO
A

S

A
+

l
1

0
9

0

JS
R

O

U
TN

U
M

1

1
0

0

JS
R

P

T
P

S
A

;
P

R
IN

T

TO

P
R

IN
T

E
R

,
TO

O

1
1

1
0

R

T
S

;-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
1

2
0

PR

N
T

C
R

LO

A

#
1

3
;

P
R

IN
T

A

 C
A

R
R

IA
G

E

R
ET

U
R

N

1
1

3
0

JS

R

PR
IN

T

1
1

4
0

JS

R

P
T

P
;

SH
O

U
LD

W

E
DO

IT

O

N

TH
E

P
R

IN
T

E
R

TO

O

1
1

5
0

R

T
S

;-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
1

6
0

PR

N
T

L
IN

E

LD
X

L

IN
E

N
;

P
R

IN
T

A

SO

U
R

C
E

CO

D
E

L
IN

E

N
U

M
BE

R
1

1
7

0

LD
A

L

IN
E

N
+

!
1

1
8

0

JS
R

O

U
TN

U
M

;
B

A
S

IC

R
O

U
T

IN
E

(L

O
W

B

Y
TE

IN

X

,
H

IG
H

IN

A

)
1

1
9

0

JS
R

P

T
P

L
I;

SH

O
U

LD

W
E

A
L

SO

P
R

IN
T

L

IN
E

N

U
M

B
ER

TO

P

R
IN

T
E

R

1
2

0
0

R

T
S

;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
2

1
0

PR

N
T

IN
PU

T

LD
A

#<

L
A

B
E

L
;

P
R

IN
T

C

O
N

T
E

N
T

S
O

F
M

A
IN

IN

PU
T

1

2
2

0

ST
A

T

E
M

P;

B
U

FF
E

R

("
L

A
B

E
L

")

0 r)>

0 V
l

V
l

0 c "" (') It!
 n 0 a.
.

It!

w

'-
1

~

1
2

3
0

1

2
4

0

1
2

5
0

1

2
6

0

1
2

7
0

1

2
8

0

1
2

9
0

1

3
0

0

1
3

1
0

1

3
2

0

1
3

3
0

1

3
4

0

1
3

5
0

1

3
6

0

1
3

7
0

1

3
8

0

1
3

9
0

1

4
0

0

1
4

1
0

1

4
2

0

1
4

3
0

1

4
4

0

1
4

5
0

1

4
6

0

1
4

7
0

1

4
8

0

1
4

9
0

1

5
0

0

1
5

1
0

1

5
2

0

1
5

3
0

LO
A

#>

L
A

B
E

L
;

P
O

IN
T

"T

E
M

P"

TO

TH
E

B
U

FF
E

R

A
N

D

TH
EN

ST

A

T
E

M
P+

1
JS

R

PR
N

T
M

E
SS

;
U

SE

G
EN

ER
A

L
M

E
SS

A
G

E

P
R

IN
T

IN
G

R

O
U

T
IN

E

R
TS

;-

--
--

--
--

--
--

--
--

--
--

--
-

E
R

R
IN

G

LO
A

#

7
;

R
IN

G

B
E

L
L

JS

R

P
R

IN
T

E
R

R
O

R

PR
IN

T
O

U
T

PR

E
PA

R
A

T
IO

N
S

LO
A

#

1
8

;
TU

R
N

O

N

R
E

V
E

R
SE

P

R
IN

T
IN

G

TO

H
IG

H
L

IG
H

T

ER
R

O
R

JS

R

P
R

IN
T

JS

R

P
R

N
T

IN
P

U
T

;
P

R
IN

T

C
O

N
TE

N
TS

O

F
M

A
IN

IN

P
U

T

B
U

FF
E

R

LO
A

#

1
3

;
P

R
IN

T

A

C
A

R
R

IA
G

E

R
E

T
U

R
N

JS

R

P
R

IN
T

R

TS

;-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

PR
IN

T
O

U
T

(T

O

P
R

IN
T

E
R

)
;(

P
T

P

P
R

IN
T

S

A
 S

IN
G

L
E

C

H
A

R
A

C
TE

R

TO

TH
E

P
R

IN
T

E
R

).

PT
P

LO
X

P

A
S

S
;

O
N

PA

SS

1
,

DO

N
O

P

R
IN

T
IN

G

TO

PR
IN

T
E

R

B
N

E
P

T
P

1
R

TS

P
T

P
1

LO
X

P

R
IN

T
F

L
A

G
;

IF

P
R

IN
T

F
L

A
G

IS

D

O
W

N
,

D
O

N

O
T

H
IN

G
,

R
ET

U
R

N

TO

C
A

L
L

E
R

BN

E
M

PT
P

R
T

S
;-

--
--

--
--

M
PT

P
S

T
A

A

;
SA

V
E

C
O

N
TE

N
TS

O

F
A

C
C

U
M

U
LA

TO
R

JS

R

C
L

R
C

H
N

;
A

L
E

R
T

P

R
IN

T
E

R

LO
X

#

4

JS
R

C

H
K

O
U

T
LO

A

A
;

R
EC

O
V

ER

A

JS
R

P

R
IN

T
;

P
R

IN
T

TO

P

R
IN

T
E

R

JS
R

C

L
R

C
H

N
;

R
E

ST
O

R
E

N

O
RM

A
L

I/
O

LO

X

#1

JS
R

C

H
K

IN

R
ET

T
LO

A

A
;.

R
EC

O
V

ER

A

0 ')>

0 (
J
l

(
J
l

0 c ri ro n 0 0
..

ro

1
5

4
0

R
T
S
~

R
ET

U
R

N

TO

C
A

L
L

E
R

1

5
5

0

;-

--
--

--
--

--
--

--
--

--
-

N
U

M
B

ER
S

TO

P
R

IN
T

E
R

1

5
6

0

PT
PN

U

LO
X

P

A
S

S
;

SA
M

E
L

O
G

IC

A
S

L
IN

E
S

1

3
5

0
+

A

B
O

V
E

1
5

7
0

B

N
E

P
T

P
N

1
1

5
8

0

R
T

S
1

5
9

0

P
T

P
N

1
LO

X

PR
IN

T
FL

A
G

1

6
0

0

B
N

E
M

PT
PN

1

6
1

0

R
T

S
1

6
2

0

M
PT

PN

JS
R

C

LR
C

H
N

1

6
3

0

LO
X

#

4

1
6

4
0

JS

R

C
H

K
O

U
T

1
6

5
0

LO

A

H
X
F
L
A
G
~

H
EX

O

R

D
E

C
IM

A
L

M

O
D

E
1

6
6

0

B
EQ

M

PT
PN

D

1
6

7
0

LO

A

X

1
6

8
0

JS

R

H
E

X
PR

IN
T

1

6
9

0

JM
P

F
IN

P
T

P

1
7

0
0

M

PT
PN

D

LO
A

#

0

1
7

1
0

LO

X

X

1
7

2
0

JS

R

O
U

TN
U

M

1
7

3
0

F

IN
P

T
P

JS

R

C
LR

C
H

N

1
7

4
0

LO

X

#
l

0
1

7
5

0

JS
R

C

H
K

IN

..
1

7
6

0

R
T

S
r-)>

1
7

7
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

SA

TO

P
R

IN
T

E
R

0

1
7

8
0

P

T
P

S
A

LO

X

P
A

S
S

;
SA

M
E

L
O

G
IC

A

S
L

IN
E

S

1
3

5
0

+

A
B

O
V

E
(
f
)

1
7

9
0

B

N
E

P
T

P
S

1
(
f)

0
1

8
0

0

R
T

S
c ..,

1
8

1
0

P

T
P

S
1

LO
X

PR

IN
T

FL
A

G

("
)

(!
)

1
8

2
0

B

N
E

M
PT

PS
A

n

w

1
8

3
0

R

T
S

0
'-

l
1

8
4

0

M
PT

PS
A

JS

R

C
LR

C
H

N

a..

(J
1

(!

)

(.
;.J

1

8
5

0

LO
X

#4

0

'I

0
'\

1

8
6

0

JS
R

C

H
K

O
U

T
r

1
8

7
0

LO

X

H
X

FL
A

G
;

H
EX

O

R

D
E

C
IM

A
L

PR

IN
T

O
U

T

)>

1
8

8
0

B

EQ

M
PT

PS
A

D

0
1

8
9

0

LO
A

S

A
+

l
V

l

V
l

1
9

0
0

JS

R

H
E

X
PR

IN
T

0

1
9

1
0

LO

A

SA

c: ...,
1

9
2

0

JS
R

H

E
X

PR
IN

T

n ([
)

1
9

3
0

JM

P
F

IN
P

T
P

S
A

n

1
9

4
0

M

PT
PS

A
D

LO

A

SA
+1

0

1
9

5
0

LO

X

SA

0.
..

1
9

6
0

JS

R

O
U

TN
U

M

([
)

1
9

7
0

F

IN
P

T
P

S
A

JS

R

C
LR

C
H

N

1
9

8
0

LO

X

#
l

1
9

9
0

JS

R

C
H

K
IN

2

0
0

0

R
T

S
2

0
1

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

L
IN

E

N
U

M
B

ER

TO

P
R

IN
T

E
R

2

0
2

0

P
T

P
L

I
LO

X

P
A

S
S

;
SA

M
E

L
O

G
IC

A

S
L

IN
E

S

1
3

5
0

+

A
B

O
V

E
2

0
3

0

B
N

E
P

T
P

L
1

2
0

4
0

R

T
S

2
0

5
0

P

T
P

L
1

LO
X

PR

IN
T

FL
A

G

2
0

6
0

B

N
E

M
PT

PL

2
0

7
0

R

T
S

2
0

8
0

M

PT
PL

JS

R

C
LR

C
H

N

2
0

9
0

LO

X

#
4

2

1
0

0

JS
R

C

H
K

O
U

T
2

1
1

0

LO
A

L

IN
E

N
+

1
2

1
2

0

LO
X

L

IN
E

N

2
1

3
0

JS

R

O
U

TN
U

M

2
1

4
0

JS

R

C
LR

C
H

N

2
1

5
0

LO

X

U

V
J

'
l

'
l

2
1

6
0

JS

R

C
H

K
IN

2

1
7

0

R
T

S
2

1
8

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
EX

N

U
M

B
ER

PR

IN
T

O
U

T

2
1

9
0

;

P
R

IN
T

T

H
E

N

U
M

BE
R

IN

TH
E

A
C

C
U

M
U

LA
TO

R

A
S

A

H
EX

D

IG
IT

(A

S

A
S

C
II

C

H
A

R
S

.)

2
2

0
0

H

E
X

PR
IN

T

PH
A

;
ST

O
R

E

N
U

M
B

ER

2
2

1
0

A

N
D

i$

0
F

;
C

L
E

A
R

H

IG
H

B

IT
S

(1

0
1

0
1

1
1

1

B
EC

O
M

ES

0
0

0
0

1
1

1
1

,
FO

R

EX
A

M
PL

E)

2
2

2
0

T

A
Y

;
NO

W

W
E

KN
OW

W

H
IC

H

P
O

S
IT

IO
N

IN

TH

E
S

T
R

IN
G

O

F
H

EX

N
U

M
B

ER
S

·(
"H

E
X

A
")

2

2
3

0

LO
A

H

E
X

A
,Y

;
T

H
IS

N

U
M

B
ER

IS

.
SO

PU

L
L

IT

O

U
T

A
S

A
N

A

S
C

II

C
H

A
R

A
C

TE
R

2

2
4

0

;
(H

EX
A

LO

O
K

S
L

IK
E

T

H
IS

:
"0

1
2

3
4

5
6

7
8

9
A

B
C

D
E

F
")

2

2
5

0

T
A

X
;

SA
V

E
L

O
W

-B
IT

S

V
A

LU
E

IN
T

O

X

2
2

6
0

P

L
A

;
PU

L
L

O

U
T

TH
E

O
R

IG
IN

A
L

N

U
M

B
ER

,
B

U
T

T
H

IS

T
IM

E

2
2

7
0

L

S
R

;S
H

IF
T

R

IG
H

T

4
T

IM
E

S

(M
O

V
IN

G

TH
E

4
H

IG
H

B

IT
S

IN

T
O

T

H
E

4

LO
W

B

IT
S

A

R
E

A
)

2
2

8
0

L

S
R

;
(1

0
1

0
1

1
1

1

B
EC

O
M

ES

0
0

0
0

1
0

1
0

,
FO

R

E
X

A
M

PL
E

)
2

2
9

0

L
SR

2

3
0

0

L
SR

2

3
1

0

T
A

Y
;

A
G

A
IN

,
PU

T
P

O
S

IT
IO

N

O
F

T
H

IS

V
A

LU
E

IN
T

O

TH
E

Y

IN
D

E
X

2

3
2

0

LO
A

H

E
X

A
,Y

;
PU

LL

O
U

T
TH

E
R

IG
H

T

A
S

C
II

C

H
A

R
A

C
TE

R

FR
O

M

"H
E

X
A

"
ST

R
IN

G

2
3

3
0

JS

R

P
R

IN
T

;
P

R
IN

T

H
IG

H

V
A

LU
E

(F
IR

S
T

)
(A

H

O
LD

S
H

IG
H

V

A
LU

E
A

FT
E

R

L
IN

E

2
2

8
0

)
2

3
4

0

T
X

A
;

(X

H
EL

D

LO
W

V

A
LU

E
A

FT
E

R

L
IN

E

2
2

1
0

)
2

3
5

0

JS
R

P

R
IN

T
;

P
R

IN
T

LO

W

V
A

LU
E

2
3

6
0

R

T
S

;
R

ET
U

R
N

TO

C

A
L

L
E

R

2
3

7
0

.F

IL
E

PS

E
U

D
O

P
ro

g
ra

m
 D

-1
2a

.
P

se
ud

o

1
0

;

"P
SE

U
D

O
"

H
A

N
D

LE

A
L

L

PS
E

U
D

O
PS

E

X
C

E
PT

.B

Y
T

E

2
0

;

JM
P

H
ER

E
FR

O
M

IN

D
IS

K

3
0

;

(I
N

D
IS

K

W
A

S
JS

R
'E

D

TO

FR
O

M

E
V

A
L

).

/
Y

 H
O

LD
S

PO
IN

T
E

R

TO

L
A

B
E

L

4
0

5

0

.

--
--

--
--

--
--

--
--

--
--

--
--

-
1 PS

E
U

D
O

CM

P
#

7
0

;
IS

IT

"F

"
FO

R

.F
IL

E

0 r)>

0 (
/)

(
/)

0 c:::
 n (!
) n 0 Q
..

(!
)

~

6
0

B

N
E

P
S

E
1

oo

7
0

JS

R

F
IL

E
;

F
M

EA
N

S
G

O

TO

N
EX

T
L

IN
K

E
D

F

IL
E

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

8
0

G

O
B

A
C

K

PL
A

;
R

ET
U

R
N

TO

EV

A
L

TO

G
ET

N

EX
T

L
IN

E

9
0

PL

A

1
0

0

JM
P

S
T

A
R

T
L

IN
E

;-
--

--
--

--
--

--
--

--
--

--
--

-
1

1
0

P

S
E

1
CM

P
#

6
9

;
IS

IT

.E

N
D

1

2
0

B

N
E

P
S

E
E

1

3
0

JS

R

PE
N

D
;

1
2

8

IS

TO
K

EN

FO
R

EN

D

(E
N

D

O
F

C
H

A
IN

PS

E
U

D
O

)
1

4
0

JM

P
G

O
B

A
C

K
;

R
ET

U
R

N

TO

EV
A

L
1

5
0

P

S
E

E

CM
P

#
6

8
;

IS

IT

"D
"

FO
R

.D

IS
K

(C

R
E

A
T

E

O
B

JE
C

T

C
O

D
E

F
IL

E

O
N

D

IS
K

)
1

6
0

B

N
E

P
S

E
E

1
1

7
0

JM

P
P

D
IS

K
;

O
PE

N

F
IL

E

O
N

D

IS
K

FO

R

O
B

JE
C

T

C
O

D
E

ST
O

R
A

G
E

1

8
0

P

S
E

E
1

CM
P

#
8

0
;

IS

IT

"P
"

FO
R

.P

(P

R
IN

T
E

R

O
U

T
PU

T
)

1
9

0

B
N

E
P

S
E

E
2

2
0

0

JM
P

P
P

R
IN

T
E

R
;

TU
R

N

O
N

P

R
IN

T
E

R

L
IS

T
IN

G

2
1

0

P
S

E
E

2
CM

P
#

7
8

;
IS

IT

"N

"
FO

R

.N
H

O

R
.N

S

O
R

SO

M
E

O
T

H
E

R

"T
U

R
N

IT

O

F
F

"
2

2
0

B

N
E

P
S

E
E

3
2

3
0

JM

P
N

IX
;

TU
R

N

SO
M

E
T

H
IN

G

O
F

F

2
4

0

P
S

E
E

3
CM

P
#

7
9

;
IS

IT

"0

"
FO

R

O
U

TP
U

T
(P

O
K

E

O
B

JE
C

T

C
O

D
E

IN
T

O

RA
M

)
2

5
0

B

N
E

P
S

E
E

4
2

6
0

JM

P
O

PO
N

;
ST

A
R

T

PO
K

IN
G

O

B
JE

C
T

CO

D
E

(D
E

F
A

U
L

T
)

2
7

0

P
S

E
E

4
CM

P
#

8
3

;
IS

IT

"S

"
FO

R

P
R

IN
T

TO

SC

R
E

E
N

2

8
0

B

N
E

P
S

E
E

5
2

9
0

JM

P
S

C
R

E
IN

;
TU

R
N

O

N

SC
R

E
E

N

P
R

IN
T

IN
G

3

0
0

P

S
E

E
S

CM

P
#

7
2

;
IS

IT

"H

"
FO

R

H
EX

N

U
M

B
ER

S
D

U
R

IN
G

P

R
IN

T
O

U
T

S

3
1

0

B
N

E
P

S
E

9
3

2
0

JM

P
H

E
X

IT
;

TU
R

N

O
N

H

EX

P
R

IN
T

IN
G

3

3
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

PR
IN

T

E
R

R
O

R

M
ES

SA
G

E
(N

O

SU
C

H

P
S

E
U

D
O

-O
P

)
3

4
0

P

S
E

9
ST

A

L
A

B
E

L
,Y

;
ST

O
R

E

C
H

A
R

.
FO

R

P
R

IN
T

O
U

T

3
5

0

JS
R

PR

N
T

L
IN

E

3
6

0

JS
R

PR

N
T

SP
A

C
E

0 r-)>

0 (.
/'

)

(.
/'

)

0 c ~

("
\

('!
) n 0 a..

('!
)

w

'-
J "'

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

5
1

0

5
2

0

5
3

0

5
4

0

5
5

0

5
6

0

5
7

0

5
8

0

5
9

0

6
0

0

6
1

0

6
2

0

6
3

0

6
4

0

6
5

0

6
6

0

6
7

0

JS
R

PR

N
T

SA

JS
R

E

R
R

IN
G

JS

R

P
R

N
T

IN
P

U
T

LO

A

#<
M

E
R

R
O

R

ST
A

TE

M
P

LO
A

#>

M
E

R
R

O
R

ST

A

T
E

M
P

+
l

JS
R

PR

N
T

M
E

SS

JS
R

PR

N
T

C
R

JM

P
P

U
L

L
IN

E
;

PU
LL

IN

(&

IG

N
O

R
E

)
R

E
ST

O

F
L

IN
E

,
TH

EN

B
A

C
K

TO

EV

A
L

;-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
A

N
D

LE

.F
IL

E

PS
E

U
D

O
-O

P
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

F
IL

E

JS
R

C

H
A

R
IN

CM

P
#

3
2

;
LO

O
K

FO

R

EN
D

O

F
TH

E
W

O
RD

.F

IL
E

(T

O

LO
C

A
TE

F

IL
E

N
A

M
E

)
B

EQ

F
I0

JM

P
F

IL
E

;
C

O
N

T
IN

U
E

L

O
O

K
IN

G

FO
R

B

LA
N

K

F
I0

LO

Y

#
0

F

il

JS
R

C

H
A

R
IN

CM

P
t0

;
EN

D

O
F

L
IN

E

B
EQ

F

I2

CM
P

#
1

2
7

;
K

EY
W

O
R

D
,

SO

ST
R

E
T

C
H

IT

O

U
T

B
C

C

F

il
l

JS
R

K

EY
W

O
RD

F

il
l

ST
A

L

A
B

E
L

,Y
;

ST
O

R
E

C

H
A

R
.

O
F

FI
L

E
N

A
M

E

IN
Y

JM

P
F

il
;

C
O

N
T

IN
U

E

ST
O

R
IN

G

FI
L

E
N

A
M

E

IN

M
A

IN

B
U

FF
E

R

(L
A

B
E

L
)

F
I2

ST

Y

FN
A

M
E

L
E

N
;

ST
O

R
E

FI

L
E

N
A

M
E

LE

N
G

TH

LO
Y

#0

F

IL
O

LO

A

L
A

B
E

L
,Y

;-
--

--
--

PU
T

FI
L

E
N

A
M

E

IN
T

O

PR
O

PE
R

B

U
FF

E
R

(F

IL
E

N
)

B
EQ

F

IL
O

l
ST

A

F
IL

E
N

,Y

IN
Y

0 I)>

0 (J
)

(J
)

0 c: .., ("
')

('!
) (
)

0 0.
..

('!
)

~

6
8

0

JM
P

F
IL

O

o
6

9
0

F

IL
O

l
LO

A

P
A

S
S

;
O

N

PA
SS

2

,
D

O
N

'T

P
R

IN
T

O

U
T

PC

7
0

0

B
N

E
F

I5

7
1

0

JS
R

PR

N
T

SA
;

P
R

IN
T

.F

IL
E

A

N
D

TH

E
F

IL
E

N

A
M

E
7

2
0

JS

R

PR
N

T
SP

A
C

E

7
3

0

F
I5

JS

R

PR
N

T
IN

PU
T

7

4
0

JS

R

PR
N

T
C

R
;

C
A

R
R

IA
G

E

R
ET

U
R

N

7
5

0

JS
R

O

P
E

N
!;

O

PE
N

N

EX
T

L
IN

K
E

D

F
IL

E

O
N

D

IS
K

(F

O
R

C

O
N

T
IN

U
E

D

R
E

A
D

IN
G

O

F
SO

U
R

C
E

)
7

6
0

LD

X

#
l

7
7

0

JS
R

C

H
K

IN

7
8

0

JS
R

C

H
A

R
IN

;
PU

L
L

IN

N

EX
T

TW
O

B

Y
T

E
S

A
N

D

7
9

0

JS
R

C

H
A

R
IN

8

0
0

JS

R

E
N

D
PR

O
;

C
H

EC
K

FO

R

EN
D

O

F
PR

O
G

R
A

M

8
1

0

LD
X

#

0

8
2

0

ST
X

E

N
D

FL
A

G
;

S
E

T

EN
D

O

F
PR

O
G

R
A

M

FL
A

G

TO

ZE
R

O

8
3

0

R
T

S
8

4
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
A

N
D

LE

.E
N

D

PS
E

U
D

O
-O

P
-
-
-
-
-
-
-
-
-

8
5

0

PE
N

D

LO
A

#

4
6

;
P

R
IN

T

O
U

T
.E

N
D

8

6
0

JS

R

P
R

IN
T

8

7
0

LD

A

#
6

9

8
8

0

JS
R

P

R
IN

T

8
9

0

LD
A

#

7
8

9

0
0

JS

R

P
R

IN
T

9

1
0

LD

A

#
6

8

9
2

0

JS
R

P

R
IN

T

9
3

0

LD
A

#

3
2

9

4
0

JS

R

P
R

IN
T

9

5
0

JS

R

C
H

A
R

IN

9
6

0

JS
R

F

IL
E

;
G

ET

FI
L

E
N

A
M

E
,

E
T

C
.

JU
S

T

A
S

.F
IL

E

PS
E

U
D

O
-O

P
D

O
ES

9

7
0

LD

A

P
A

S
S

;
O

N

P
A

S
S

l,

D

O
N

'T

SE
T

TH

E
EN

D
FL

A
G

U

P
.

9
8

0

B
EQ

P

E
N

D
!;

B

U
T

O
N

PA

SS

2
,

IT
'S

N

E
C

E
SS

A
R

Y

(T
O

EN

D

T
H

E

E
N

T
IR

E

PR
O

G
R

A
M

)

0 r- >

0 V
l

V
l

0 c ~

n ro (
)

0 0
..

ro

U
J

0
0

.....

..

9
9

0

IN
C

EN

D
FL

A
G

1

0
0

0

P
E

N
D

l
IN

C

P
A

S
S

:
R

A
IS

E

P
A

S
S

FR

O
M

PA

SS

1
TO

PA

SS

2
1

0
0

2

SE
C

:
SA

V
E

L
E

N
G

T
H

O

F
F

IL
E

1

0
0

3

LO
A

S

A
:

FO
R

T

H
IR

D

A
N

D

FO
U

T
H

1

0
0

4

SB
C

T

A
:

B
Y

T
E

S
O

F
B

IN
A

R
Y

F

IL
E

1

0
0

5

ST
A

L

E
N

P
T

R
:

C
R

EA
TE

D

BY

.D

1
0

0
6

LO

A

S
A

+
l:

PS

E
U

D
O

-O
P

1
0

0
7

SB

C

T
A

+
l

1
0

0
8

ST

A

L
E

N
P

T
R

+
l

1
0

1
0

LO

A

T
A

:
PU

T

O
R

IG
IN

A
L

ST

A
R

T

A
D

D
R

E
SS

B

A
C

K

IN
T

O

PC

(S
A

)
FO

R

R
E

ST
A

R
T

O

F
1

0
2

0

ST
A

S

A
:

A
SS

E
M

B
L

Y

O
N

P

A
S

S

2
.

1
0

3
0

LO

A

T
A

+
l

1
0

4
0

ST

A

S
A

+
l

1
0

5
0

JS

R

IN
D

IS
K

:
S

E
T

U

P
N

EX
T

L
IN

E

1
0

6
0

R

T
S

1
0

7
0

:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
A

N
D

LE

.D

FI
L

E
N

A
M

E

P
S

E
U

D
O

-O
P

(O

B
JE

C
T

C

O
D

E
F

IL
E

)
1

0
8

0

P
D

IS
K

LO

A

P
A

S
S

:
O

N

PA
SS

1

,
D

O
N

'T

ST
O

R
E

A

N
Y

T
H

IN
G

TO

D

IS
K

1

0
9

0

B
EQ

P

U
L

L
J:

P

U
L

L
J

IS

A

SP
R

IN
G

B
O

A
R

D

(J
U

M
P

S

TO

P
U

L
L

IN
E

)
1

1
0

0

JS
R

C

H
A

R
IN

:
P

O
IN

T

TO

FI
L

E
N

A
M

E

1
1

1
0

ST

A

L
A

B
E

L
,Y

1

1
2

0

LO
Y

#

0

1
1

3
0

PD

L
O

O
P

JS
R

C

H
A

R
IN

1

1
4

0

B
EQ

P

O
l:

EN

D

O
F

L
IN

E

1
1

5
0

C

M
P

#
1

2
7

:
IT

'S

A
 K

EY
W

O
RD

(W

IT
H

IN

T
H

E

FI
L

E
N

A
M

E
)

IF

>
12

7
1

1
6

0

B
C

C

P
D

IX

1
1

7
0

JS

R

K
EY

W
O

RD

1
1

8
0

P

D
IX

ST

A

L
A

B
E

L
,Y

:
K

E
E

P
ST

O
R

IN
G

FI

L
E

N
A

M
E

IN

T
O

P

R
IN

T
O

U
T

B

U
F

F
E

R

(L
A

B
E

L
)

1
1

9
0

ST

A

F
IL

E
N

,Y
:

A
S

W
EL

L
A

S
O

PE
N

1
B

U
FF

E
R

(F

IL
E

N
)

1
2

0
0

IN

Y

1
2

1
0

JM

P

PD
L

O
O

P:

K
E

E
P

ST
O

R
IN

G

F
IL

E
N

A
M

E
:-

--
--

--
--

--
--

--
--

-
1

2
2

0

P
U

L
L

J
JM

P
P

U
L

L
IN

E
:-

--
--

--
-

SP
R

IN
G

B
O

A
R

D

TO

IG
N

O
R

E

FI
L

E
N

A
M

E

0 r)>

0 V
l

V
l

0 c ""'' (")

(1
)

(
)

0 0.
..

(1
)

~

1
3

5
0

P

O
l

ST
Y

FN

A
M

EL
EN

N

1

3
6

0

JS
R

P
R
N
T
I
N
P
U
T
~

P
R

IN
T

O

U
T

TH
E

L
IN

E

1
3

7
0

JS

R

P
R
N
T
C
R
~

C
A

R
R

IA
G

E

R
ET

U
R

N

1
3

8
0

IN

C

D
IS

K
FL

A
G

;
R

A
IS

E

D
IS

K
FL

A
G

TO

SH

OW

T
H

A
T

FU

TU
R

E
PO

K
E

S
SH

O
U

LD

G
O

TO

D

IS
K

1

3
9

0

JS
R

O

P
E

N
2;

O

PE
N

A

SE

C
O

N
D

D

IS
K

F

IL
E

(T

H
IS

O

N
E

FO
R

W

R
IT

IN
G

TO

)
1

4
0

0

LO
X

#2

1

4
1

0

JS
R

C

H
K

O
U

T
1

4
2

0

LO
A

T
A
~

PR
IN

T

O
B

JE
C

T

C
O

D
E

'S

ST
A

R
T

IN
G

A

D
D

R
E

SS

TO

D
IS

K

F
IL

E

1
4

3
0

JS

R

P
R

IN
T

1

4
4

0

LO
A

T

A
+

l
1

4
5

0

JS
R

P

R
IN

T

1
4

5
5

LO

A

L
E

N
PT

R
;

W
R

IT
E

LE

N
G

TH

O
F

1
4

5
6

JS

R

P
R

IN
T

;
B

IN
A

R
Y

F

IL
E

1

4
5

7

LO
A

L

E
N

P
T

R
+

l
1

4
5

8

JS
R

P

R
IN

T

1
4

6
0

E

D
IS

K

JS
R

C

LR
C

H
N

1

4
7

0

LO
X

#
1
~

R
E

ST
O

R
E

N

O
RM

A
L

I/
O

1

4
8

0

JS
R

C

H
K

IN

1
5

0
0

JS

R

E
N

D
PR

O
;

G
ET

N

EX
T

L
IN

E

N
U

M
B

ER

1
5

1
0

P

L
A

;
PU

L
L

R

TS

1
5

2
0

PL

A

1
5

3
0

LO

X

#
0

1

5
4

0

ST
X

E

N
D

FL
A

G
;

R
E

SE
T

EN

D

O
F

PR
O

G
R

A
M

FL

A
G

1

5
5

0

JM
P

S
T

A
R

T
L

IN
E

;
A

N
D

R

ET
U

R
N

TO

EV

A
L

TO

G
E

T

N
EX

T
L

IN
E

1

5
6

0

~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
A

N
D

LE

.P

(P
R

IN
T

E
R

)
P

S
E

U
D

O
-O

P

-
-
-
-
-
-
-

1
5

7
0

P

P
R

IN
T

E
R

LO

A

P
A

S
S

;
O

N

PA
SS

1

,
DO

NO

P

R
IN

T
E

R

O
U

TP
U

T
1

5
8

0

B
EQ

P

U
L

L
IN

E
;

G
ET

R

ID

O
F

R
E

ST

O
F

L
IN

E

A
N

D

G
O

O

N
.

1
5

9
0

JS

R

O
P
E
N
4
~

PA
SS

2

,
SO

O

PE
N

P

R
IN

T
E

R

TO

H
E

A
R

FR

O
M

C

O
M

PU
T

E
R

1

6
0

0

IN
C

P

R
IN

T
F

L
A

G
;

R
A

IS
E

P

R
IN

T
E

R

O
U

TP
U

T
FL

A
G

(S

O

PR
IN

T

W
IL

L

SE
N

D

B
Y

T
E

S
TO

1

6
1

0

JS
R

C
L
R
C
H
N
~

TH
E

PR
IN

T
E

R

A
S

W
EL

L
A

S
TH

E
S

C
R

E
E

N
).

1

6
2

0

LO
X

#

1
;

R
E

ST
O

R
E

N

O
RM

A
L

I/
O

0 r-)>

0 (
j)

(
j)

0 c r.

([
I n 0 0.
..

([
I

1
6

3
0

JS

R

C
H

K
IN

1

6
4

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

SU
C

T
IO

N

R
O

U
T

IN
E

.
G

E
T

R

ID

O
F

R
E

S
T

O

F
A

 L
IN

E

1
6

5
0

PU

L
L

IN
E

JS

R

C
H

A
R

IN
;

IG
N

O
R

E

A
LL

B

Y
T

E
S

,
JU

S
T

L

O
C

A
T

E

N
EX

T
L

IN
E

1

6
6

0

B
EQ

E

N
D

PU
L

L
;

ZE
R

O

EN
D

O

F
L

IN
E

SH

O
U

LD

GO

TO

E
N

D
PR

O

FO
R

N

E
X

T

L
IN

E

1

6
7

0

CM
P

#
5

8
;

W
H

ER
EA

S
A

C

O
LO

N

EN
D

O

F
L

IN
E

S

K
IP

S

T
H

A
T

ST

E
P

1
6

8
0

B

EQ

E
N

D
PU

L
R

;
(C

O
L

O
N

)
1

6
9

0

JM
P

P
U

L
L

IN
E

;
N

E
IT

H
E

R

C
O

LO
N

N

O
R

ZE
R

O

(S
O

PU

L
L

IN

M

O
RE

C

H
A

R
A

C
T

E
R

S)

1
7

0
0

EN

D
PU

LL

JS
R

EN

D
PR

O

1
7

1
0

EN

D
PU

LR

P
L

A
;

PU
LL

R

T
S

O
FF

ST

A
C

K

1
7

2
0

PL

A

1
7

3
0

LD

X

#0

1
7

4
0

ST

X

E
N

D
FL

A
G

;
SE

T

EN
D

FL
A

G

DO
W

N
1

7
5

0

JM
P

S
T

A
R

T
L

IN
E

;
R

ET
U

R
N

TO

EV

A
L

(T
O

G

ET

N
EX

T
L

IN
E

O

F
SO

U
R

C
E

C

O
D

E)

1
7

6
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
A

N
D

LE

.0

(P
O

K
E

B

Y
T

E
S

TO

R
A

M
)

PS
E

U
D

O
-O

P
1

7
7

0

O
PO

N

LD
A

#

4
6

;
P

R
IN

T

.0

1
7

8
0

JS

R

P
R

IN
T

1

7
9

0

LD
A

#

7
9

;
"0

"
1

8
0

0

JS
R

P

R
IN

T

1
8

1
0

JS

R

PR
N

T
C

R
;

C
A

R
R

IA
G

E

R
ET

U
R

N

1
8

2
0

LD

A

U

1
8

3
0

ST

A

PO
K

E
FL

A
G

;
R

A
IS

E

PO
K

E
-T

O
-R

A
M

FL

A
G

1

8
4

0

JM
P

P
U

L
L

IN
E

;
IG

N
O

R
E

R

E
ST

O

F
L

IN
E

1

8
5

0

;-
--

--
--

--
--

--
--

--
--

--
--

--
-H

A
N

D
L

E

.N
(S

O
M

E
T

H
IN

G
),

T
U

R
N

-I
T

-O
F

F

P
S

E
U

D
O

-O
P

S

1
8

6
0

N

IX

LD
A

P

A
S

S
;

O
N

PA

SS

1
,

D
O

N
'T

B

O
T

H
E

R

W
IT

H

A
N

Y

O
F

T
H

IS

1
8

7
0

B

EQ

P
U

L
L

IN
E

1

8
8

0

JS
R

C

H
A

R
IN

;
O

N

PA
SS

2

,
SE

E

W
H

IC
H

T

H
IN

G

IS

B
E

IN
G

TU

R
N

ED

O
F

F

1
8

9
0

CM

P
#

8
0

;
IS

IT

".

N
P

"
TO

"N

O
T

P
R

IN
T

TO

P

R
IN

T
E

R
"

1
9

0
0

B

EQ

N
IX

P
R

IN
T

1

9
1

0

CM
P

#
7

9
;

IS

IT

".
N

O
"

TO

"N
O

T
PO

K
E

O
B

JE
C

T

B
Y

T
E

S
TO

RA

M
"

w

1
9

2
0

B

EQ

N
IX

O
P

~

1
9

3
0

CM

P
#

8
3

;
IS

IT

".

N
S

"
TO

"N

O
T

P
R

IN
T

TO

SC

R
E

E
N

"

0 I)>

0 V
l

V
l

0 c ""' n ro n 0 0
. ro

~

1
9

4
0

B

EQ

N
IX

SC
R

E
E

N

"""

1
9

5
0

CM

P
#

7
2

;
IS

IT

".

N
H

"
TO

"N

O
T

PR

IN
T

O
U

T

H
E

X
"

(T
H

U
S

SW
IT

C
H

TO

D

E
C

IM
A

L
)

1
9

6
0

B

EQ

N
IX

H
E

X

1
9

7
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

TU
R

N

O
FF

P

R
IN

T
E

R

O
U

T
PU

T

1
9

8
0

N

IX
P

R
IN

T

LO
A

#

4
6

;
PR

IN
T

".

N
P

"
TO

SC

R
E

E
N

1

9
9

0

JS
R

P

R
IN

T

2
0

0
0

LD

A

#
7

8
;

"N
"

2
0

1
0

JS

R

P
R

IN
T

2

0
2

0

LD
A

#

8
0

;
"P

"
2

0
3

0

JS
R

P

R
IN

T

2
0

4
0

JS

R

PR
N

T
C

R
;

C
A

R
R

IA
G

E

R
ET

U
R

N

2
0

5
0

D

EC

P
R

IN
T

F
L

A
G

;
LO

W
ER

P

R
IN

T
-T

O
-S

C
R

E
E

N

FL
A

G

2
0

6
0

JS

R

C
L

R
C

H
N

;
TU

R
N

O

FF

P
R

IN
T

E
R

2

0
7

0

LO
X

t4

2

0
8

0

JS
R

C

H
K

O
U

T
2

0
9

0

LO
A

#

1
3

2

1
0

0

JS
R

P

R
IN

T

2
1

1
0

LD

A

t4

2
1

2
0

JS

R

C
L

O
SE

2

1
3

0

JS
R

C

LR
C

H
N

2

1
4

0

LD
X

#

1
;

R
E

ST
O

R
E

N

O
RM

A
L

I/
O

2

1
5

0

JS
R

C

H
K

IN

2
1

6
0

JM

P
P

U
L

L
IN

E
;

IG
N

O
R

E

R
E

ST

O
F

L
IN

E

(A
N

D

R
ET

U
R

N

TO

E
V

A
L

)
2

1
7

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

ST
O

P
PO

K
IN

G

O
B

JE
C

T

B
Y

T
E

S
TO

RA

M

2
1

8
0

N

IX
O

P
LO

A

#
4

6
;

P
R

IN
T

".

N
O

"
2

1
9

0

JS
R

P

R
IN

T

2
2

0
0

LD

A

#
7

8
;

"N
"

2
2

1
0

JS

R

P
R

IN
T

2

2
2

0

LO
A

#

7
9

;
"0

"
2

2
3

0

JS
R

P

R
IN

T

2
2

4
0

JS

R

PR
N

T
C

R
;C

A
R

R
IA

G
E

R

ET
U

R
N

0 r)>

0 V
l

V
l

0 c """

("
') ro

("
)

0 Q
..

ro

2
2

5
0

LO

A

i0

2
2

6
0

ST

A

PO
K

E
FL

A
G

;
TU

R
N

O

FF

PO
K

E
FL

A
G

2

2
7

0

JM
P

P
U

L
L

IN
E

;
IG

N
O

R
E

R

E
ST

O

F
L

IN
E

(A

N
D

R

ET
U

R
N

TO

E

V
A

L
)

2
2

8
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

ST
O

P
H

EX

PR
IN

T
O

U
T

S
(S

T
A

R
T

D

E
C

IM
A

L
)

2
2

9
0

N

IX
H

E
X

LO

A

#
4

6
;

P
R

IN
T

".

N
H

"
2

3
0

0

JS
R

P

R
IN

T

2
3

1
0

LO

A

#
7

8
:

"N
"

2
3

2
0

JS

R

P
R

IN
T

2

3
3

0

LO
A

i7

2
:

"H
"

2
3

4
0

JS

R

P
R

IN
T

2

3
5

0

JS
R

PR

N
T

C
R

;
C

A
R

R
IA

G
E

R

ET
U

R
N

2

3
6

0

LO
A

trc

'J
2

3
7

0

ST
A

H

X
FL

A
G

;
PU

T
H

EX
FL

A
G

DO

W
N

2
3

8
0

JM

P
P

U
L

L
IN

E
;

IG
N

O
R

E

R
E

ST

O
F

L
IN

E

(A
N

D

R
ET

U
R

N

TO

E
V

A
L

)
2

3
9

0

:-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

ST
O

P
SC

R
E

E
N

PR

IN
T

O
U

T
S

2
4

0
0

N

IX
SC

R
E

E
N

LO

A

#
4

6
;

P
R

IN
T

".

N
S

"
2

4
1

0

JS
R

P

R
IN

T

2
4

2
0

LO

A

i7
8

;
"N

"
2

4
3

0

JS
R

P

R
IN

T

2
4

4
0

LO

A

#
8

3
;

"S
"

2
4

5
0

JS

R

P
R

IN
T

2

4
6

0

JS
R

PR

N
T

C
R

;C
A

R
R

IA
G

E

R
ET

U
R

N

2
4

7
0

LO

A

i0

2
4

8
0

ST

A

S
F

L
A

G
;

PU
T

DO
W

N
SC

R
E

E
N

PR

IN
T

O
U

T

FL
A

G

2
4

9
0

JM

P
P

U
L

L
IN

E
;

IG
N

O
R

E

R
E

ST

O
F

L
IN

E

(A
N

D

R
ET

U
R

N

TO

E
V

A
L

)
2

6
6

0

:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
A

N
D

LE

.S

PS
E

U
D

O
-O

P
(T

U
R

N

O
N

SC

R
E

E
N

P

R
IN

T
O

U
T

)
2

6
7

0

S
C

R
E

IN

LO
A

#

4
6

;
P

R
IN

T

"
.S

"

2
6

8
0

JS

R

P
R

IN
T

2

6
9

0

LO
A

#

8
3

;
"S

"
~

2
7

0
0

JS

R

P
R

IN
T

~

2
7

1
0

JS

R

PR
N

T
C

R
;

C
A

R
R

IA
G

E

R
ET

U
R

N

0 r-)>

0 (J
l

(J
l

0 c
 n ('[

) n 0 0.
..

('[
)

~

2
7

2
0

LO

A

P
A

S
S

:
O

N

PA
SS

1

,
N

O

SC
R

E
E

N

PR
IN

T
O

U
T

~

2
7

3
0

B

EQ

SC
R

EX

2
7

4
0

LD

A

#
1

:
O

T
H

E
R

W
IS

E
,

R
A

IS
E

SC

R
E

E
N

P

R
IN

T
O

U
T

(L

IS
T

IN
G

)
FL

A
G

2

7
5

0

ST
A

SF

L
A

G

2
7

6
0

SC

R
E

X

JM
P

P
U

L
L

IN
E

:
IG

N
O

R
E

R

E
ST

O

F
L

IN
E

(A

N
D

R

ET
U

R
N

TO

EV

A
L)

2

7
7

0

:
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
A

N
D

LE

.H

PS
E

U
D

O
-O

P
(H

E
X

N

U
M

B
ER

S
D

U
R

IN
G

P

R
IN

T
O

U
T

)
2

7
8

0

H
E

X
IT

LD

A

#
4

6
:

P
R

IN
T

".

H
"

2
7

9
0

JS

R

P
R

IN
T

2

8
0

0

LD
A

#

7
2

:
"H

"
2

8
1

0

JS
R

P

R
IN

T

2
8

2
0

JS

R

PR
N

T
C

R
:

C
A

R
R

IA
G

E

R
ET

U
R

N

2
8

3
0

LO

A

#1

2
8

4
0

ST

A

H
X

FL
A

G
:

S
E

T

H
EX

FL
A

G

U
P

2
8

5
0

JM

P
P

U
L

L
IN

E
:

IG
N

O
R

E

R
E

ST

O
F

L
IN

E

(A
N

D

R
ET

U
R

N

TO

E
V

A
L

)
2

8
6

0

.F
IL

E

T
A

B
L

E
S

P
ro

g
ra

m
 D

-1
2b

.
P

se
ud

o,
 P

ro
D

O
S

 C
ha

ng
es

D

el
et

e
th

e
fo

ll
ow

in
g

li
ne

s
fr

om
 f

ro
m

 P
ro

gr
am

 D
-1

2
a

:

78
0-

79
0

10
02

-1
00

8
14

00
-1

45
8

P
ro

g
ra

m
 D

-1
3a

.
Ta

bl
es

,
3.

3
V

er
si

o
n

1
0

:

"T
A

B
L

E
S

"
2

0

:
T

A
B

L
E

O

F
M

N
EM

O
N

IC
S

A
N

D

PA
R

A
L

L
E

L

T
A

B
L

E

O
F

O
PC

O
D

E
/A

D
D

R
E

SS

T
Y

PE

D
A

TA

3
0

:

B
U

FF
E

R
S

A
N

D

M
E

SS
A

G
E

S,

F
L

A
G

S
,

P
O

IN
T

E
R

S
,

R
E

G
IS

T
E

R
S

4
0

:-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

M
N

EM
O

N
IC

S,

T
Y

P
E

S
,

A
D

D
R

E
SS

M

O
D

E
O

PC
O

D
E

S
5

0

M
N

EM
O

N
IC

S
.B

Y
T

E

"L
D

A
L

D
Y

JS
R

R
T

SB
C

SB
E

Q
B

C
C

C
M

P

0 I)>

0 (
f
)

(
f
)

0 c:
 ..., ('

)
([

I n 0 Q
..

([

I

6
0

7

0

8
0

9

0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

2
9

5

3
0

0

(.
;.

)

CX
l

'
l

.B
Y

T
E

"B

N
E

L
D

X
JM

PS
T

A
ST

Y
ST

X
IN

Y
D

E
Y

.B

Y
T

E

"D
E

X
D

E
C

IN
X

IN
C

C
PY

C
PX

SB
C

SE
C

.B

Y
T

E

"A
D

C
C

LC
TA

X
TA

Y
TX

A
.T

Y
A

PH
A

PL
A

.B

Y
T

E

"B
R

K
B

M
IB

PL
I\.

N
D

O
R

A
E

O
R

B
IT

B
V

C

.B
Y

T
E

"B

V
SR

O
L

R
O

R
L

SR
C

L
D

C
L

IA
SL

PH
P

.B
Y

T
E

"P

L
P

R
T

IS
E

D
S

E
IT

S
X

T
X

S
C

L
V

N
O

P

T
Y

PE
S

.B
Y

T
E

1

5
9

0
8

8
8

1
.B

Y
T

E

8
5

6
1

2
2

0
0

.B
Y

T
E

0

2
0

2
4

4
1

0
.B

Y
T

E

1
0

0
0

0
0

0
0

.B
Y

T
E

0

8
8

1
1

1
7

8
.B

Y
T

E

8
3

3
3

0
0

3
0

.B
Y

T
E

0

0
0

0
0

0
0

0
O

PS

.B
Y

T
E

1

6
1

1

6
0

3

2

9
6

1

7
6

2

4
0

1

4
4

1

9
3

.B

Y
T

E

2
0

8

1
6

2

7
6

1

2
9

1

3
2

1

3
4

2

0
0

1

3
6

.B

Y
T

E

2
0

2

1
9

8

2
3

2

2
3

0

1
9

2

2
2

4

2
2

5

5
6

.B

Y
T

E

9
7

2

4

1
7

0

1
6

8

1
3

8

1
5

2

7
2

1

0
4

.B

Y
T

E

0
4

8

1
6

33

1

6
5

36

8

0

.B
Y

T
E

1

1
2

3

4

9
8

6

6

2
1

6

8
8

2

8
.B

Y
T

E

4
0

6

4

2
4

8

1
2

0

1
8

6

1
5

4

1
8

4

2
3

4

r-
--

--
--

--
--

--
--

--
--

--
H

EX

R
O

U
T

IN
E

TA

B
LE

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
EX

A

.B
Y

T
E

"0

1
2

3
4

5
6

7
8

9
A

B
C

D
E

F
"

r-
--

--
--

--
--

--
--

--
--

--
B

U
FF

E
R

S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

L
A

B
E

L

.B
Y

T
E

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

.B
Y

T
E

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
B

U
FF

E
R

.B

Y
T

E

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0 r-)>

0 V
l

V
l

0 c: .., ("
)

('t
) ()

0 Q
..

('t
)

~

3
0

5

.B
Y

T
E

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3
1

0

B
U

FM

.B
Y

T
E

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3

1
5

.B

Y
T

E

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3
2

0

H
E

X
B

U
F

.B
Y

T
E

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3
3

0

F
IL

E
N

.B

Y
T

E

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3

4
0

N

U
B

U
F

.B
Y

T
E

0

0
0

0
0

0
0

3
5

0

:
-
-
-
-
-

R
E

G
IS

T
E

R
S

U

SE
D

BY

V

A
LD

EC

-
-
-
-
-
-
-

3
6

8

R
A

D
D

.B

Y
T

E

0
0:

T
E

M
PO

R
A

R
Y

R

E
G

IS
T

E
R

FO

R

D
O

U
B

LE

A
D

D
IT

IO
N

3

7
0

V

R
EN

D

.B
Y

T
E

0

:
TE

M
P

RE
G

TO

H

O
LD

EN

D

O
F

PR
O

G
R

A
M

C

O
U

N
T

E
R

3

8
0

T

ST
O

R
E

.B

Y
T

E

0
0

:
TE

M
PO

R
A

R
Y

R

E
G

IS
T

E
R

FO

R

M
U

L
T

IP
L

Y

3
9

0

:
-
-
-
-

M
E

SS
A

G
E

S
TO

P

R
IN

T

TO

SC
R

E
E

N

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
0

0

M
N

O
ST

A
R

T
.B

Y
T

E

"N
O

ST

A
R

T
A

D
D

R
E

S
S

":
.B

Y
T

E

0
4

1
0

M

B
O

R

.B
Y

T
E

"
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

B
R

A
N

C
H

O

U
T

O
F

R
A

N
G

E
":

.B
Y

T
E

0

4
2

0

N
O

LA
B

.B

Y
T

E

"U
N

D
E

FI
N

E
D

L

A
B

E
L

":
.B

Y
T

E

0
4

3
0

N

O
A

R
G

.B

Y
T

E
"

N
A

K
ED

L

A
B

E
L

":
.B

Y
T

E

0
4

4
0

M

D
IS

E
R

.B

Y
T

E

II

<
<

<
<

<
<

<
<

D
IS

K

E
R

R
O

R
>

>
>

>
>

>
>

>

":
.B

Y
T

E

0
4

5
0

M

D
U

PL
A

B

.B
Y

T
E

"
--

D
U

PL
IC

A
T

E
D

L

A
B

E
L

--
":

.B
Y

T
E

0

4
6

0

M
ER

R
O

R

.B
Y

T
E

"
--

SY
N

TA
X

E

R
R

O
R

--
":

.B
Y

T
E

0

4
7

0

:
-
-
-
-
-
-
-
-
-
-
-

F
L

A
G

S
,

P
O

IN
T

E
R

S
,

R
E

G
IS

T
E

R
S

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
8

0

O
P

.B
Y

T
E

0

:
O

PC
O

D
E

4
9

8

T
P

.B
Y

T
E

0

:
T

Y
PE

5

8
9

T

A

.B
Y

T
E

0

0
:

ST
A

R
T

A

D
D

R
ES

S
5

1
8

L

IN
E

N

.B
Y

T
E

0

0
:

C
U

R
R

E
N

T

L
IN

E

5

2
0

 E
H

D
FL

A
G

.B

Y
T

E

0
:

E
N

D
-O

F
-P

R
O

G

FL
A

G

5
3

0

W
O

RK

.B
Y

T
E

0

0
:

TE
M

P
W

O
RK

A

R
EA

0 r-)>

0 V
l

V
l

0 c

("
)

('[
) n 0 a..
.

('[
)

V
J

ro

\0

5
4

0

R
E

SU
L

T

.B
Y

T
E

0

0
;

TE
M

P
A

N
SW

ER

A
R

EA

5
5

0

A
R

G
N

.B

Y
T

E

0
0

;
V

A
LU

E
O

F
A

R
G

U
M

EN
T

5
6

0

A
R

G
SI

Z
E

.B

Y
T

E

0
;

LE
N

G
TH

O

F
A

RG
U

M
EN

T
57

0
E

X
PR

E
SS

F
.B

Y
T

E

0
;

IS

IT

AN

E
X

PR
E

SS

LA
B

EL

58
0

H
EX

FL
A

G

.B
Y

T
E

0

;
H

EX

N
U

M
BE

R
FL

A
G

59

0
H

EX
LE

N

.B
Y

T
E

0

;
LE

N
G

TH

O
F

H
E

X
 N

U
M

B
ER

6

0
0

N

U
M

SI
Z

E

.B
Y

T
E

0

;
LE

N
G

TH

O
F

A
S

C
II

N

U
M

BE
R

IN

B
U

FF
E

R

(F
O

R

V
A

L
D

E
C

)
6

1
0

K

EY
N

U
M

.B

Y
T

E

0
;

P
O

S
IT

IO
N

O

F
K

EY
W

O
RD

IN

B

A
S

IC
'S

TA

B
LE

6

2
0

L

A
B

S
IZ

E

.B
Y

T
E

0

;
S

IZ
E

O

F
LA

B
EL

(E

Q
U

A
T

E

T
Y

PE
)

6
3

8

L
A

B
PT

R

.B
Y

T
E

0

0
;

P
O

IN
T

S

TO

A
R

R
A

Y

P
O

S
IT

IO
N

FO

R

A
RG

ST

O
R

A
G

E
6

4
0

A

R
R

A
Y

TO
P

.B
Y

T
E

0

0
;

TO
P

O
F

A
R

R
A

Y
S-

-S
A

M
E

A

S
M

EM
TO

P
B

EF
O

R
E

L
A

B
E

L
S.

6

5
0

B

U
FL

A
G

.B

Y
T

E

0
;

A
V

O
ID

O
R

(
D

U
R

IN
G

A

R
R

A
Y

S
A

N
A

L
Y

SI
S

6
6

0

PA
SS

.B

Y
T

E

0
;

W
H

IC
H

PA

SS

W
E

'R
E

O

N
.

6
7

0

A

.B
Y

T
E

0

:X

.B
Y

T
E

0

:Y

.B
Y

T
E

0

;
TO

H

O
LD

R

E
G

IS
T

E
R

S
D

U
R

IN
G

P

SU
B

R
.

C
H

EC
K

ER

6
8

0

PT

.B
Y

T
E

0

0
;

T
E

M
PO

R
A

R
IL

Y

H
O

LD
S

PA
R

R
A

Y

(I
N

"A

R
R

A
Y

")

2-
B

Y
T

E

6
9

0

BN
U

M
FL

A
G

.B

Y
T

E

0
;

FO
R

.B

Y
T

E

IN

"I
N

D
IS

K
"

7
0

0

B
FL

A
G

.B

Y
T

E

0
0

;
FO

R

NU
M

W
ER

K
IN

"I

N
D

IS
K

"
7

1
0

A

D
D

N
U

M

.B
Y

T
E

0

0
;

N
U

M
BE

R
TO

A

D
D

FO

R

+

PS
EU

D
O

7

2
0

PL

U
SF

L
A

G

.B
Y

T
E

0

;
FL

A
G

SH

O
W

S
TH

A
T

+

PS
EU

D
O

H

A
PP

E
N

E
D

.
7

3
0

B

Y
TF

LA
G

.B

Y
T

E

0
;

SH
O

W
S

TH
A

T
<

O

R
>

H

A
PP

E
N

E
D

.
7

4
0

D

IS
K

FL
A

G

.B
Y

T
E

0

;
SH

O
W

S
TO

SE

N
D

B

Y
T

E
S

TO

D
IS

K

O
B

JE
C

T

F
IL

E

7
5

0

PR
IN

T
FL

A
G

.B

Y
T

E

0
;

SH
O

W
S

TO

SE
N

D

B
Y

TE
S

TO

P
R

IN
T

E
R

7

6
0

PO

K
EF

LA
G

.B

Y
T

E

0
;

SH
O

W
S

TO

SE
N

D

B
Y

T
E

S
TO

M

EM
O

RY

(O
B

JE
C

T

C
O

D
E

)
7

7
0

C

O
LF

LA
G

.B

Y
T

E

0
;

EN
C

O
U

N
TE

R
ED

A

 C
O

LO
N

(U

SE
D

BY

IN

D
IS

K
)

78
0

FO
U

N
D

FL
A

G

.B
Y

T
E

0

;
D

U
PL

C
A

TE
D

LA

B
EL

N

A
M

E
(U

SE
D

BY

A

R
R

A
Y

)
7

9
0

SF

L
A

G

.B
Y

T
E

0

;
SH

O
W

S
TO

SE

N
D

SO

U
R

C
EC

O
D

E
TO

SC

R
EE

N

8
0

0

H
X

FL
A

G

.B
Y

T
E

0

;
SH

O
W

S
TO

PR

IN
T

SA

A

N
D

O

PC
O

D
ES

IN

H

EX

8
1

0

LO
C

FL
A

G

.B
Y

T
E

0

;
SH

O
W

S
TO

PR

IN
T

A

PC

A

D
D

R
ES

S
LA

B
EL

8

2
0

B

A
B

FL
A

G

.B
Y

T
E

0

;
SH

O
W

S
TO

PR

IN
T

A

RE

M

A
FT

E
R

PR

N
T

IN
PU

T

IN

EV
A

L
8

3
0

L

E
N

PT
R

.B

Y
T

E

0
0

;
H

O
LD

S
LE

N
G

TH

O
F

B
IN

A
R

Y

PR
O

G
R

A
M

8

4
0

FO

PE
N

1
.B

Y
T

E

0
;

H
O

LD
S

TH
E

C
U

R
R

EN
T

IN
PU

T

F
IL

E

0 r-)>

0 V
l

V
l

0 c "" rl 11>
 n 0 a..

11>

~

8
5

0

FO
PE

N
2

.B
Y

T
E

0

;
H

O
LD

S
T

H
E

C

U
R

R
EN

T
O

U
T

PU
T

F

IL
E

o

8
5

5

;-

-
-
-
-
-
-
-
-
-
-
-

D
O

S-
M

A
N

A
G

ER

C
O

N
TR

O
L

B
Y

TE
S

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

8
6

0

O
PN

R
EA

D

.B
Y

T
E

1

0
1

0
0

1
6

2
8

7
0

.B

Y
T

E

4
5

1

4
7

0

0
0

1
4

7

0
1

4
6

0

0
8

8
0

O

PN
W

R
IT

.B

Y
T

E

1
0

1
0

0
1

6
4

8
9

0

.B
Y

T
E

1

2
8

1

4
9

0

0
8

3

1
4

9

8
3

1

4
8

0

0
9

0
0

R

D
1B

.B

Y
T

E

3
1

0
0

0
0

0
0

0
0

0
0

9
1

0

.B
Y

T
E

0

1
4

7

0
1

4
6

0

1
4

5

9
2

0

W
R

1B

.B
Y

T
E

4

1
0

0
0

0
0

0
9

3
0

W

RD
A

TA

.B
Y

T
E

0

0
0

0
83

1

4
9

8

3

1
4

8

83

1
4

7

9
4

0

C
L

O
SE

R

.B
Y

T
E

2

0
0

0
0

0
0

0
0

0
0

0
0

1
4

7

0
1

4
6

0

1
4

5

9
5

0

C
LO

SE
W

.B

Y
T

E

2
0

0
0

0
0

0
0

0
0

0
0

8
3

1

4
9

83

1

4
8

8

3

1
4

7

9
6

0

O
PN

I
.B

Y
T

E

0
;

H
O

LD
S

T
H

E

F
IL

E

O

F
T

H
E

C

U
R

R
EN

T
IN

P
U

T

D
E

V
IC

E

9
7

0

O
PN

O

.B
Y

T
E

0

;
H

O
LD

S
T

H
E

F

IL
E

O
F

T
H

E

C
U

R
R

EN
T

O
U

T
PU

T

D
E

V
IC

E

9
8

0

A
1

.B
Y

T
E

0

;
TE

M
P

ST
O

R
A

G
E

O

F
A

C
C

9

9
0

Y

1
.B

Y
T

E

0
;

TE
M

P
ST

O
R

A
G

E

O
F

Y
-R

E
G

1

0
0

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
0

1
0

.E

N
D

D

E
FS

P
ro

gr
am

 D
-1

3b
.

T
ab

le
s,

Pr

oD
O

S
V

er
si

on

1
0

;

PR
O

D
O

S
T

A
B

L
E

S
2

0

;
T

A
B

L
E

O

F
M

N
EM

O
N

IC
S

A
N

D

PA
R

A
L

L
E

L

TA
B

LE

O
F

O
PC

O
D

E
/

A
D

D
R

E
SS

TY

PE

D
A

TA

3
0

;

B
U

FF
E

R
S

A
N

D

M
E

SS
A

G
E

S,

F
L

A
G

S
,

P
O

IN
T

E
R

S
,

R
E

G
IS

T
E

R
S

4
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

M
N

E
M

O
N

IC
S,

T

Y
P

E
S

,
A

D
D

R
ES

S
M

O
D

E
O

PC
O

D
ES

5

0

M
N

EM
O

N
IC

S
.B

Y
T

E

"L
D

A
L

D
Y

JS
R

R
T

SB
C

SB
E

Q
B

C
C

C
M

P
6

0

.B
Y

T
E

"B

N
E

L
D

X
JM

PS
T

A
ST

Y
ST

X
IN

Y
D

E
Y

7

0

.B
Y

T
E

"D

E
X

D
E

C
IN

X
IN

C
C

PY
C

PX
SB

C
SE

C

8
0

.B

Y
T

E

"A
D

C
C

L
C

T
A

X
T

A
Y

T
X

A
T

Y
A

PH
A

PL
A

9

0

.B
Y

T
E

"B

R
K

B
M

IB
PL

A
N

D
O

R
A

E
O

R
B

IT
B

V
C

0 r-)>

0 V
l

V
l

0 c: .., (
)

(I
) n 0 Q
.,

(I

)

CJ
J

\0

.....
.

H
J0

. B

Y
T

E

"B
V

S
R

O
L

R
O

R
L

S
R

C
L

D
C

L
IA

S
L

P
H

P

1
1

0

.B
Y

T
E

"P

L
P

R
T

IS
E

D
S

E
IT

S
X

T
X

S
C

L
V

N
O

P

1
2

0

T
Y

P
E

S

.B
Y

T
E

1

5
9

0
8

8
8

1
1

3
0

.B

Y
T

E

8
5

6
1

2
2

0
0

1
4

0

.B
Y

T
E

0

2
0

2
4

4
1

0
1

5
0

.B

Y
T

E

1
0

0
0

0
0

0
0

1
6

0

.B
Y

T
E

0

8
8

1
1

1
7

8
1

7
0

.B

Y
T

E

8
3

3
3

0
0

3
0

1
8

0

.B
Y

T
E

0

0
0

0
0

0
0

0
1

9
0

O

PS

.B
Y

T
E

1

6
1

1

6
0

3

2

9
6

1

7
6

2

4
0

1

4
4

1

9
3

2

0
0

.B

Y
T

E

2
0

8

1
6

2

7
6

1

2
9

1

3
2

1

3
4

2

0
0

1

3
6

2

1
0

.B

Y
T

E

2
0

2

1
9

8

2
3

2

2
3

0

1
9

2

2
2

4

2
2

5

5
6

2

2
0

.B

Y
T

E

9
7

2

4

1
7

0

1
6

8

1
3

8

1
5

2

7
2

1

0
4

2

3
0

.B

Y
T

E

0
4

8

1
6

3

3

1
6

5

3
6

8

0

2
4

0

.B
Y

T
E

1

1
2

3

4

9
8

6

6

2
1

6

8
8

2

8
2

5
0

.B

Y
T

E

4
0

6

4

2
4

8

1
2

0

1
8

6

1
5

4

1
8

4

2
3

4

2
6

0

;-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
EX

R

O
U

T
IN

E

T
A

B
L

E

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
7

0

H
EX

A

.B
Y

T
E

"0

1
2

3
4

5
6

7
8

9
A

B
C

D
E

F
"

2
8

0

;-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-

B
U

F
F

E
R

S

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
9

0
L

A
B

E
L

.B

Y
T

E

~

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
9

5

.B
Y

T
E

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

~

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3
0

0

B
U

FF
E

R

.B
Y

T
E

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3

0
5

.B

Y
T

E

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3
1

0

B
U

FM

.B
Y

T
E

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0 I)>

0 (.
/)

(.
/)

0 c ., ("
)

(1
) n 0 a.

(1
)

w

3
1

5

\.
0

N

3
2

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

5
1

0

5
2

0

5
3

0

5
4

0

5
5

0

5
6

0

5
7

0

5
8

0

.B
Y

T
E

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
H

EX
B

U
F

.B
Y

T
E

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

N
U

B
U

F
.B

Y
T

E

0
0

0
0

0
0

0
;-

-
-
-
-

R
E

G
IS

T
E

R
S

U

SE
D

BY

V

A
LD

EC

-
-
-
-
-
-
-

R
A

D
D

.B

Y
T

E

0
0;

T
E

M
PO

R
A

R
Y

R

E
G

IS
T

E
R

FO

R

D
O

U
B

LE

A
D

D
IT

IO
N

V

R
EN

D

.B
Y

T
E

0

;
TE

M
P

RE
G

TO

H

O
LD

EN

D

O
F

PR
O

G
R

A
M

C

O
U

N
T

E
R

T

ST
O

R
E

.B

Y
T

E

0
0

;
TE

M
PO

R
A

R
Y

R

E
G

IS
T

E
R

FO

R

M
U

L
T

IP
L

Y

;-
-
-
-

M
ES

SA
G

ES

TO

PR
IN

T

TO

SC
R

E
E

N

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

M
N

O
ST

A
R

T
.B

Y
T

E

"N
O

ST

A
R

T
A

D
D

R
E

S
S

":
.B

Y
T

E

0
M

BO
R

.B
Y

T
E

"
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

B
R

A
N

C
H

O

U
T

O
F

R
A

N
G

E
":

.B
Y

T
E

0

N
O

LA
B

.B

Y
T

E

"U
N

D
E

FI
N

E
D

L

A
B

E
L

":
.B

Y
T

E

0
N

O
A

R
G

.B

Y
T

E

II

N
A

K
ED

L

A
B

E
L

":
 .

B
Y

T
E

0

M
D

IS
E

R

.B
Y

T
E

II

<

<
<

<
<

<
<

<
D

IS
K

E

R
R

O
R

>
>

>
>

>
>

>
>

":

.B
Y

T
E

0

M
D

U
PL

A
B

.B

Y
T

E
"
--

D
U

PL
IC

A
T

E
D

L

A
B

E
L

--
":

.B
Y

T
E

0

M
ER

R
O

R

.B
Y

T
E

"
--

SY
N

TA
X

E

R
R

O
R

--
":

.B
Y

T
E

0

;-
-
-
-
-
-
-
-
-
-
-

F
L

A
G

S
,

P
O

IN
T

E
R

S
,

R
E

G
IS

T
E

R
S

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

O
P

.B
Y

T
E

0

;
O

PC
O

D
E

T
P

.B
Y

T
E

0

;
T

Y
PE

TA

.B

Y
T

E

0
0

;
ST

A
R

T

A
D

D
R

ES
S

L
IN

E
N

.B

Y
T

E

0
0

;
C

U
R

R
E

N
T

L

IN
E

EN
D

FL
A

G

.B
Y

T
E

0

;
E

N
D

-O
F

-P
R

O
G

FL

A
G

W

O
RK

.B

Y
T

E

0
0

;
TE

M
P

W
O

RK

A
R

EA

R
E

SU
L

T

.B
Y

T
E

0

0
;

TE
M

P
A

N
SW

ER

A
R

EA

A
R

G
N

.B

Y
T

E

0
0

;
V

A
LU

E
O

F
A

R
G

U
M

EN
T

A
R

G
S

IZ
E

.B

Y
T

E

0
;

LE
N

G
TH

O

F
A

RG
U

M
EN

T
E

X
P

R
E

S
S

F

.B
Y

T
E

0

;
IS

IT

A

N

E
X

PR
E

SS

L
A

B
E

L

H
EX

FL
A

G

.B
Y

T
E

0

;
H

EX

N
U

M
B

ER

FL
A

G

0 r-)>

0 (
/)

(
/)

0 c: ..., n ("!
) n 0 0
..

("!

)

5
9

0

H
EX

LE
N

.B

Y
T

E

0
;

LE
N

G
TH

O

F
H

EX

N
U

M
BE

R
6

0
0

N

U
M

SI
Z

E

.B
Y

T
E

0

;
LE

N
G

TH

O
F

A
S

C
II

N

U
M

BE
R

IN

B
U

FF
E

R

(F
O

R

V
A

LD
EC

)
6

1
0

K

EY
N

U
M

.B

Y
T

E

0
;

P
O

S
IT

IO
N

O

F
K

EY
W

O
RD

IN

B

A
S

IC
'S

TA

B
LE

6

2
0

L

A
B

S
IZ

E

.B
Y

T
E

0

;
S

IZ
E

O

F
L

A
B

E
L

(E

Q
U

A
TE

T

Y
PE

)
6

3
0

L

A
B

PT
R

.B

Y
T

E

0
0

;
PO

IN
T

S
TO

A

RR
A

Y

P
O

S
IT

IO
N

FO

R

A
RG

ST

O
R

A
G

E
6

4
0

A

R
R

A
Y

TO
P

.B
Y

T
E

0

0
;

TO
P

O
F

A
R

R
A

Y
S-

-S
A

M
E

A

S
M

EM
TO

P
B

EF
O

R
E

L
A

B
E

L
S.

6

5
0

B

U
FL

A
G

.B

Y
T

E

0
;

A
V

O
ID

O
R

(

D
U

R
IN

G

A
R

R
A

Y
S

A
N

A
L

Y
SI

S
6

6
0

PA

SS

.B
Y

T
E

0

;
W

H
IC

H

PA
SS

W

E
'R

E

O
N

.
6

7
0

A

.B

Y
T

E

0
:X

.B

Y
T

E

0
:Y

.B

Y
T

E

0
;

TO

H
O

LD

R
E

G
IS

T
E

R
S

D

U
R

IN
G

P

SU
B

R
.

C
H

EC
K

ER

6
8

0

PT

.B
Y

T
E

0

0
;

T
E

M
PO

R
A

R
IL

Y

H
O

LD
S

PA
R

R
A

Y

(I
N

"A

R
R

A
Y

")

2-
B

Y
T

E

6
9

0

B
N

U
M

FL
A

G

.B
Y

T
E

0

;
FO

R

.B
Y

T
E

IN

"I

N
D

IS
K

"
7

0
0

B

FL
A

G

.B
Y

T
E

0

0
;

FO
R

N

U
M

W
ER

K

IN

"I
N

D
IS

K
"

7
1

0

A
D

D
N

U
M

.B

Y
T

E

0
0

;
N

U
M

BE
R

TO

A
D

D

FO
R

+

PS

EU
D

O

7
2

0

PL
U

SF
L

A
G

.B

Y
T

E

0
;

FL
A

G

SH
O

W
S

TH
A

T
+

PS

E
U

D
O

H

A
PP

E
N

E
D

.
7

3
0

B

Y
TF

LA
G

.B

Y
T

E

0
;

SH
O

W
S

TH
A

T
<

 O
R

>
 H

A
PP

E
N

E
D

.
7

4
0

D

IS
K

FL
A

G

.B
Y

T
E

0

;
SH

O
W

S
TO

SE

N
D

B

Y
TE

S
TO

D

IS
K

O

B
JE

C
T

F

IL
E

7

5
0

PR

IN
T

FL
A

G

.B
Y

T
E

0

;
SH

O
W

S
TO

SE

N
D

B

Y
TE

S
TO

PR

IN
T

E
R

7

6
0

PO

K
EF

LA
G

.B

Y
T

E

0
;

SH
O

W
S

TO

SE
N

D

B
Y

TE
S

TO

M
EM

O
RY

(O

B
JE

C
T

C

O
D

E)

7
7

0

C
O

LF
LA

G

.B
Y

T
E

0

;
EN

C
O

U
N

TE
R

ED

A
 C

O
LO

N

(U
SE

D

BY

IN
D

IS
K

)
7

8
0

FO

U
N

D
FL

A
G

.B

Y
T

E

0
;

D
U

PL
C

A
TE

D

LA
B

EL

NA
M

E
(U

SE
D

BY

A

R
R

A
Y

)
7

9
0

SF

LA
G

.B

Y
T

E

0
;

SH
O

W
S

TO

SE
N

D

SO
U

R
C

EC
O

D
E

TO

SC
R

E
E

N

8
0

0

H
X

FL
A

G

.B
Y

T
E

0

;
SH

O
W

S
TO

P

R
IN

T

SA

A
N

D

O
PC

O
D

ES

IN

H
EX

8

1
0

LO

C
FL

A
G

.B

Y
T

E

0
;

SH
O

W
S

TO

P
R

IN
T

A

 P
C

A

D
D

R
E

SS

LA
B

EL

8
2

0

B
A

B
FL

A
G

.B

Y
T

E

0
;

SH
O

W
S

TO

P
R

IN
T

A

 R
EM

A

FT
E

R

PR
N

T
IN

PU
T

IN

EV

A
L

8
4

0

FO
PE

N
1

.B
Y

T
E

0

;
H

O
LD

S
TH

E
C

U
R

R
EN

T
IN

PU
T

F

IL
E

8

5
0

FO

PE
N

2
.B

Y
T

E

0
;

H
O

LD
S

TH
E

C
U

R
R

EN
T

O
U

TP
U

T
F

IL
E

8

5
5

;-

-
-
-
-
-
-
-
-
-
-
-

PR
O

D
O

S
M

LI

PA
R

A
M

ET
ER

L

IS
T

S

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

8
5

7

.B
Y

T
E

2

5
5

;
M

A
RK

ER

8
5

8

*=

$
9

1
0

0
;

F
IX

L

O
C

A
T

IO
N

S
O

F
PA

R
A

M
ET

ER

L
IS

T
S

w

8

6
0

;C

R
E

L
IS

T

.B
Y

T
E

7

<N
A

M
EB

U
FF

>N

A
M

EB
U

FF

$C
3

6
0

0
l

0
0

0
0

~

8
6

5

C
R

E
L

IS
T

.B

Y
T

E

7
55

1

4
5

19

5
6

0
0

l
0

0
0

0

0 I)>

0 V
>

V
>

0 c,
 n ('!

) n 0 0
.

('!
)

~

8
7

0

C
L

O
S

L
IS

T

.B
Y

T
E

1

0
~

8
8

0

rO
P

E
N

L
IS

T

.B
Y

T
E

3

<N
A

M
EB

U
FF

>N

A
M

EB
U

FF

0
0

0
8

8
5

O

P
E

N
L

IS
T

.B

Y
T

E

3
55

1

4
5

0

0
0

8
9

0

S
E

O
F

L
IS

T

.B
Y

T
E

2

0
0

0
0

9
0

0

:R
W

L
IS

T

.B
Y

T
E

4

0
<D

A
T

A
B

U
FF

>D

A
T

A
B

U
FF

1

0
0

0
9

0
5

R

W
L

IS
T

.B

Y
T

E

4
0

5
4

1

4
5

1

0
0

0
9

1
0

:I

N
F

O
L

IS
T

.B

Y
T

E

7
<N

A
M

EB
U

FF

>N
A

M
EB

U
FF

$C

3
6

0
0

0
0

0
0

0
0

0
9

1
5

IN

F
O

L
IS

T

.B
Y

T
E

7

55

1
4

5

1
9

5

6
0

0
0

0
0

0
0

0
0

9
1

6

;P
R

E
F

L
IS

T

.B
Y

T
E

1

<N
A

M
EB

U
FF

>N

A
M

EB
U

FF

9
1

7

P
R

E
F

L
IS

T

.B
Y

T
E

1

55

1
4

5

9
1

8

;O
L

IN
L

IS
T

.B

Y
T

E

2
0

<N
A

M
E

B
U

FF
+1

>N

A
M

E
B

U
FF

+1

9
1

9

O
L

IN
L

IS
T

.B

Y
T

E

2
0

56

1
4

5

9
2

0

D
A

TA
B

U
FF

.B

Y
T

E

0
9

2
4

N

A
M

EB
U

FF

.B
Y

T
E

0

9
2

5

F
IL

E
N

.B

Y
T

E

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

9
3

0

.B
Y

T
E

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
9

4
0

.B

Y
T

E

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

9
5

0

.B
Y

T
E

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
9

6
0

O

P
N

I
.B

Y
T

E

0
:

H
O

LD
S

TH
E

F
IL

E

O

F
TH

E
C

U
R

R
EN

T
IN

P
U

T

D
E

V
IC

E

9
7

0

O
PN

O

.B
Y

T
E

0

:
H

O
LD

S
TH

E
F

IL
E

O
F

TH
E

C
U

R
R

EN
T

O
U

T
PU

T

D
E

V
IC

E

9
8

0

A
1

. B
Y

TE

0
:

TE
M

P
ST

O
R

A
G

E
O

F
A

C
C

9

9
0

Y

1
.B

Y
T

E

0
:

TE
M

P
ST

O
R

A
G

E
O

F
Y

-R
E

G

1
0

0
0

:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
0

1
0

.E

N
D

D

E
FS

0 r-)>

0 V
l

V
l

0 c r:l ro ("
)

0 0
..

ro

Library of Subroutines
Here is a collection of techniques you'll need to use in many
of your ML programs. Those techniques which are not inher
ently easy to understand are followed by an explanation.

Increment and Decrement Double-Byte Numbers
You'll often want to raise or lower a number by 1. To in
crement a number, you add 1 to it: Incrementing 5 results in 6.
Decrement lowers a number by 1. Single-byte numbers are
easy; you just use INC or DEC. But you'll often want to in
crement two-byte numbers which hold addresses, game scores,
pointers, or some other number which requires two bytes. Two
bytes, ganged together and seen as a single number, can hold
values from 0 ($0000) up to 65535 ($FFFF). Here's how to
raise a two-byte number by 1, to increment it:
(Let's assume that the number you want to increment or decrement
is located in addresses $0605 and $0606, and the ML program seg
ment performing the action is located at $5000.)

5000 INCREMENT INC $0605 (Raise the low byte.)
5003 BNE GOFORTH (If not zero, leave high byte alone.)
5005 INC $0606 (Raise high byte .)
5008 GOFORTH... (Continue with program.)

The trick in this routine is the BNE. If the low byte isn't
raised to 0 (from 255), we don ' t need to add a carry to the
high byte, so we jump over it. However, if the low byte does
turn into a 0, the high byte must then be raised. This is similar
to the way an ordinary decimal increment creates a carry
when you add 1 to 9 (or to 99 or 999). The lower number
turns to 0, and the next column over is raised by 1.

To double-decrement, you need an extra step. The reason
it's more complicated is that the 6502 chip has no way to test
if you've crossed over to $FF, down from $00. BNE and BEQ
will test if something is 0, but nothing tests for $FF. (The N
flag is turned on when you go from $00 to $FF, and BPL or
BMI could test it.) The problem with it, though, is that the N
flag isn ' t limited to sensing $FF. It is sensitive to any number
higher than 127 decimal ($7F).

So, here's the way to handle double-deckers:

5000 LOA $0605 (Load in the low byte, affecting the
zero flag .)

397

E: Library of Subroutines

5003 BNE FIXLOWBYTE

5005 DEC $0606
5008 FIXLOWBYTE DEC $0605

(If it's not zero, lower it, skipping
high byte.)
(Zero in low byte forces this.)
(Always dec the low byte.)

Here we always lower the low byte, but lower the high
byte only when the low byte is found to be zero . If you think
about it, that's the way any subtraction would work.

Comparison
Comparing a single-byte against another single-byte is easily
achieved with CMP. Double-byte comparison can be handled
this way:

(Assume that the numbers you want to compare are located in ad
dresses $0605,0606 and $0700,0701. The ML program segment
performing the comparison is located at $5000.)
5000 SEC
5001 LOA $0605 (Low byte of first number)
5004 SBC $0700 (Low byte of second number)
5007 STA $0800 (Temporary holding place for this result)
500A LOA $0606 (High byte of first number)
5000 SBC $0701 (High byte of second number, leave result in A)
5010 ORA $0800 (Results in zero if A and $0800 were both zero)

The flags in the status register are left in various states
after this routine-you can test them with the B instructions
and branch according to the results . The ORA sets the Z (zero)
flag if the results of the first subtraction (left in $0800) and the
second subtraction (in A, the accumulator) were both zero .
This would happen only if the two numbers tested were
identical, and BEQ would test for this (Branch if EQual).

If the first number is lower than the second, the carry flag
would have been cleared, so BCC (Branch if Carry Clear) will
test for that possibility. If the first number is higher than the
second, BCS (Branch if Carry Set) will be true. You can there
fore branch with BEQ for =, BCC for <, and BCS for > . Just
keep in mind which number you are considering the first and
which the second in this test.

Double-Byte Addition
CLC ADC and SEC SBC will add and subtract one-byte num
bers . To add two-byte numbers, use:

(Assume that the numbers you want to add are located in addresses

398

E: Library of Subroutines

$0605,0606 and $0700,0701. The ML program segment performing
the addition is located at $5000.)

5000 CLC (Always do this before any addition .)
5001 LD A $0605
5004 ADC $0700
5007 STA $0605 (The result will be left in $0605,0606.)
500A LOA $0606
5000 AOC $0701
5010 STA $0606

It's not necessary to put the result on top of the number
in $0605,0606-you can put it anywhere. But you'll often be
adding a particular value to another and not needing the orig
inal any longer-adding ten points to a score for every blasted
alien is an example. If this were the case, following the logic
of the routine above, you would have a 10 in $0701,0702:
0701 OA (The ten points you get for hitting an alien)
0702 00

You'd want that 10 to remain undisturbed throughout the
game. The score, however, keeps changing during the game
and, held in $0605,0606, it can be covered over, replaced with
each addition.

Double-Byte Subtraction
This is quite similar to double-byte addition. Since subtracting
one number from another is also a comparison of those two
numbers, you could combine subtraction with the double-byte
comparison routine above (using ORA). In any event, this is
the way to subtract double-byte numbers. Be sure to keep
straight which number is being subtracted from the other.
We'll call the number being subtracted the second number.

(Assume that the number you want to subtract [the " second
number"] is located in addresses $0700,0701 , and the number it is
being subtracted from [the " first number"] is held in $0605,0606.
The result will be left in $0605,0606. The ML program segment
performing the subtraction is located at $5000.)

5000 SEC
5001 LD A $0605
5004 SBC $0700
5007 STA $0605
500A LOA $0606

(Always do this before any subtraction.)
(Low byte of first number)
(Low byte of second number)
(The result will be left in $0605,0606.)
(High byte of first number)

399

E: Library of Subroutines

5000 SBC $0701 (High byte of second number)
5010 STA $0606 (High byte of final result)

Multibyte Addition and Subtraction
Using th e methods for adding and subtracting illustrated above,
you can manipulate larger numbers than can be held within
two bytes (65535 is the largest possible two-byte integer).
Here's how to subtract one four-byte-long number from an
other. The locations and conditions are the same as for the two
byte subtraction example above, except the "first number" (the
minuend) is held in the four-byte chain, $0605,0606,0607,0608,
and the "second number" (the subtrahend, the number being
subtracted from the first number) is in $0700,0701,0702,0703.

Also observe that the most significant byte is held in
$0703 and $0608. We'll use the Y register for indirect Y
addressing, four bytes in zero page as pointers to the two
numbers, and the X register as a counter to make sure that all
four bytes are dealt with. This means that X must be loaded
with the length of the chains we're subtracting-in this case, 4.

5000 LOX # 4 (Length of the byte chains)
5002 LOY #0 (Set Y)
5004 SEC (Always before subtraction)
5005 LOOP LOA (FIRST),Y
5007 SBC (SECOND), Y
5009 STA (FIRST), Y

500B INY
500C DEX
5010 BNE LOOP

(The answer will be left in
$0605-0608.)
(Raise index to chains)
(Lower counter)
(Haven't yet done all four bytes)

Before this will work, the pointers in zero page must have
been set up to allow the indirect Y addressing. This is one way
to do it:

2000 FIRST = $FB (Define zero page pointers at $FB and $FD)
2000 SECOND = $FD
2000 SETUP LOA # 5 (Set up pointer to $0605)
2002 STA FIRST
2004 LOA #6
2006 STA FIRST +1
2008 LOA #0 (Set up pointer to $0700)
200A STA SECOND
200C LOA # 7
200E STA SECOND + 1
400

E: Library of Subroutines

Multiplication
X2
ASL (no argument used, "accumulator addressing mode") will
multiply the number in the accumulator by 2.

X 3
(To multiply by 3, use a temporary variable byte we'll call
TEMP.)

5000 STA TEMP (Put the number into the variable)
5003 ASL (Multiply it by 2)
5004 AOC TEMP ((X * 2 + X = X * 3) the answer is in A.)

X 4
(To multiply by 4, just ASL twice.)

5000 ASL (* 2)
5001 ASL (* 2 again)

X 4 (Two Byte)
(To multiply a two-byte integer by 4, use a two-byte variable
we'll call TEMP and TEMP+ 1.)

5000 ASL TEMP (Multiply the low byte by 2)
5003 ROL TEMP + l (Moving any carry into the high byte)
5006 ASL TEMP (Multiply the low byte by 2 again)
5009 ROL TEMP + l (Again acknowledge any carry)

X 10
(To multiply a two-byte integer by 10, use an additional two
byte variable we'll call STORE.)

5000 (First, put the number into STORE for
safekeeping.)

5000 LOA TEMP:STA STORE:LOA TEMP+l:STA STORE+l
SOOC (Then multiply it by 4.)
SOOC ASL TEMP (Multiply the low byte by 2)
SOOF ROL TEMP+1 (moving any carry into the high byte .)
5012 ASL TEMP (Multiply the low byte by 2 again.)
5015 ROL TEMP + l; (Again acknowledge any carry.)
5018 (Then add the original, resulting in X * 5.)
5018 LOA STORE
501B AOC TEMP
SOlE STA TEMP
5021 LOA STORE + l
5010 AOC TEMP+1

401

E: Library of Subroutines

5024 STA TEMP+1
5027 (Then just multiply by 2 since (5 * 2 = 10).)
5027 ASL TEMP
502A ROL TEMP + 1

X ?
(To multiply a two-byte integer by other odd values, just use a
similar combination of addition and multiplication which re
sults in the correct amount of multiplication.)

X 100
(To multiply a two-byte integer by 100, just go through the
above subroutine twice.)

X 256
(To multiply a one-byte integer by 256, just transform it into a
two-byte integer.)

5000 LDA TEMP
5003 STA TEMP+1
5006 LDA #0
5008 STA TEMP

Division
--7- 2
LSR (no argument used, "accumulator addressing mode") will
divide the number in the accumulator by 2.

+ 4
(To divide by 4, just LSR twice.)

5000 LSR (/ 2)
5001 LSR (/ 2 again)

--:-- 4 (Two Byte)
(To divide a two-byte integer, called TEMP, by 2)

5000 LSR TEMP + 1 (Shift high byte right)
5001 ROR TEMP (pulling any carry into the low byte .)

402

Number Tables
This lookup table should make it convenient when you need
to translate hex, binary, or decimal numbers. The first column
lists the decimal numbers between 1 and 255. The second col
umn is the hexadecimal equivalent. The third column is the
decimal equivalent of a hex most significant byte, or MSB. The
fourth column is the binary.

If you need to find out the decimal equivalent of the hex
number $FD15, look up $FD in the hex column and you'll see
that the MSB is 64768. Then look up the $15 in the hex col
umn to get the LSB (it's 21 decimal) and add 21 +64768 to get
the answer: 64789.

Going the other way, from decimal to hex, you could
translate 64780 into hex by looking in the MSB column for the
closest number (it must be smaller, however). In this case, the
closest smaller number is 64768, so jot down $FD as the hex
MSB. Then subtract 64768 from 64780 to get the LSB: 12.
Look up 12 in the decimal column (it is $0C hex) and put the
$FD MSB together with the $0C LSB for your answer: $FDOC.

With a little practice, you can use this chart for fairly
quick conversions between the number systems. Most of your
translations will only involve going from hex to decimal or
vice versa with the LSB of hex numbers, the first 255 num
bers, which require no addition or subtraction. Just look them
up in the table.

Table F-1. Number Tables

Decimal Hex Decimal Binary
(LSB) (MSB)

1 01 256 00000001
2 02 512 00000010
3 03 768 00000011
4 04 1024 00000100
5 05 1280 00000101
6 06 1536 00000110
7 07 1792 00000111
8 08 2048 00001000
9 09 2304 00001001

10 0A 2560 00001010
11 08 2816 00001011
12 0C 3072 00001100
13 0D 3328 00001101
14 0E 3584 00001110
15 0F 3840 00001111

405

F: Number Tables

Decimal Hex Decimal Binary
(LSB) (MSB)

16 10 4096 000li<J000
17 11 4352 00010001
18 12 4608 00010010
19 13 4864 00010011
20 14 5120 00010100
21 15 5376 100010101
22 16 5632 00010110
23 17 5888 00010111
24 18 6144 00011000
25 19 6400 00tJ11001
26 1A 6656 00011010
27 18 6912 00011011
28 1C 7168 00011100
29 10 7424 00011101
30 1E 7680 00<l11110
31 lF 7936 00011111
32 20 8192 00100000
33 21 8448 00100001
34 22 8704 00100010
35 23 8960 00100011
36 24 9216 001001010
37 25 9472 0010kJ101
38 26 9728 00100110
39 27 9984 0010k:l111
40 28 10240 00101000
41 29 10496 00101001
42 2A 10752 00101010
43 28 11008 00101011
44 2C 11264 00101100
45 20 11520 00101101
46 2E 11776 00101110
47 2F 12032 00101111
48 30 12288 00110000
49 31 12544 00110001
50 32 12800 00110010
51 33 13056 00110011
52 34 13312 00110100
53 35 13568 00110101
54 36 13824 00110110
55 37 14080 00110111
56 38 14336 00111000
5 7 39 14592 00111001
58 3A 14848 00111010
59 38 15104 00111011
60 3C 15360 00111100
61 30 15616 00111101
62 3E 15872 00111110
63 3F 16128 00111111

406

F: Number Tables

Decimal Hex Decimal Binary
(LSB) (MSB)

64 40 16384 01000000
65 41 16640 01000001.
66 42 16896 01000010
67 43 17152 01000011
68 44 17408 01000100
69 45 17664 01000101
70 46 17920 01000110
71 47 18176 01000111
72 48 18432 01001000
73 49 18688 01001001
74 4A 18944 01001010
75 48 19200 01001011
76 4C 19456 01001100
77 4D 19712 01001101
78 4E 19968 0H'l0ll10
79 4F 20224 kH001lll
80 50 2(3480 0HH0000
81 51 20736 01010001
82 52 20992 01010010
83 53 21248 01010011
84 54 21504 01010100
85 55 21760 01010101
86 56 22016 010HH10
87 57 22272 01010111
88 58 22528 01011000
89 S9 22784 01011001
90 SA 23040 01011010
91 58 23296 01011011
92 sc 23552 01011100
93 50 23808 01011101
94 5E 24064 01011110
95 SF 24320 01011111
96 60 24576 011000100
97 61 24832 01100001
98 62 25088 011000112'.1
99 63 25344 01100011

100 64 25600 01100100
101 65 25856 01100101
102 66 26112 01100110
103 67 26368 01100111
104 68 26624 01101000
105 69 26880 01101001
106 6A 27136 01101010
107 6B 27392 01101011
108 6C 27648 01HH100
109 6D 27904 01101101
110 6E 28160 01101110

407

F: Number Tables

Decimal Hex Decimal Binary
(LSB) (MSB)

111 6F 28416 01101111
112 70 28672 i01110000
113 71 28928 01110001
114 72 29184 01110010
115 73 29440 01110011
116 74 29696 01110H:l0
117 75 29952 01110101
118 76 30208 01110110
119 77 30464 01110111
120 78 30720 01111000
121 79 30976 01111001
122 7A 31232 01111010
123 7B 31488 01111011
124 7C 31744 01111100
125 70 32000 01111101
126 7E 32256 01111110
127 7F 32512 01111111
128 80 32768 10000000
129 81 33024 10000001
130 82 33280 10000010
131 83 33536 HH:HW011
132 84 33792 10000100
133 85 34048 10000101
134 86 34304 1000012_0
135 87 34560 10000111
136 88 34816 10001000
137 89 35072 10001001
138 8A 35328 10001010
139 8B 35584 10001011
140 8C 35840 10001100
141 80 36096 10001Hll
142 BE 36352 10001110
143 8F 36608 10001111
144 90 36864 10010000
145 91 37120 10010001
146 92 37376 10010010
147 93 37632 10010011
148 94 37888 10010100
149 95 38144 10010101
150 96 38400 10010110
151 97 38656 10010111
152 98 38912 10011000
153 99 39168 10011001
154 9A 39424 10011010
155 9B 39680 10011011
156 9C 39936 10011100
157 90 40192 10011101
158 9E 40448 10011110

408

F: Number Tables

Decimal Hex Decimal Binary
(LSB) (MSB)

159 9F 407114 10011111
160 A0 40960 10100000
161 A1 41216 10100001
162 A2 41472 10100010
163 A3 41728 10100011
164 A4 41984 10100100
165 AS 42240 10100101
166 A6 42496 10100110
167 A7 42752 10100111
168 A8 43008 10101000
169 A9 43264 10101001
170 AA 43520 HH01010
171 AB 43776 10101011
172 AC 44032 HH01100
173 AD 44288 H:l101101
174 AE 44544 101011H:l
ll~ AF 44800 10101111
176 Bkl 45k.J56 101J.0(()00
177 B1 45312 101HJ001
178 B2 45568 10110010
179 B3 45824 10110011
180 B4 46080 10110100
181 B5 46336 10110101
182 86 46592 10110110
183 B7 46H48 10110111
184 B8 47104 10111000
185 B9 47360 10111001
186 BA 47616 10111010
187 BB 47872 10111011
188 BC 48128 10111100
189 BD 48384 10111101
190 BE 48640 10111110
191 BF 48896 10111111
192 C0 49152 11000000
193 C1 49408 11000001
194 C2 49664 11000010
195 C3 49920 11000011
196 C4 50176 11000100
197 cs 50432 11000101
198 C6 50688 11000110
199 C7 50944 11000111
200 CB 51200 11001000
201 C9 51456 11001001
202 CA 51712 11001010
203 CB 51968 11001011
204 cc 52224 11001100
205 CD 52480 11001101

409

F: Number Tables

Decimal Hex Decimal Binary
(LSB) (MSB)

206 CE 52736 11001110
207 CF 52992 11001111
208 00 53248 11010000
209 01 53504 11010001
210 02 53760 11010010
211 03 54016 1101001.1
212 04 54272 11010100
213 05 54528 11010101
214 06 54784 11010110
215 07 55040 11010111
216 08 55296 11011000
217 09 55552 11011001
218 DA 55808 11011010
219 DB 56064 11011011
220 DC 56320 1H:l11100
221 DO 56~76 11011101
222 DE 56832 11011110
223 OF 57088 11011111
224 E0 57344 11100000
225 E1 57600 11100001
226 E2 57856 11100010
227 E3 58112 11100011
228 E4 58368 1110kH00
229 E5 58624 11100101
230 E6 58880 11100110
231 E7 59136 11100111
232 E8 59392 11101000
233 E9 59648 1110HJ01
234 EA 59904 11101010
235 EB 60160 11101011
236 EC 60416 11101100
237 ED 60672 11101101
238 EE 60928 11101110
~39 EF 61184 11101111
240 F0 61440 11110000
241 F1 61696 11110001
242 F2 61952 11110k.l10
243 F3 62208 11110011
244 F4 62464 11110100
245 F5 62720 11110101
246 F6 62976 11110110
247 F7 63232 11110111
248 FS 63488 11111000
249 F9 63744 11111001
250 FA 64000 11111010
251 FB 64256 11111011
252 FC 64512 11111100

410

F: Number Tables

Decimal
(LSB)

253
254
255

Hex Decimal
(MSB)

FD 64 768
FE 65024
FF 65280

Binary

11111101
11111110
11111111

The following program will print copies of this number
table . You might need to make some adjustments to line 90
depending in which slot you have your printer card. As the
program is written, it will print to PR #1. If you just want to
print to the screen, either delete line 90 or enter RUN 100.

Program F-1. Number Tables

90 PRINT CHR$ (4);"PR#l": REM CHANGE THIS TO MATCH
THE LOCATION OF YOUR PRINTER CARD

100 HE$ = "0123456789ABCDEF"
110 FOR X = 1 TO 255
120 B = 2:C = 1
122 IF X< 10 THEN PRINT" ";: GOTO 130
124 IF X < 100 THEN PRINT " "
130 PRINT X;" ";:DE= X: GOSUB 240
135 REM CREATE BINARY
138 Z = X:L = 7
140 FOR Q = 0 TO 7:T = INT (X I 2)
1?0 K$(L) = CHR$ (48 + (X- T * 2))
160 L = L- 1:X = T: NEXT Q
165 X= Z: PRINT TAB(5);
170 FOR I= 0 TO 7: PRINT K$(1);: NEXT I: PRINT
220 NEXT X: PRINT CHR$ (4);"PR#0"
230 END : REM TRANSFORM TO HEX
240 H$ = "": FORM= 1 TO 0 STEP- 1:N% DE I (16

A M):DE =DE-N%* 16 AM
250 H$ = H$ +MID$ (HE$,N% + 1,1): NEXT M
260 PRINT H$" ";:DE= X* 256
262 IF DE< 1000 THEN PRINT" ";: GOTO 270
264 IF DE < 10000 THEN PRINT II ";

270 PRINT DE" ";: RETURN

411

Machine Language
Entry Progra111, MLX
Tim Victor

A machine language (ML) program like LADS is usually listed
as a long series of numbers. It's hard to keep your place and
even harder to avoid making mistakes as you type in the list
ing, since an incorrect line looks almost identical to a correct
one. To make error-free entry easier, COMPUTE! Publications
lists ML programs in a format designed to be typed in with a
utility called "MLX." The MLX program uses a checksum sys
tem to catch typing errors almost as soon as they happen.

Apple MLX checks your typing on a line-by-line basis. It
won't let you enter invalid characters or let you continue if
there's a mistake in a line. It won't even let you enter a line or
digit out of sequence. Best of all, you don't have to know any
thing about machine language to enter ML programs with
MLX. Apple MLX makes typing ML programs almost
foolproof.

Using Apple MlX
Type in and save some copies of Apple MLX (Program G-3)
on disk with the filename MLX. It doesn't matter whether you
type it in on a disk formatted for DOS 3.3 or ProDOS. Pro
grams entered with Apple MLX, however, must be saved to a
disk formatted with the same operating system as Apple MLX
itself.

Next, type in and save the MLX Loader program listed be
low. Be sure to use the correct Loader program for your
operating system.

Program G-1. MlX loader, DOS 3.3 Version

10 REM DOS 3.3 MLX LOADER
20 REM FOR USE TO TYPE IN LADS
30 HIMEM: 31228
40 PRINT CHR$(4);"RUN MLX"

Program G-2. MlX loader, ProDOS Version

10 REM ProDOS MLX LOADER
20 REM FOR USE TO TYPE IN LADS
30 FOR I= 768 to I +5

415

G: Machine Language Entry Program, MLX

40 READ A: POKE I,A
50 NEXT I
60 CALL 768
70 PRINT CHR$(4);"RUN MLX"
80 DATA 169,31,32,245,190,96

If you have an Apple lie or lie, make sure that the key
marked CAPS LOCK is in the down position. Run the Loader
program for your operating system. (The Loader programs are
necessary only when using MLX to enter LADS. If you use
MLX to enter other ML programs from other COMPUTE!
publications, the Loaders printed here are not necessary.)

The Loader program will set up your Apple and load
MLX. You'll be asked for the starting and ending addresses of
the ML program. These values are
DOS 3.3 LADS

Starting address: 79F8
Ending address: 9087

ProDOS LADS
Starting address: 7800
Ending address: 917F

The next thing you'll see is a menu asking you to select a
function. The first is (E)NTER DATA. If you're just starting to
type in a program, pick this. Press the E key, and the program
asks for the address where you want to begin entering data.
Type the first number in the first line of the program listing if
you're just starting, or the line number where you left off if
you've already typed in part of a program. Hit the RETURN
key and begin entering the data.

Once you're in Enter mode, Apple MLX prints the address
for each program line for you. You then type in all nine num
bers on that line, beginning with the first two-digit number
after the colon (:). Each line represents eight bytes and a
checksum. When you enter a line and hit RETURN, Apple
MLX recalculates the checksum from the eight bytes and the
address. If you enter more or less than nine numbers, or the
checksum doesn't exactly match, Apple MLX erases the line
you just entered and prompts you again for the same line.

Invalid Characters Banned
Apple MLX is fairly flexible about how you type in the num
bers. You can put extra spaces between numbers or leave the
spaces out entirely, compressing a line into 18 keypresses. Be

416

G: Machine Language Entry Program, MLX

careful not to put a space between two digits in the middle of
a number. Apple MLX will read two single-digit numbers in
stead of one two-digit number (F 6 means F and 6, not F6).

You can't enter an invalid character with Apple MLX.
Only the numerals 0-9 and the letters A-F can be typed in. If
you press any other key (with some exceptions noted below),
nothing happens. This safeguards against entering extraneous
characters. Even better, Apple MLX checks for transposed
characters. If you're supposed to type in AO and instead enter
OA, Apple MLX will catch your mistake.

Apple MLX also checks to make sure you're typing in the
right line. The address (the number to the left of the colon) is
part of the checksum recalculation. If you accidentally skip a
line and try to enter incorrect values, Apple MLX won't let
you continue. Just make sure you enter the correct starting ad
dress; if you don' t, you won't be able to enter any of the
following lines . Apple MLX will stop you.

Editing Features
Apple MLX also includes some editing features. The left- and
right-arrow keys allow you to back up and go forward on the
line that you are entering, so you can retype data . Pressing the
CONTROL (CTRL) and D keys at the same time (delete) re
moves the character under the cursor, shortening the line by
one character. Pressing CTRL-I (insert) puts a space under the
cursor and shifts the rest of the line to the right, making the
line one character longer. If the cursor is at the right end of
the line, neither CTRL-D nor CTRL-I has any effect.

When you've entered the entire listing (up to the ending
address that you specified earlier), Apple MLX automatically
leaves Enter mode and redisplays the functions menu. If you
want to leave Enter mode before then, press the RETURN key
when Apple MLX prompts you with a new line address. (For
instance, you may want to leave Enter mode to enter a pro
gram listing in more than one sitting; see below.)

Display Data
The second menu choice, (D)ISPLAY DATA, examines mem
ory and shows the contents in the same format as the program
listing. You can use it to check your work or to see how far
you've got. When you press D, Apple MLX asks you for a
starting address. Type in the address of the first line you want

417

3'-t s~ ~ u .,

G: Machine Language Entry Program, MLX

to see and hit RETURN. Apple MLX displays program lines
until you press any key or until it reaches the end of the
program.

Save and Load
Two more menu selections let you save programs on disk and
load them back into the computer. These are (S)AVE FILE and
(L)OAD FILE. When you press S or L, Apple MLX asks you
for the filename. The first time you save an ML program, the
name you assign will be the program's filename on the disk. If
you press L and specify a filename that doesn't exist on the
disk, you'll see a disk error message.

If you're not sure why a disk error has occurred, check
the drive . Make sure there's a formatted disk in the drive and
that it was formatted by the same operating system you're
using for Apple MLX (ProDOS or DOS 3.3). If you're trying to
save a file and see an error message, the disk might be full.
Either save the file on another disk or quit Apple MLX (by
pressing the Q key), delete an old file or two, then run Apple
MLX again. Your typing should still be safe in memory.

Program G-3. MlX

100 N = 9: HOME : NORMAL : PRINT "APPLE MLX": POKE
34 1 2: ONERR GOTO 610

110 VTAB 1: HTAB 20: PRINT "START ADDRESS";: GOSUB
530: IF A= 0 THEN PRINT CHR$ (7): GOTO 110

120 S = A
130 VTAB 2: HTAB 20: PRINT "END ADDRESS ";: GOSUB

530: IF S >=A OR A= 0 THEN PRINT CHR$ (7): G
OTO 130

140 E = A
150 PRINT : PRINT "CHOOSE:(E)NTER DATA";: HTAB 22:

PRINT "(D)ISPLAY DATA": HTAB 8: PRINT "(L)OAD F
ILE (S)AVE FILE (Q)UIT": PRINT

160 GET A$: FOR I = 1 TO 5: IF A$ < > MID$ ("EDLSQ"
1 I 1 1) THEN NEXT : GOTO 160 .

170 ON I GOTO 270 1 220 1 180 1 200: POKE 34 1 0: END
180 INPUT "FILENAME: ";A$: IF A$ < > "" THEN PRINT

CHR$ (4);"BLOAD";A$;" 1 A";S
190 GOTO 150
200 INPUT "FILENAME: ";A$: IF A$ < > "" THEN PRINT

CHR$ (4) i II BSAVE II i A$ i II I A II i s i II I L II i E - s
210 GOTO 150
220 GOSUB 590: IF B = 0 THEN 150
230 FOR B = B TO E STEP 8:L = 4:A = B: GOSUB 580: P

RINT A$;": ";:L = 2

418

G: Machine Language Entry Program, MLX

240 FOR F = 0 TO 7:V(F + 1) =PEEK (B +F): NEXT :
GOSUB 560:V(9) = C -

250 FOR F = 1 TO N:A = V(F): GOSUB 580: PRINT A" ~
;: NEXT : PRINT : IF PEEK (49152) < 128 THEN NE
XT

260 POKE 49168,0: GOTO 150
270 GOSUB 590: IF B = 0 THEN 150
280 FOR B = B TO E STEP 8
290 HTAB 1:A = B:L = 4: GOSUB 580: PRINT A$j.>": ";:

CALL 64668:A$ "":P = 0: GOSUB 330: IF L = 0 T
HEN 150

300 GOSUB 470: IFF< > N THEN PRINT CHR$ (7);: GOT
0 290

310 IF N = 9 THEN GOSUB 560: IF C < > V(9) THEN PRI
NT CHR$ (7);: GOTO 290

320 FOR F = 1 TO 8: POKE B + F- 1,V(F): NEXT: PRI
NT : NEXT : GOTO 150

330 IF LEN (A$) = 33 THEN A$ O$:P = 0: PRINT CHR$
(7) ;

340 L =LEN (A$):0$ = A$:0 = P:L$ "": IF P > 0 TH
EN L$ = LEFT$ (A$,P)

350 R$ = "": IF P < L - 1 THEN R$ RIGHT$ (A$,L -
p - 1)

360 HTAB 7: PRINT L$;: FLASH : IF P < L THEN PRINT
MID$ (A$,P + 1,1);: NORMAL PRINT R$;

370 PRINT" ";:NORMAL
380 K =PEEK (49152): IF K < 128 THEN 380 ~
390 POKE 49168,0:K = K - 128
400 IF K = l3 THEN HTAB 7: PRINT A$;" ";: RETURN
410 IF K = 32 OR K > 47 AND K < 58 OR K > 64 AND K

< 71 THEN A$ = L$ + CHR$ (K) + R$:P = P + 1
420 IF K 4 THEN A$ = L$ + R$
430 IF K 9 THEN A$ = L$ + " " +MID$ (A$,P + 1,1)

+ R$
440 IF K 8 THEN P = P - (P > 0)
450 IF K = 21 THEN P P + (P < L)
460 GOTO 330
470 F = 1:D = 0: FOR P = 1 TO LEN (A$):C$ =MID$ (A

$,P,1): IFF> NAND C$ < > " "THEN RETURN
480 IF C$ < > " " THEN GOSUB 520:V(F) = J + 16 * (D

= 1) * V(F):D = D + 1
490 IF D > 0 AND C$ = " " OR D 2 THEN D = 0:F = F

+ 1
500 NEXT : IF D = 0 THEN F = F - 1
510 RETURN
520 J = ASC (C$):J = J- 48- 7 * (J > 64): RETURN
530 A= 0: INPUT A$:A$ =LEFT$ (A$,4): IF LEN (A$)

= 0 THEN RETURN
540 FOR P = 1 TO LEN (A$):C$ =MID$ (A$,P,1): IF C$

< "0" OR C$ > "9" AND C$ < "A" OR C$ > "Z" THE
N A = 0: RETURN

419

G: Machine Language Entry Program, MLX

550 GOSUB 520:A = A * 16 + J: NEXT : RETURN
560 c =!NT (B I 256):C = B- 254 * c- 255 * (C >

127):C = C- 255 * (C > 255)
570 FOR F = 1 TO 8:C = C * 2 - 255 * (C > 127) + V(

F):C = C- 255 * (C > 255): NEXT : RETURN
580 I= FRE (0):A$ = "": FOR I= 1 TO L:T INT (A

I 16) :A$ = MID$ ("0123456789ABCDEF" ,A - 16 * T
+ 1,1) + A$:A = T: NEXT : RETURN

590 PRINT "FROM ADDRESS";: GOSUB 530: IF S >A OR
E < A OR A = 0 THEN B = 0: RETURN

600 B = s + 8 * !NT ((A-S) I 8): RETURN
610 PRINT "DISK ERROR": GOTO 150

420

Index
absolute, X addressing 60-63
absolute, Y addressing 60-63
absolute addressing 50-52, 106
accumulator 26, 27, 36, 49-50, 63,

214-18
accumulator mode 65-66
ADC instruction 27, 74-75, 77, 185-86,

91 , 188
addition 74-78, 185-86
addressing 24, 35, 39-40, 47-66,

54-55, 72, 92-99, 114
addressing modes 50-66
address pointer 64-65
AND instruction 49, 117, 118, 186-87
Apple ASCII 12-13
Apple monitor 33-44

instructions 33-3 7
using 37-44, 85

A register 37, 49, 88 . See also
accumulator

argument ix, 47, 52, 72
arithmetic 69-81
Arithmetic instruction group 86, 91-92
ASC BASIC function, ML equivalent of

178
ASCII code 11-16, 69, 71, 106, 136,

178
ASL instruction 65, 79, 91 , 118, 187-88
assembler vii, 3-6, 24, 27-30, 42-44 .

See also LADS
assemblers, personal 42-43
assembly language. See machine

language
BASIC, borrowing ML routines from

123-29
BASIC, strong points of xii
BASIC commands, ML equivalents of

149-82
BASIC loader 25-26
" BASIC Loader" program 26
BASIC ROM, examining 85

storage of 52-53
BCC instruction 55, 79, 81, 95, 99, 188
BCS instruction 57, 79, 81 , 95, 99,

188-89
BEQ instruction 49, 57, 79, 95, 189
binary numbers 9- 11
"Binary Quiz" program 22
"Binary Table" program 22
bit 10-11

turning off 186
turning on 206

BIT instruction 118, 189-90
BMI instruction 57, 79, 81 , 95, 99, 190

BNE instruction 57, 79, 81 , 95, 98, 101,
190-91

BPL instruction 57, 79, 81, 95, 99,
101-2, 191

BRA instruction (65C02 chip) 119
branching 60, 92-99
breakpoint, debugging and 41 , 114
BRK instruction 41 , 55 , 90, 114-16,

191-92
building a program 133-41
BVC instruction 57, 91 , 95, 192
BVS instruction 57, 95, 193
byte 11-16
CALL BASIC instruction ix, 5, 24, 87,

149-50, 177
carriage return 54
carry flag 74, 185, 212. See c flag
C computer language x
CHR$ BASIC function, ML equivalent

of 179
CLC instruction 55, 75, 77, 91, 193
CLD instruction 55, 75, 193-94
CLI instruction 118-19, 194
CLR BASIC statement, ML equivalent

of 150-51
CLV instruction 194
CMP instruction 11, 81, 93, 95, 99, 167,

188-89, 195-96
code 69
cold start 153
comparison, double-byte subroutine

398
compiled code 125
compilers 126
computer time, cost of 43-44
CONI BASIC statement, ML equiva-

lent of 151
context, of a number in ML 71, 73-74
counting and looping 49
CPX instruction 93, 196-97
CPY instruction 93, 197
cursor management 102-3
DATA BASIC statement, ML equivalent

of 151-52
DEA instruction (65C02 chip) 119
Debugger instruction group 86
debugging 37-42, 114, 115-16, 205,

284
decimal mode 75
decimal numbers 9, 15
DEC instruction 63, 65, 99, 198
Decision-Maker instruction group 86,

92-99
defensive programming 37-42

421

delay 155
delimiter 103
DEX instruction 55,99-100, 112, 198
DEY instruction 55, 63, 99, 199
DIM BASIC statement, ML equivalent

of 153
disassembler ix-x, 27, 280-86, 287-91
disassembly listings 35
division 78-79, 210
DOS 3.3 221 , 235, 252-66, 292
double comparison 79-81
double-byte addition subroutine 398-99
double-byte subtraction subroutine

399-400
" Double-Compare" program 80
END BASIC statement, ML equivalent

of 153-54
EOR instruction 10, 49, 117-18,

199-200
errors, common 39-41
experimentation, value of 86
fastest addressing 52-53
fill memory option of monitor 166
" Filling the Screen with the Letter A"

program 62
flag 13-14, 47, 74, 87, 89-90, 118, 185,

186, 192-93, 212. See c flag
FOR-NEXT loop, ML equivalent 58,

99-102, 155-56
FOR-NEXT -STEP BASIC statement, ML

equivalent of 156-57
Forth computer language x
forward branching 98-99
gate 70
GET BASIC statement, ML equivalent

of 157-58
GOSUB BASIC statement, ML equiva

lent of 158-59
GOTO BASIC statement, ML equiva

lent of 159-60
GR(aphics) BASIC statement, ML

equivalent of 161
hexadecimal numbers 9, 16-18
"Hex-Decimal Converter" program

1-17
hex dump 26, 33
" Hex Practice" program 23
HIMEM pointer 149
HOME BASIC statement, ML equiva

lent of 161
HOME subroutine 108
IF-THEN BASIC statement, ML equiva

lent of 161
immediate addressing 35, 39-40,

54-55, 72
implied addressing 55, 114

422

impossible instruction trap (LADS)
271-73

INA instruction (65C02 chip) 119
INC instruction vii-viii, 63, 65, 99, 200
increment and decrement double-byte

numbers subroutine 397-98
indexed addressing 49
indirect X addressing 65
indirect Y addressing 63-65 , 77
INPUT BASIC statement, ML equiva-

lent of 161-63
instruction set 85-120
interactive programming, monitors and

42-43
interpreted code 125
Interrupt Disable Flag (I flag) 13-14
INX instruction 55, 72, 99-100, 200
!NY instruction 55, 63, 73, 99, 201
I / 0 116-17
JMP, indirect 113-14
JMP instruction 25, 95 , 106-14, 159-60

201-2
uses of 112-13

jSR instruction 55 , 90, 98, 102, 106-14,
123, 125, 126-27, 153, 158, 202-3

jump tables 123-25
keypress, checking for 70, 101 , 126-27,

157
Label Assembly Development System.

See LADS
LADS vii-viii, 3-6, 23, 25, 27-30, 42,

79, 96, 103-4, 110, 115, 120, 270-73
adding disassembler to 280-86
Apple-specific features 286, 292-98
automatic math and 228-29
chained files and 229-31
data tables and 225
disassembler source code 287- 91
disk access and 293-96
DOS 3.3 and 221 , 292
DOS 3.3 object code 252-66
how to use 221 - 37
labels and 227-28
modifying 269- 98
modifying to read source code from
RAM 273- 80
printer and 223- 24
ProDOS and 221 , 296-98
ProDOS object code 237-51
running 236-37
sample program 4- 6
source code 301-94
special rules 231-34
tape and 234-25
typing in 235-36

LDA instruction 27, 47, 52, 54, 72-73,
74, 81, 86-91, 93, 150, 188-89 203

LDX instruction 87-91, 112, 203
LDY instruction 87-91, 203
LEFT$ BASIC function, ML equivalent

of 179
LEN BASIC function , ML equivalent of

179-80
LET BASIC statement, ML equivalent

of 163-65
limited distance, of relative addressing

58
LIST BASIC statement, ML equivalent

of 165
LOAD BASIC statement, ML equivalent

of 165-66
loading 34
Logo computer language x
Loop instruction group 86, 99-106
loops, large 100-102
LSR instruction 65, 79, 91, 118, 205
" Machine Language Entry Program,

MLX" 415-20
masking a byte 117
memory, organization of 18-21
memory dump. See hex dump
memory-mapped video 93
MID$ BASIC function, ML equivalent

of 180
ML instructions vii-viii
mnemonics 25
monitor, Apple 33-44

instructions 33-37
using 37-44, 85

monitor, machine language 24, 33-44,
166, 177
assemblers and 42- 44

multibyte subtraction subroutines
400-402

multiplication 78-79, 209
naked mnemonic error trap (LADS)

270-71
negative numbers 59
NEW BASIC statement, ML equivalent

of 166
N flag 87, 89-90, 118, 186
NOP instruction 55, 114-15, 205-6
number tables 405- 11
" Number Tables" program 411
nybble 187
object code 24
ON-GOSUB BASIC statement, ML

equivalent of 166-67
ON-GOTO BASIC statement, ML

equivalent of 167-68
opcode 25, 72

operand. See argument
ORA instruction 49, 117, 206
pages of memory 39
Pascal computer language x
PC. See program counter
PEEK BASIC function 26, 93
PHA instruction 55, 90, 107, 207
PHP instruction 55, 90, 108, 207
PHX instruction (65C02 chip) 119
PHY instruction (65C02 chip) 119
PLA instruction 55, 90, 107, 108, 208
PLOT BASIC statement, ML equivalent

of 168-72
PLP instruction 55, 90, 108, 208
PLX instruction (65C02 chip) 119
PLY instruction (65C02 chip) 119
pointer, user-defined 76
POKE statement vii, ix, 26, 74, 93
PRINT BASIC statement, compared to

ML x-xi
PRINT BAS IC statement, ML equiva-

lent of 172-75
print character routine (Apple) 124
processor status flags 47
ProDOS 3, 4, 235, 269-70, 273, 279,

281
program counter 47, 73, 87, 116
program listings, different types of

25-30
programming techniques 135-37
program portability 123
pseudo-op 60, 223-35
"Putting an Immediate 15 into Ab

solute Address $4000" program 56
RAMLADS 273-80
RANDOM BASIC statement, ML

equivalent of 175-76
READ BASIC statement, ML equivalent

of 176
register 36-37, 47, 49, 88, 89, 204
relative addressing 57-60, 92-99
REM BASIC statement, ML equivalent

of 176-77
reserving RAM 75-76, 134
RETURN BASIC statement, ML equiva

lent of 177
reusing routines vi
RIGHT$ BASIC function, ML equiva-

lent of 180-81
ROL instruction 10, 65, 118, 208- 9
ROR instruction 65, 118, 209-10
RTI instruction 118-19, 210-11
RTS instruction 27, 55, 90, 106-14,

153, 167, 177, 211
RUN BASIC statement, ML equivalent

of 177

423

safe memory locations 53, 133-34
save BASIC statement, ML equivalent

of 178
saving 34
SBC instruction 81, 91, 211-12
screen management 62, 102-6, 126-27,

168-75
"Search" source code 142-46
SEC instruction 55, 81, 91, 212
SED instruction 55, 75, 185, 212-13
SEI instruction 118-19, 213-14
single-stepping 115- 16
65C02 chip 119-20
6502 chip 24, 47, 77, 119

bug in 113- 14
instructions 18, 185-218

slowness, of computer languages other
than ML x

snow 90- 91
source code 24
stack 39, 90-91, 107-8, 153-54, 208

leaving alone 107-8
when to modify 108- 10

stack pointer 36, 47
STA instruction 27, 52, 73, 87-91, 214
start address ix, 221-22
status register 36, 49. See also flags
STOP BASIC statement, ML equivalent

of 178
strings 102-6, 178-82
STX instruction 87-91 , 215
STY instruction 87-91 , 215
STZ instruction (65C02 chip) 119
Subroutine and jump instruction group

86, 106-14

424

subroutines 86, 106- 14, 397-402
in program design 107-8, 110-12

subtraction 78
TAB BASIC function, ML equivalent of

181- 82
table handling 61 , 76-78
table, ML 151-52
TAX instruction 87-91, 215
TAY instruction 87-91 , 216
TEXT BASIC statement, ML equivalent

of 178
Transporter instruction group 86-91
TRB instruction (65C02 chip) 119
true ASCII 14
TSB instruction (65C02 chip) 119
TSX instruction 90, 216-17
two-byte addressing 24
two-byte instructions 47
TXA instruction 55, 73-74, 87-91, 217
TXS instruction 90, 218
TYA instruction 47, 55, 87-91, 218
unknown forward branch 60
V flag 118, 185, 192-93
variables, in ML and BASIC 163-64
vector 191
warm start 153
word processor, ML 154
X register 36-37, 49, 88, 204
Y register 36-37, 49, 88, 204
Z flag 87, 90, 118
zero page

safe addresses in 53
X addressing 61, 66
Y addressing 53, 66

zero-page addressing 39-40, 52-54, 73

To order your copy of the Apple Machine Language for
Beginners Disk call our toll-free US order line: 1-800-334-0868
(in NC call 919-275-9809) or send your prepaid order to:

Apple Machine Language for Beginners Disk
COMPUTEI Publications
P.O. Box 5058
Greensboro. NC 27 403

All orders must be prepaid (check. charge, or money order) . NC
residents add 4.5% sales tax.

Send __ copies of the Apple Machine Language for Begin
ners Disk at $12.95 per copy. (0025AML)

Subtotal $ ___ _

Shipping & Handling: $2.00/disk $ ____ _

Sales tax (if applicable) $ ___ _

Total payment enclosed $ ____ _

o Payment enclosed
Charge o Visa o MasterCard o American Express

Acct . No. ------------- Exp. Date __ _
(Required)

Name ------------------------------

Address ---------------------

City ----------- State ___ Zip __ _

Please allow 4-5 weeks for delivery.

4570023

425

COMPUTE! Books
Ask your retailer for these COMPUTE! Books or order
directly from COMPUTE! .
Call toll free (in US) 800-334-0868 (in NC 919-275-
9809) or write COMPUTE! Books, P.O. Box 5058,
Greensboro, NC 27 403.
Quantity Title

Becoming a MacArtist (80-9)
COMPUTE!'s Apple Games for Kids (91-4)
COMPUTE!'s First Book of Apple (69-8)
COMPUTE!'s Guide to Telecomputing
on the Apple (7 6-0)
COMPUTE!'s Kids and the Apple (76-0)
Easy BASIC Programs for the Apple (88-4)
MacTalk : Telecomputing on the
Macintosh (85-X)
SpeedScript : The Word Processor for
Apple Personal Computers (000)
The Apple lie: Your First Computer (001)

Price· Total

$17.95
$12.95
$12.95

$ 9.95 -
$12.95 -
$14.95 - -

$12.95 -

$ 9.95 -
$9.95--

"Add $2.00 per book for shipping and handling.
Outside US add $5.00 air mail or $2.00 surface mail.

Shipping & handling: $2.00/book ____ _
Total payment ____ _

All orders must be prepaid (check, charge, or money order).
All payments must be in US funds .
NC residents add 4.5% sales tax.
D Payment enclosed.
Charge D Visa D MasterCard D American Express
Acct. No. Exp . Date _ _ _

(Requ~red) Signature ________________ ____ _
Name ________________ _____ ___

Address _____________________ __

City _____________ State _ _ _ _
·Allow 4-5 weeks for delivery.
Prices and availability subject to change.
Current catalog available upon request .

Zip __

4570023

COMPUTE!'s Apple Applications Special
A special issue release from COMPUTE! Publications

On sale in April, 1985, COMPUTE!'s Apple Applications Special
features applications, tutorials, and in-depth feature articles for
owners and users of Apple computers. This special release is
filled with home, business, and educational applications and
contains ready-to-type programs, easy-to-understand tutorials
and useful information.
The programs published i'n COMPUTE!'s Apple Applications
Special will be available on a companion disk ready to load on
your Apple II, lie, and lie computers.
To order your copies, call toll-free 800-334-0868 or send your
prepaid order to: COMPUTE!'s Apple, P.O. Box 5058, Greens
boro, NC 27403.
All orders must be prepaid (check, charge, or money order.)

___ COMPUTE!'s Apple@ $3.95
___ COMPUTE!'s Apple Disk@ $16.95
___ $2.00 shipping and handling charge per item
___ NC residents add 4.5% sales tax
___ Total payment enclosed

0 Payment enclosed (check or money order)
0 Charge 0 VISA 0 MasterCard 0 American Express

Acct. No. __________________________ Exp. Date I
(Requ~red)

Signature ---------------------------------------Name __ __
Address __ __
City __________________ _ State _____ Zip ____ _
Please allow 4-5 weeks for delivery
Offer expires January, 1986 4570023

If you've enjoyed the articles in this book, you'll find
the same style and quality in every monthly issue of
COMPUTE! Magazine. Use this form to order your
subscription to COMPUTE! .

For Fastest Service
Call Our Toll-Free US Order Line

800-334-0868
In NC call 919-27 5-9809

COMPUTE!
PO. Box 5058
Greensboro. NC 27403

My computer is :
0 Commodore 64 0 TI-99/4A 0 Timex/Sinclair 0 VIC-20 0 PET
0 Radio Shack Color Computer 0 Apple 0 A tori 0 Other __
0 Don't yet have one ...

0 $24 One Year US Subscription
0 $45 Two Year US Subscription
0 $65 Three Year US Subscription
Subscription rates outside the US:
0 $30 Canada and Foreign Surface Mail
0 $65 Foreign Air Delivery

Name

Address

City State

Country

Zip

Payment must be in US funds drawn on a US bank, international
money order. or charge card .
D Payment Enclosed D Visa
D MasterCard D American Express

Acct. No. Expires I
(Required)

Your subscription will begin with the next available issue. Please
allow 4-6 weeks for delivery of first issue. Subscription prices subject
to change at any time.

457199

